The American Journal of Human Genetics, Volume 93

Supplemental Data

SHORT Syndrome with Partial Lipodystrophy

Due to Impaired Phosphatidylinositol 3 Kinase Signaling

Kishan Kumar Chudasama, Jonathon Winnay, Stefan Johansson, Tor Claudi, Rainer König, Ingfrid Haldorsen, Bente Johansson, Ju Rang Woo, Dagfinn Aarskog, Jørn V. Sagen, C. Ronald Kahn, Anders Molven, and Pål Rasmus Njølstad

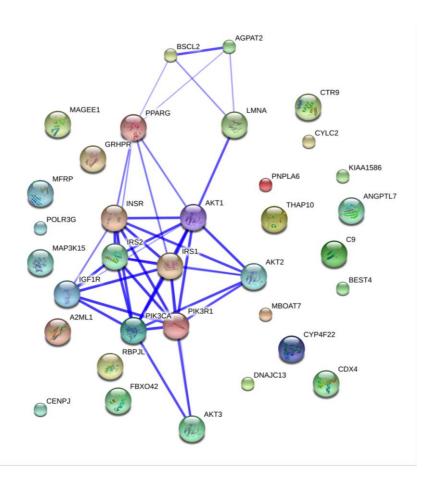


Figure S1. Protein-Network Analysis (STRING) by Searching for Physical or Functional Associations

We performed protein-network analysis with information from genomic context, reported experiments, co-expression and PubMed (http://www.string-db.org). We included the 22 candidate genes resulting from the exome sequencing and 12 genes related to lipodystrophy and insulin signaling (*AGPAT2*, *BSCL2*, *IGF1R*, *LMNA*, *PPARG*, *INSR*, *IRS1*, *IRS2*, *PIK3CA*, *AKT1*, *AKT2* and *AKT3*). Only one of our candidate genes, *PIK3R1*, clustered with genes involved in insulin signaling and fat metabolism.

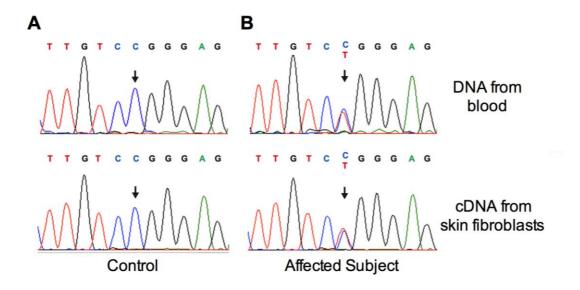


Figure S2. Sequence Analysis of DNA and cDNA of Affected and Healthy Individuals

Cultured skin fibroblasts were prepared from punch biopsies of the skin of one affected (Subject II-2) and one unaffected (Subject II-3) member of Family 1, and messenger RNA extracted, followed by cDNA synthesis. DNA sequences of the *PIK3R1* region of interest in a patient (B) (Family 1, Subject III-2) compared with a control (A). The results obtained from DNA in peripheral blood are shown in the top panel while the results of the lower panel are from cDNA made of RNA from skin fibroblasts. The right panels show the heterozygous missense mutation (c.1945C→T; marked with an arrow) in exon 15, corresponding to an amino acid change from arginine to tryptophan (p.Arg649Trp).

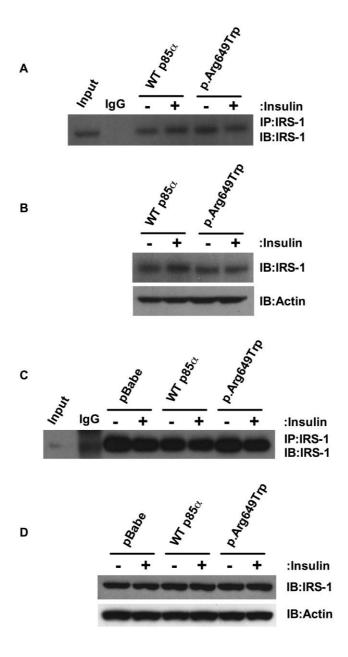


Figure S3. Expression and Immunoprecipitation Efficiency of IRS-1 Is Unaltered in Control and p.Arg649Trp Fibroblasts and p85 α Reconstituted Cell Lines

- (A) IRS-1 was immunoprecipitated from whole cell lysates obtained from control and p.Arg649WTrp human fibroblasts before or following insulin stimulation (10nM) for 10 minutes, resolved by SDS-PAGE and subsequently immunoblotted using IRS-1-specific antibodies.
- (B) IRS-1 expression was assessed in control and p.Arg649Trp human fibroblasts in the absence or presence of insulin (10nM) for 10 minutes by performing immunoblot analysis on whole cell lysates using IRS-1-specific antibodies.
- (C) IRS-1 was immunoprecipitated from whole cell lysates obtained from pBabe, WT or p.Arg649Trp reconstituted p85 α /p85 β -deficient cell lines in the absence or presence of insulin (10nM) for 10 minutes, resolved by SDS-PAGE and subsequently immunoblotted using anti-IRS-1 antibodies.
- (D) IRS-1 expression was assessed in whole cell lysates obtained from pBabe, WT or p.Arg649Trp cells in the absence or presence of insulin (10nM) for 10 minutes by performing immunoblot analysis using anti-IRS-1 antibodies.

			Fam1 Fam2		ım2				
Chr	dbSNP	pos	III-2	II-2	III-2	II-1	Haplo Fam1	Haplo Fam2	Not shared
5	rs10515070	67525575	22	22	11	12	1	2	Х
5	rs16897511	67526313	12	22	22	22	2	2	
5	rs6881033	67529191	12	22	11	12	1	2	Х
5	rs4122269	67545624	12	22	22	22	2	2	
5	rs40318	67545753	22	22	11	12	1	2	Х
5	rs10940159	67547276	22	22	22	22	2	2	
5	rs173703	67547326	12	22	11	12	1	2	Х
5	rs831229	67553016	22	22	11	12	1	2	Х
5	rs6893676	67553771	22	22	22	22	2	2	
5	rs863818	67554023	22	22	11	12	1	2	Х
5	rs831121	67554926	22	22	11	12	1	2	Х
5	rs13167294	67555580	22	22	22	22	2	2	
5	rs16897561	67560716	22	22	22	22	2	2	
5	rs6863431	67561015	22	22	22	22	2	2	
5	rs10072475	67568728	22	22	22	22	2	2	
5	rs2302975	67569479	22	22	22	22	2	2	
5	rs2302976	67569602	22	22	22	22	2	2	
5	rs171649	67569746	22	22	11	12	1	2	Х
5	rs251409	67573463	22	2 2	11	12	1	2	x
5	rs17318918	67573919	22	22	22	22	2	2	
5	rs34308	67579223	22	22	12	12	1/2	2	
5	rs12657050	67579576	12	12	12	12	1/2	1/2	
5	Mutation	67592129	Х	х	Х	Х			
5	rs895304	67592281	22	22	22	22	2	2	
5	rs7714169	67592640	22	22	22	22	2	2	
5	rs3729981	67593363	22	22	22	22	2	2	
5	rs1043526	67594324	12	12	22	22	2	1/2	
5	rs7722222	67595785	22	22	22	22	2	2	
5	rs3756668	67596088	12	12	12	12	1/2	1/2	
5	rs7701952	67602847	22	22	22	22	2	2	
5	rs695166	67604628	12	12	12	12	1/2	1/2	
5	rs411751	67605884	22	22	12	12	1/2	2	
5	rs440292	67609408	12	12	12	12	1/2	1/2	
5	rs453940	67610482	12	12	12	12	1/2	1/2	
5	rs10515077	67613801	22	22	22	22	2	2	
5	rs391974	67614893	22	22	12	12	1/2	2	
5	rs17253786	67615528	11	1 2	2 2	2 2	2	1	х
5	rs6859287	67628886	22	22	22	22	2	2	
5	rs256505	67629059	22	22	22	22	2	2	
5	rs16897697	67633340	22	22	22	22	2	2	
5	rs16897699	67636057	22	22	22	22	2	2	
5	rs10515080	67643213	22	22	22	22	2	2	
5	rs40055	67647834	11	0 0	22	22	2	1	х

Figure S4. Fine Mapping and Haplotype Analysis of Region Surrounding the *PIK3R1* Mutation

Two affected individuals were genotyped in each family to search for a putative shared haplotype (last three columns). Homozygous calls shown in red and yellow. Highlighted box shows the 41 kb maximal region where a shared haplotype could not be refuted.

Table S1. Key Clinical Features of Affected Subjects in Family 1 and Family 2

Features	Frequency	Description or Median Value
Partial lipodystrophy	5/5	Face, flanks, buttocks
Low body mass index	4/5	17.1 kg/m ²
Short stature	5/5	Females 152 cm
Short statule	5/5	Males 163 cm
Progoroid face	5/5	Midface hypoplasia, wide and deep set
Progeroid face	5/5	eyes, triangular face, hypotrichosis
Rieger anomaly	5/5	Anterior chamber and iris malformations

Table S2. Variant Filtration of Exome Sequencing Data

Filter	Remaining Number of Variants
Exomic variants identified in Subject III-2 of Family 1 ^a	14,253
Excluding synonymous variants	6,467
Excluding variants found in 52 Norwegian exomes or in the 1000Genomes ^b database (minor allele frequency >0.5%)	182
Excluding variants not present in both affected subjects	49
Excluding variants present in healthy sibling or dbSNP ^c database	22

^aThree patients from the Norwegian family (Family 1) was exome-sequenced, the affected proband, his affected aunt and his non-affected brother. Twenty-two rare genetic variants fitted a dominant disease model in the family.

http://www.1000genomes.org/.

http://www.ncbi.nlm.nih.gov/projects/SNP/.

Table S3. Candidate Rare Variants Identified by Exome Sequencing after Filtering^a

Position	Type of Mutation	Gene	cDNA Change	Protein Change
Chr12: 9020954	nonsynonymous	A2ML1	c.4061+1G>A	Splice
Chr1: 11249707	nonsynonymous	ANGPTL7	c.71C>T	p.A24V
Chr1: 45253091	nonsynonymous	BEST4	c.200G>A	p.R67Q
Chr5: 39306775	nonsynonymous	C9	c.1360G>A	p.D454N
ChrX: 72673407	nonsynonymous	CDX4	c.557T>G	p.L186W
Chr13: 25480072	nonsynonymous	CENPJ	c.2104A>G	p.S702G
Chr11: 10786213	nonsynonymous	CTR9	c.1532G>A	p.C511Y
Chr9: 105767074	nonsynonymous	CYLC2	c.278C>T	p.A93V
Chr19: 15648692	nonsynonymous	CYP4F22	c.559C>T	p.R187W
Chr3: 132221143	nonsynonymous	DNAJC13	c.4547G>A	p.R1516H
Chr1: 16641889	nonsynonymous	FBXO42	c.25G>A	p.D9N
Chr9: 37426621	nonsynonymous	GRHPR	c.374G>A	p.R125Q
Chr6: 56919345	nonsynonymous	KIAA1586	c.2048A>G	p.N683S
ChrX: 75648697	nonsynonymous	MAGEE1	c. 374G>A	p.C125Y
ChrX: 19379488	nonsynonymous	MAP3K15	c.3826A>C	p.T1276P
Chr19: 54678024	nonsynonymous	MBOAT7	c.914G>A	p.R305Q
Chr11: 119213348	nonsynonymous	MFRP	c.1345G>A	p.G449S
Chr5: 67592129	nonsynonymous	PIK3R1	c.1945C>T	p.R649W
Chr19: 7625573	nonsynonymous	PNPLA6	c.3544T>C	p.W1182R
Chr5: 89783851	nonsynonymous	POLR3G	c.152G>C	p.G51A
Chr20: 43938333	nonsynonymous	RBPJL	c.257+1G>T	Splice
Chr15: 71184356	nonsynonymous	THAP10	c.256G>A	p.V86M

^aBased on an autosomal dominant model.