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Partial Report (Behavioral) Experiment. The partial report (PR) ex-
periment was programmed in Python (www.python.org). Stimuli
were presented on a 19-inch screen (resolution of 800 × 600 pixels)
placed at a distance of 73 cm (Fig. 1A). Letter fonts were uppercase
Times New Roman with a font size of 1.2°. Letters were chosen
randomly from the alphabet (26 symbols), without repetition.
Eight inter-stimulus intervals (ISIs, the period between the
offset of array to onset of cue) were used (24, 71, 129, 200, 306,
506, 753, and 1,000 ms). Each observer first completed a prac-
tice block of 50 trials. Subjects completed four blocks (384
trials). In each block all positions (total of eight) and all ISIs
(total of eight) were uniformly sampled in random order. In each
trial, eight letters were presented simultaneously for 106 ms. The
eight letters were arranged on a circle, around the fixation point
(eccentricity 5.2°). A red dot on an array of blue dots indicated
the position of the target. Participants were asked to report,
using a standard keyboard, the letter presented in the position
cued by the red circle, which remained on screen until subject’s
response. Random performance is 1/26, because for each trial,
subjects had to choose 1 of 26 possible letters. Subsequently,
participants had to report the confidence of their response with
an ad hoc bar placed in the center of the screen and composed
of 13 division marks and two labels: “0% confidence” at the
extreme left of the bar, and “100% confidence” at the extreme
right of the bar (“0% seguro” and “100% seguro,” in Spanish)
(Fig. 1A). The experiment lasted ∼45 min.

Estimation of Individual Metacognitive Ability. To estimate subjects’
metacognitive ability, we calculated a type-II receiver operating
characteristic (ROC) curve for each participant (1), categorizing
as a hit (H) a high confidence response after a correct decision,
and as a false alarm (FA) when subject reported high confi-
dence after a wrong decision. ROC curves were anchored at
[0, 0] and [1, 1]. Curves were plotted using the cumulative
probabilities of H = pðconfidence= = ijcorrect trialÞ and FA=
pðconfidence= = ijerror trialÞ, where i represents the bin size,
set at 10, to categorize the continuous subjective responses.
A ROC curve that bows sharply upward indicates that the prob-
ability of being correct rises rapidly with confidence; conversely,
a flat ROC function indicates a weak link between confidence
and accuracy. We calculated the area between the ROC curve
and the x axis (possible values range from 0 to 1) as an estimate of
a subject’s introspective ability.

Functional MRI Preprocessing. Functional MRI (fMRI) data were
preprocessed using statistical parametric mapping (SPM5) soft-
ware (http://www.fil.ion.ucl.ac.uk/spm). The first four image ac-
quisitions of the task-free functional time series were discarded to
allow for stabilization of the MR signal. The remaining 220 vol-
umes (360 for the Glasgow dataset) underwent the following
preprocessing steps: slice timing, realignment to the first scan,
normalization, and smoothing [8 mm full width at half maxi-
mum (FWHM) isotropic Gaussian kernel]. Normalization to
the Montreal Neurological Institute (MNI) template was
computed on the structural image and then applied on func-
tional data. Following the procedure of Fox et al. (2), we re-
moved by regression the six parameters resulting from rigid body
correction for head motion.

fMRI Analysis. Analyses were done using Matlab (MathWorks)
and R software for statistics (3). To study the relation between

functional connectivity and metacognitive ability, we used a pre-
viously defined set of regions of interest (ROIs) (4) composed of
141 ROIs comprising five functional systems [frontoparietal (FP),
cinguloopercular (CO), default brain network (DBN), sensorimotor
(SM), and occipital (OC)] (Fig. S1). Systems differ within a narrow
range in the number of ROIs they contain, varying between 21 (FP)
and 33 (SM) ROIs. We built ROIs containing the voxels of a 5-mm
sphere around each ROI coordinate, as defined in ref. 4. For each
ROI, a time series was extracted for each individual and each state,
using the Marsbar software package (http://marsbar.sourceforge.
net). These regional fMRI time series were then used to con-
struct a 141-node functional connectivity network for each sub-
ject and attentional state. We used wavelet analysis to construct
correlation matrices from the time series. We followed the pro-
cedures exactly as described by Supekar and collaborators (5):
We applied a maximum overlap discrete wavelet transform
(MODWT) to each of the time series to obtain the contributing
signal in the following three frequency components: scale 1
(0.13–0.25 Hz), scale 2 (0.06–0.12 Hz), and scale 3 (0.01–0.05 Hz).
Several studies have suggested that wavelet filtering might be
better suited for fMRI time series than Fourier filtering (5, 6).
All subsequent analysis was done based on the scale 3 component,
whose frequency lies in the range of slow frequency correlations
of the default network (2, 7). For each attentional state s (intero-
ceptive, exteroceptive, or resting) and participant p we measured a
141 × 141 connectivity matrix Cs,p. The matrix entry Cs,p(i,j) in-
dicates the temporal correlation of the average fMRI signal of
ROIs i and j, which henceforth is referred to as functional
connectivity.
To study functional connectivity correlates of type-I and type-II

performances (Fig. 2 A and B) we conducted an across-subjects
bivariate linear regression, using the least squares method, be-
tween each entry ij of the connectivity matrix Cs,p(i,j) and type-I
and type-II performances in the PR task. This way we obtained
a matrix Bs,r(i,j) per attentional state s and regression r to type-I
or type-II performance, in which each entry ij represents the
dependence or beta (β) value for the connectivity between ROI(i)
and ROI(j), and type-I or type-II performance. Fig. S2 shows the
Bs,r matrices. We also calculated the R-squared values, to mea-
sure the amount of total variance in the fMRI data explained by
the linear model (Fig. S5). Visualizations of the Bs,r(i,j) values in
glass brains were done using custom software in Python for the
Anatomist/BrainVisa software. We projected into a glass brain
a link between ROI(i) and ROI(j) if the Bs,r(i,j) value for that
connection exceeded a certain threshold (Fig. 2 A and B and
Tables 1 and 2 list the 15 ROIs with the highest rank in the
number of connections whose β-value were positive and exceeded
the threshold, for type-I and type-II performances). The threshold
was set to a value of 3 SDs above the mean of the distribution of
Bs,r obtained from networks measured under exteroceptive state
(for dependences to type-I performance) and interoceptive state
(for dependences to type-II performance). We chose these par-
ticular states to calculate the threshold for each performance
because, for networks derived from those attentional states, the
average of Bs,r reached the highest value. Thresholds are arbi-
trary, but they are used only for visualization purposes and play
no role in statistical analysis.
To search for main effects and interactions of type-I and

type-II performances on functional connectivity and attentional
states, we conducted an analysis of covariance (ANCOVA). We
measured the average connectivity matrix Ĉs,p, a 5 × 5 matrix
resulting from all possible pairings between FP, CO, DBN, SM,
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and OC for each subject p and attentional state s. Each entry nm
of this matrix represents the average connectivity between system
n and system m. This matrix was submitted to a single ANCOVA
as dependent variable, with type-I and type-II performance as
continuous regressors, and attentional state (exteroceptive, resting,
interoceptive) as within-subjects factor and subject identity as a
random-effect factor. Previously to running the ANCOVA test, we
assessed that our data satisfied assumptions of normality (Shapiro–
Wilk normality test, W = 0.99, P value >0.05) and homogeneity of
variances (Bartlett’s K-squared = 1.62, df = 2, P value >0.1). As
we report in the main text, type I and type II performances are
not completely independent but their correlation is not strong
enough to impair the ANCOVA analysis with these factors.
To study the effect of both types of performance on connec-

tivity within each attentional state, we followed this analysis with
three independent ANCOVA, one per attentional state. We mea-
sured the average connectivity Ĉs,p matrix between functional sys-
tems for each subject p and attentional state s, and submitted it to
an ANCOVA, with type-I and type-II performances as continuous
regressors, and subject identity as a random-effect factor.
To create Fig. 3 A and B, we conducted a one-sample t test

analysis comparing β-value changes across attentional states at
a functional network level. Unlike the ANCOVA analysis, this
analysis is performed directly on the β-values (Bs,r matrices), not
on the functional connectivity (temporal similarity between time
series of ROI pairs) values (Ĉs,p matrices). For each pair of func-
tional systems (n,m) we consider all of the Bs,r(i,j) where ROI(i)
belongs to system n and ROI(j) belongs to system m. For each pair
of systems (n,m) we obtained a distribution of β-values (i.e., all
ROIs i and j dependences). For example, for the SM–FP system
pair, because SM is composed of 33 ROIs and FP is composed of
21 ROIs, the β-distribution is composed of 33 × 21 β-values. To
obtain the distribution of β for a within-network connectivity (for
example SM–SM), only the upper diagonal of the β-matrix is
averaged because connectivity between pairs of ROIs is sym-
metric and excluding the triangular part because the correla-
tion between a ROI and itself is trivially 1. For each pair of systems
(n,m) the statistical significance of the dependence of this specific
connection with performance is assessed comparing the mean value
of the distribution of dependences against zero, by means of
a one-sample t test and correcting for multiple comparisons. We
display a link between two functional systems if the t value for
that connection is higher than 5.35, corresponding to a P value of
10−5, Bonferroni corrected for multiple comparisons (two-tailed
one-sample t test, 15 pairs of systems (n, m) × 3 attentional
states × 2 types of performance).
To create Fig. S3, we followed the same procedure as that for

Fig. 2 A and C. Because this work includes two datasets, obtained

with different scanners, we conducted the bivariate regression
between functional connectivity and type-I and type-II perform-
ances separately for the two datasets. The objective was to in-
vestigate whether our main finding, the interaction of the effects
between attentional state and type-II performance on connec-
tivity, was observed in each dataset. Fig. S3 shows Bs,r matrices
(similar to the ones shown in Fig. S2) for type-II performance for
all attentional states for all subjects in the study (Fig. S3, Top
row), for the Buenos Aires dataset (Fig. S3, Middle row), and for
the Glasgow dataset (Fig. S3, Bottom row). Despite having fewer
subjects, in Bs,r matrices from both datasets we observe the in-
crement in β-values for networks measured under interoceptive
state, visually depicted in this figure as an increase of β-values
involving frontoparietal, sensorimotor, and occipital systems.
To create Fig. S4, we conducted the same analyses described

above, using time series of 3-, 4-, 5-, 6-, and 7.22-min length, which
is equivalent to 90, 120, 150, 180, and 220 scans. For the Glasgow
dataset, we extended this analysis to 12 min. For each block
duration, we measured a connectivity matrix (Cs,p) per subject p
and attentional state s, and linearized each connectivity matrix
to obtain a vector of length N = 19,881 (141 × 141). We then

calculated the dot product a:b=
XN

i= 1
ai:bi, between the vec-

tor, corresponding to the linearized Cs,p for the time series of
different length, and vector b, the linearized Cs,p obtained from
the full-length time series. This way we quantified the similarity
between a Cs,p matrix obtained from the full-length time series
and the Cs,p matrices obtained from shorter time series. A value of
1 means perfect concordance of values, whereas a value of 0 implies
full orthogonality. Similarity values approach monotonically to
1 as the time series increases (Fig. S4). Even using time series of
5 min, the projection into the full-length matrix yields a similarity
above 0.95, showing that time series length hardly affected the
results obtained.
Fig. S5 was generated to explore howmuch of the total variance

in the fMRI data was explained by the two behavioral regressors
(type-I and type-II performances). We calculated the R-squared
value, quantifying the proportion of variance that the model
explains. We collapsed R-squared values across attentional states
(variations due to attentional state were minimal) to obtain a
single distribution of R-squared values. Fig. S5 shows that only
a minor portion of the total variance is explained by the model,
including both behavioral regressors, as expected by the noisy
nature of the fMRI data and the complexity of the sources of
variation in brain activation during resting state fMRI, showing
that the connectivity between any pair of ROIs cannot be strongly
related to another variable.

1. Fleming SM, Weil RS, Nagy Z, Dolan RJ, Rees G (2010) Relating introspective accuracy
to individual differences in brain structure. Science 329(5998):1541–1543.

2. Fox MD, et al. (2005) The human brain is intrinsically organized into dynamic, anti-
correlated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678.

3. R Development Core Team (2008) R: A language and environment for statistical computing
(R Foundation for Statistical Computing, Vienna). Available at www.R-project.org.

4. Dosenbach NU, et al. (2010) Prediction of individual brain maturity using fMRI. Science
329(5997):1358–1361.

5. Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of
intrinsic functional brain connectivity in Alzheimer’s disease. PLOS Comput Biol 4(6):
e1000100.

6. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency,
small-world human brain functional network with highly connected association cortical
hubs. J Neurosci 26(1):63–72.

7. Raichle ME (2009) A paradigm shift in functional brain imaging. J Neurosci 29(41):
12729–12734.

Barttfeld et al. www.pnas.org/cgi/content/short/1301353110 2 of 5

www.pnas.org/cgi/content/short/1301353110


Fig. S1. A total of 141 regions of interest (ROIs) used in the analysis.

Fig. S2. Organization of functional brain networks according to subjects’ individual metacognitive ability and performance. (A) Slope (β) values for type-I
performance of the bivariate regression between functional connectivity and both types of performance. (B) Slopes for type-II performance of the bivariate
regression between functional connectivity and both types of performance.
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Fig. S3. Dependence of functional brain connectivity with type-I and type-II performances for the two datasets. (A) Matrix of slope (β) values for type-II
performance of the bivariate regression between functional connectivity and both types of performance, for all subjects in the experiment. (B) Matrix of
β-values for type-II performance of the bivariate regression between functional connectivity and both types of performance for the 16 subjects from Buenos
Aires. (C) Matrix of β-values for type-II performance of the bivariate regression between functional connectivity and both types of performance, for the
9 subjects from Glasgow. Despite the low number of subjects, there is still a visible effect of positive β-values involving frontoparietal connectivity systems in
the interoceptive state.

Fig. S4. Connectivity analysis using shorter time series. (A) Projection of each matrix (3, 4, 5, 6, and 7.22 min or 90, 120, 150, 180, and 220 scans) into the
220-time points matrix for the subjects from Buenos Aires. A value of 1 means perfect concordance of values, whereas a value of 0 implies full orthogonality.
Matrices approached monotonically to the matrix calculated with full-length time series, as the time series length used to calculated them increased. Even
using time series of 5 min, the projection into a the full-length matrix yields a similarity above 95% (B). (B) Projection of each matrix (3–12 min, or 90, 120, 150,
180, 210, 240, 300, 330, and 360 scans) into the 360-time points matrix for the subjects from Glasgow.
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Fig. S5. Variance in the fMRI data explained by the regressors of interest. Distribution of all R-squared values of the bivariate regression between connectivity
and type-I and type-II performances, collapsed across all attentional states and regressors. Almost all values are lower than 0.5, showing that the amount of
variance explained by the two behavioral regressors is moderate.
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