Diarylheptanoids from *Dioscorea villosa* (Wild Yam)[†]

Shi-Hui Dong, Dejan Nikolic, Charlotte Simmler, Feng Qiu, Richard B. van Breemen, Djaja D. Soejarto, Guido F. Pauli, Shao-Nong Chen*

UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States

[†] *Residual Complexity and Bioactivity*, Part 16 (see S1.)

*To whom correspondence should be addressed.

Tel: +1 (312) 996-7253; Fax: +1 (312) 996-7107; E-mail: sc4sa@uic.edu

Supporting Information

Table of Contents

	Page SI
S1. Publication Series <i>Residual Complexity and Bioactivity</i>	5
S2. LC-MS profiles for compound 11 : isolated compound (S1-1), and detection in the crude ext of BC-601 (S1-2) and BC-630 (S1-3).	racts 9
S3. ¹ H NMR spectra of all primary fractions obtained by C-18 SPE fractionation of the crude ext <i>Dioscorea villosa</i>	ract of:10
S4. 1 H NMR iterative full spin analysis of 1–7 in CD $_{3}$ OD	16
S5. ¹ H NMR spectrum of 1 in CD ₃ OD/CDCl ₃ (10:1)	18
S6. ¹³ C NMR spectrum of 1 in CD ₃ OD/CDCl ₃ (10:1)	19
S7. $^{1}H-^{1}H$ COSY spectrum of 1 in CD ₃ OD/CDCl ₃ (10:1)	20
S8. HSQC spectrum of 1 in CD ₃ OD/CDCl ₃ (10:1)	21
S9. HMBC spectrum of 1 in CD ₃ OD/CDCl ₃ (10:1)	22
S10. ROESY spectrum of 1 in $CD_3OD/CDCI_3$ (10:1)	23
S11. IR (film/ATR) spectrum of 1	24
S12. ¹ H NMR spectrum of 2/3 in CD ₃ OD	25
S13. ¹³ C NMR spectrum of 2/3 in CD ₃ OD	26
S14. $^{1}H-^{1}H$ COSY spectrum of 2/3 in CD ₃ OD	27
S15. HSQC spectrum of 2/3 in CD₃OD	28
S16. HMBC spectrum of $2/3$ in CD ₃ OD	29
S17. ROESY spectrum of 2/3 in CD ₃ OD	30
S18. IR (film/ATR) spectrum of 2 and 3	31
S19. ¹ H NMR spectrum of 4/5 in CD ₃ OD	32
S20. ¹³ C NMR spectrum of 4/5 in CD ₃ OD	33

S21. $^{1}H-^{1}H$ COSY spectrum of 4/5 in CD ₃ OD	
S22. HSQC spectrum of 4/5 in CD ₃ OD	
S23. HMBC spectrum of 4/5 in CD ₃ OD	
S24. NOESY spectrum of $4/5$ in CD ₃ OD	
S25. IR (film/ATR) spectrum of 4/5	
S26. ¹ H NMR spectrum of 6/7 in CD ₃ OD	
S27. ¹³ C NMR spectrum of 6/7 in CD ₃ OD	
S28. ¹ H– ¹ H COSY spectrum of 6/7 in CD ₃ OD	
S29. HSQC spectrum of 6/7 in CD ₃ OD	
S30. HMBC spectrum of 6/7 in CD ₃ OD	
S31. IR (film/ATR) spectrum of 6 and 7	
S32. ¹ H NMR spectrum of 8/9 in CD ₃ OD	
S33. ¹ H NMR spectrum of 10 in DMSO- d_6	
S34. ¹ H NMR spectrum of 11 in CD ₃ OD	
S35. ¹ H NMR spectrum of 12 in pyridine- d_6	
S36. ¹ H NMR spectrum of 12 in DMSO- d_6	
S37. ¹ H NMR spectrum of 13/14 in DMSO- d_6	
S38. ¹ H NMR spectrum of the (<i>R</i>)-MTPA derivative of 1 in pyridine- d_5	51
S39. ¹ H– ¹ H COSY spectrum of the (<i>R</i>)-MTPA derivative of 1 in pyridine- d_5	
S40. ¹ H NMR spectrum of the (S)-MTPA derivative of 1 in pyridine- d_5	53
S41. ¹ H– ¹ H COSY spectrum of the (<i>S</i>)-MTPA derivative of 1 in pyridine- d_5	
S42. ¹ H NMR spectrum of the (<i>R</i>)-MTPA derivatives of 2/3 in pyridine- d_5	
S43. ¹ H NMR spectrum of the (S)-MTPA derivatives of 2/3 in pyridine- d_5	

S44. ¹ H NMR spectrum of the (<i>R</i>)-MTPA derivatives of 4/5 in pyridine- d_5
S45. ¹ H– ¹ H COSY spectrum of the (<i>R</i>)-MTPA derivatives of 4/5 in pyridine- d_5
S46. ¹ H NMR spectrum of the (S)-MTPA derivatives of 4/5 in pyridine- d_5
S47. $^{1}H-^{1}H$ COSY spectrum of the (S)-MTPA derivatives of 4/5 in pyridine- d_{5}
S48. ¹ H NMR spectrum of the (<i>R</i>)-MTPA derivative of compound 6 in pyridine- d_5
S49. ¹ H– ¹ H COSY spectrum of the (<i>R</i>)-MTPA derivative of 6 in pyridine- d_5
S50. ¹ H NMR spectrum of the (S)-MTPA derivative of compound 6 in pyridine- d_5
S51. $^{1}H-^{1}H$ COSY spectrum of the (S)-MTPA derivative of compound 6 in pyridine- d_{5}
S52. ¹ H NMR spectrum of the (<i>R</i>)-MTPA derivative of 8/9 in pyridine- d_5
S53. ¹ H– ¹ H COSY spectrum of the (<i>R</i>)-MTPA derivative of 8/9 in pyridine- d_5
S54. ¹ H NMR spectrum of the (S)-MTPA derivative of 8/9 in pyridine- d_5
S55. ¹ H– ¹ H COSY spectrum of the (S)-MTPA derivative of 8/9 in pyridine- d_5
S56. ¹ H– ¹ H COSY spectra of 1, 10, and 12 and the crude extract of BC-601 (6.0-8.5 ppm)

S1. Publication Series Residual Complexity and Bioactivity

The present publication forms Part 16 in a series of communications on Residual Complexity and Bioactivity.

From a **chemical perspective**, residual complexity (RC) refers to the subtle but significant convolution of major and minor chemical species in materials that originate from reaction mixtures, such as natural products. Because natural products are formed biosynthetically, they inherit a certain portion of side products from the metabolomic cocktail. This RC is frequently conserved in highly purified materials, even after an elaborate analytical separation scheme has been applied. The relationship between the (bio)synthetic cocktail and the products is perpetuated by the RC of the samples. In principle, RC affects all "pure" materials. RCs can be divided into two main groups: static RC describes the thermodynamically stable cases, whereas dynamic RC refers to situations where the impurity patterns change over time due to reactivity or other chemical change that occurs during the timeframe and under the conditions of the observation (e.g., a bioassay).

From a **biological perspective**, RC can have a major impact on bioactivity. Numerous forms of bioassays are widely used for the biological assessment (in vitro, ex vivo, in vivo) of bioactive agents. As many of the bioassays are mechanistically complex by nature, biological evaluation also can be residually complex. This adds a biological layer to the overall RC of bioactive agents and applies to various levels of chemical and biological complexity. Accordingly, both the chemical RC of the agent and the biological RC of the bioassay have to be considered when interpreting information about bioactivity.

As discussed in detail in Part 12 of the publication series (<u>Journal of Natural Products</u>, 75: 1243-1255 (**2012**); see also below), the recognition and analysis of **RC can help establishing links between the observed biological activity and the underlying chemistry of bioactive agents**. The following table lists the preceding publications since 2008 which establish the publication series *Residual Complexity and Bioactivity*.

Part	Reference	Brief Synopsis Regarding Residual Complexity and Bioactivity
Part	Jaki BU, Franzblau SG, Chadwick LR, Lankin DC, Zhang F, Wang Y, Pauli GF	Demonstrates the relationship between purity, RC and anti-TB activity
1	Purity Bioactivity Relationships – The Case of Anti-TB Active Ursolic Acid	of different batches of a natural product; uses qHNMR methodology to
	Journal of Natural Products 71: 1742-1748 (2008)	establish quantitative relationships between purity/RC and activity.
	<u>dx.doi.org/10.1021/np800329j</u>	

Part	Chen S, Turner A, Jaki B, Nikolic D, van Breemen R, Friesen B, Pauli GF	Performs selective removal of a single, interfering phytoconstituent
2	An Experimental Implementation of Chemical Subtraction	from a bioactive (E. coli anti-adherence) fraction and demonstrates the
	Journal of Pharmaceutical and Biomedical Analysis 46: 692-698 (2008)	presence of RC in the removed ("subtracted") compound and its
	dx.doi.org/10.1016/j.jpba.2007.12.014	assessment by qNMR and MS methods.
Part	Schinkovitz A, Pro S, Main M, Chen SN, Jaki BU, Lankin DC, Pauli GF	Shows how RC is generated and varies in purified samples of ligustilide,
3	The Dynamic Nature of the Ligustilide Complex	a designated bioactive marker present in Angelica and Ligusticum
	Journal of Natural Products 71: 1606-1611 (2008)	species; compares analytical methods suitable to assess dynamic RC.
	<u>dx.doi.org/10.1021/np800137n</u>	
Part	Gödecke T, Chen SN, Lankin D, Nikolic D, van Breemen R, Pauli GF	Establishes the new phytochemical methodology that leads to the
4	Phytochemistry of Cimicifugic Acids and Associated Bases in Cimicifuga	LC-MS-driven discovery of trace amounts of N-Methyl-serotonin as
	racemosa Root Extracts	serotonergic active principle in black cohosh; demonstrates the
	Phytochemical Analysis 20: 120-131 (2009)	relevance of low-abundance constituents (RC) as potential bioactive
	dx.doi.org/10.1002/pca.1106	markers for metabolomic mixtures such a botanical extracts.
Part	Chen SN, Lankin D, Chadwick L, Jaki B, Pauli GF	Exemplifies how the dynamic form of RC can lead to the generation of
5	Dynamic Residual Complexity of Natural Products by qHNMR: Solution	a highly potent phytoestrogen (8-PN) from the inactive precursor
	Stability of Desmethylxanthohumol	(DMX); institutes qHNMR methodology to assess RC in a time-resolved
	Planta Medica 75: 757-762 (2009)	fashion, enabling correlation with bioassay outcome.
	<u>dx.doi.org/10.1055/s-0028-1112209</u>	
Part	Pauli GF, Friesen B, Goedecke T, Farnsworth N, Glodny B	Unambiguously demonstrates the unexpected occurrence of the
6	Occurrence of Progesterone and Related Animal Steroids in Two Higher	mammalian steroid, progesterone, in higher plants and shows that
	Plants	small amounts of this hormone as well as mammalian-like steroid
	Journal of Natural Products 73: 338-345 (2010)	metabolites (e.g., 3-O-sulfates) can form a small but integral part of the
	<u>dx.doi.org/10.1021/np9007415</u>	RC of plant metabolomes.
Part	Molina-Salinas G, Rivas-Galindo V, Said-Fernández S, Lankin D, Muñoz M,	Establishes the subtle but significant diastereomeric difference
7	Joseph-Nathan P, Pauli GF*, Waksman N* [*corresponding authors]	between elisabethanol, which had been isolated from a gorgonian
	Stereochemical Analysis of Leubethanol, an Anti-TB Active Serrulatane,	organism, and leubethanol, the anti-TB active lead compound isolated
	from Leucophyllum frutescens	from a plant; utilizes VCD for the determination of absolute

	Journal of Natural Products 74: 1842-1850 (2011)	stereochemistry and emphasizes ¹ H iterative full spin analysis (HiFSA)
	<u>dx.doi.org/10.1021/np2000667</u>	as a dereplication tool and for the analysis of RC of natural products.
Part	Gödecke T, Napolitano J, Yao P, Nikolic D, Dietz B, Bolton J, van Breemen	Establishes a qHNMR-based protocol for the simultaneous quantitation
8	R, Chen SN, Lankin D, Farnsworth N, Pauli GF	of multiple marker compounds in the bioactive fraction
	Integrated standardization concept for Angelica botanicals using	([anti-]estrogenicity, cytotoxicity) of Angelica sinensis botanicals;
	quantitative NMR	demonstrates the advanced role qHNMR can have in botanical
	Fitoterapia 83: 18-32 (2012)	standardization and evaluation of RC of the plant extracts.
	dx.doi.org/10.1016/j.fitote.2011.08.017	
Part	Qiu F, Imai A, McAlpine J, Lankin D, Burton I, Karakach T, Farnsworth N,	Determines the RC of purified botanical reference materials of
9	Chen SN, Pauli GF	triterpenes from black cohosh; demonstrates the assessment of RC by
	Dereplication, Residual Complexity and Rational Naming - the Case of the	computer-aided dereplication using classification binary trees (CBTs) to
	Actaea Triterpenes	derive both structural information and quantitative measures for minor
	Journal of Natural Products 75: 432-443 (2012)	components contained in residually complex samples.
	<u>dx.doi.org/10.1021/np200878s</u>	
Part	Napolitano J, Gödecke T, Rodriguez Brasco MF, Jaki BU, Chen SN, Lankin	Establishes ¹ H iterative full spin analysis (HiFSA)as the basis of a
10	DC, Pauli GF	qHNMR approach for the parallel quantitation of eight bioactive
	The Tandem of Full Spin Analysis and qHNMR for the Quality Control of	markers in Ginkgo biloba; exemplifies how multi-target standardization
	Botanicals Exemplified with Ginkgo biloba	can be achieved without the need for identical calibrants in (residually)
	Journal of Natural Products 75: 238-248 (2012)	complex samples including reference materials, fractions, and extracts;
	<u>dx.doi.org/10.1021/np200949v</u>	addresses the role of RC in reference materials of calibrants.
Part	Qiu F, Friesen JB, McAlpine JB, Pauli GF	Introduces the use of qHNMR for both the design and the analysis of
11	NMR-based Design of Countercurrent Separation of Ginkgo biloba	countercurrent separation (CS) of bioactive botanical markers;
	Terpene Lactones	demonstrates the measurement of partition coefficients of target
	Journal of Chromatography A 1242: 26-34 (2012)	markers in mixtures; performs the evaluation of chromatographic
	dx.doi.org/10.1016/j.chroma.2012.03.081	orthogonality in CS; establishes quantitative links between predicted
		and measured chromatographic CS performance and the RC of the
		purified markers.

Part	Pauli GF, Chen SN, Friesen JB, McAlpine J, Jaki BU	Comprehensive meta-analysis of the literature (1999-2010) focusing on
12	Analysis and Purification of Bioactive Natural Products - The AnaPurNa	the role of analytical methodology in the purification and
	Study	characterization of bioactive compounds from natural sources;
	Journal of Natural Products, 75: 1243-1255 (2012)	addresses the role of RC in their purification and characterization and
	<u>dx.doi.org/10.1021/np300066q</u>	discusses the impact of RC on the biological evaluation and validation
		of lead compounds.
Part	Napolitano J, Lankin D, Chen SN, Pauli GF	Establishes the methodology for the generation of unambiguous ¹ H
13	Complete ¹ H NMR Spectral Analysis of Ten Chemical Markers of <i>Ginkgo</i>	NMR fingerprints of bioactive markers, exemplified for terpene
	biloba	lactones and flavonoids from Ginkgo biloba; the fingerprints are
	Magnetic Resonances in Chemistry 50: 569-575 (2012)	suitable for both structural dereplication and qHNMR quantitation at
	dx.doi.org/10.1002/mrc.3829	various levels of RC, can be scaled to all existing NMR field strength and
		are independent of instrumentation.
Part	Riihinen K, Gödecke T, Pauli GF	Establishes long-bed gel permeation chromatography (GPC) on
14	Purification of Berry Flavonoids by Long-bed Gel Permeation	Sephadex LH-20 as an efficient method for the purification of bioactive
	Chromatography	berry polyphenols; despite its capability to resolve closely related
	Journal of Chromatography A, 1244: 20-27 (2012)	compounds, qHNMR analysis reveals an un expected degree of RC in
	dx.doi.org/10.1016/j.chroma.2012.04.060	the GPC fractions.
Part	Inui T, Wang Y, Pro S, Franzblau SG, Pauli GF	Establishes biochemometric methodology capable of identifying
15	Unbiased Evaluation of Bioactive Secondary Metabolites in Complex	bioactive principles in crude metabolomic mixtures, as an alternative
	Matrices	to bioassay-guided fractionation; establishes chemometric links
	Fitoterapia 83: 1218-1225 (2012)	between the bioassay and the preparative and analytical chemistry of
	dx.doi.org/10.1016/j.fitote.2012.06.012	(residually) complex natural products; exemplifies the concept for the
		anti-TB active principles of the ethnobotanical, Oplopanax horridus.

S2. LC-MS profiles for compound **11**: isolated compound (S1-1), and detection in the crude extracts of BC-601 (S1-2) and BC-630 (S1-3).

Figure S1-1. LC-MS profile for compound 11

BC 630 Wild yam commerical samples

Figure S1-3. LC-MS profile for compound 11 in BC-630

S3. ¹H NMR spectra of all primary fractions obtained by C-18 SPE fractionation of the crude extract of *Dioscorea villosa*

Figure S3-2. ¹H NMR spectrum of primary subfraction 2

Figure S3-3. ¹H NMR spectrum of primary subfraction 3

Figure S3-11. ¹H NMR spectrum of primary subfraction 11

S4. ¹H NMR iterative full spin analysis of **1–7** in CD₃OD

Figure S4-2. ¹H NMR iterative full spin analysis of **2/3** in CD₃OD

¹H NMR Full Spin Analysis for Compounds **4/5**

¹H NMR Full Spin Analysis for Compound 6/7

S5. ¹H NMR spectrum of **1** in $CD_3OD/CDCl_3$ (10:1)

S6. ¹³C NMR spectrum of **1** in CD₃OD/CDCl₃ (10:1)

S7. $^{1}H^{-1}H$ COSY spectrum of **1** in CD₃OD/CDCl₃ (10:1)

S8. HSQC spectrum of **1** in CD₃OD/CDCl₃ (10:1)

S9. HMBC spectrum of **1** in CD₃OD/CDCl₃ (10:1)

\$10. ROESY spectrum of **1** in CD₃OD/CDCl₃ (10:1)

S13. ¹³C NMR spectrum of **2/3** in CD₃OD

S15. HSQC spectrum of 2/3 in CD₃OD

SI-29

f1 (ppm)

Figure S18-1. IR (film/ATR) spectrum of compound 2

Figure S18-2. IR (film/ATR) spectrum of compound 3

S19. ¹H NMR spectrum of **4/5** in CD₃OD

S20. ¹³C NMR spectrum of **4/5** in CD₃OD

SI-35

S23. HMBC spectrum of 4/5 in CD₃OD

SI-36

S25. IR (film/ATR) spectrum of 4/5

S26. ¹H NMR spectrum of 6/7 in CD₃OD

S27. ¹³C NMR spectrum of 6/7 in CD₃OD

S29. HSQC spectrum of 6/7 in CD₃OD

S30. HMBC spectrum of 6/7 in CD₃OD

SI-43

Figure S31-2. IR (film/ATR) spectrum of compound 7

S33. ¹H NMR spectrum of **10** in DMSO- d_6

SI-46

S37. ¹H NMR spectrum of **13/14** in DMSO- d_6

S38. ¹H NMR spectrum of the (*R*)-MTPA derivative of **1** in pyridine- d_5

S39. ¹H–¹H COSY spectrum of the (*R*)-MTPA derivative of **1** in pyridine- d_5

S41. ¹H–¹H COSY spectrum of the (*S*)-MTPA derivative of **1** in pyridine- d_5

S42. ¹H NMR spectrum of the (*R*)-MTPA derivatives of 2/3 in pyridine- d_5

S43. ¹H NMR spectrum of the (S)-MTPA derivatives of 2/3 in pyridine- d_5

S44. ¹H NMR spectrum of the (*R*)-MTPA derivatives of 4/5 in pyridine- d_5

S45. ¹H–¹H COSY spectrum of the (*R*)-MTPA derivatives of 4/5 in pyridine- d_5

S46. ¹H NMR spectrum of the (*S*)-MTPA derivatives of 4/5 in pyridine- d_5

S47. ¹H–¹H COSY spectrum of the (*S*)-MTPA derivatives of **4/5** in pyridine- d_5

S48. ¹H NMR spectrum of the (*R*)-MTPA derivative of compound **6** in pyridine- d_5

S49. ¹H–¹H COSY spectrum of the (*R*)-MTPA derivative of **6** in pyridine- d_5

S50. ¹H NMR spectrum of the (S)-MTPA derivative of compound **6** in pyridine- d_5

S52. ¹H NMR spectrum of the (*R*)-MTPA derivative of **8/9** in pyridine- d_5

S53. ¹H–¹H COSY spectrum of the (*R*)-MTPA derivative of **8/9** in pyridine- d_5

S54. ¹H NMR spectrum of the (*S*)-MTPA derivative of **8/9** in pyridine- d_5

S55. ¹H–¹H COSY spectrum of the (*S*)-MTPA derivative of **8/9** in pyridine- d_5

S56. ¹H–¹H COSY spectra of **1**, **10**, and **12** and the crude extract of BC-601 (6.0-8.5 ppm)