Supporting Information

Maretzky et al. 10.1073/pnas.1302553110

Fig. S1. Inactive rhomboid protein 2 (iRhom2) controls the stimulated shedding of heparin-binding (HB)-EGF and Kit ligand (KitL) 2, but not of TGF α in several independently isolated cultures of primary mouse embryonic fibroblasts (mEFs). (*A*–*C*) Three separately isolated cultures of primary wild-type (WT) or *iRhom2^{-/-}* mEFs were transfected with the alkaline phosphatase (AP)-tagged ADAM17 (a disintegrin and metalloprotease 17) substrates HB-EGF (*A*), TGF α (*B*), or KitL2 (*C*) and stimulated for 30 min with 25 ng/mL phorbol-12-myristate-13-acetate (PMA). **P* ≤ 0.05; ±SEM (*n* = 3).

Fig. 52. The constitutive shedding of ADAM17 substrates is not significantly affected by the lack of iRhom2. WT or *iRhom2^{-/-}* mEFs were transfected with the AP-tagged ADAM17 substrates epiregulin (*A*), Eph receptor B4 (EphB4) (*B*), Tie2 (*C*), amphiregulin (*D*), HB-EGF (*E*), KitL2 (*F*), CD62 ligand (CD62L) (*G*), intercellular adhesion molecule (ICAM)-1 (*H*), or TGF α (*I*), and constitutive shedding from cells incubated in the presence or absence of the metalloprotease inhibitor marimastat (MM) was measured after 4 h, as described in *Materials and Methods* (*n* = 3; ±SEM; n.s., not significantly affected).

Fig. S3. iRhom2 controls the LPA and TNF α -stimulated shedding of some substrates of ADAM17 (amphiregulin, epiregulin, EphB4, and Tie2) but not of other substrates of ADAM17 (CD62L, ICAM-1). WT or *iRhom2^{-/-}* mEFs were transfected with the AP-tagged ADAM17 substrates amphiregulin (*A*), epiregulin (*B*), EphB4 (*C*), Tie2 (*D*), CD62L (*E*), or ICAM-1 (*F*) and stimulated for 30 min with LPA (10 μ M) or TNF α (10 ng/mL). Treatment with LPA or TNF α activated ADAM17 mediated shedding, as evidenced by the significantly increased cleavage of all of the tested substrates in WT mEFs. Identical experiments were performed with *iRhom2^{-/-}* mEFs, in which stimulation for 30 min with LPA or TNF α did not increase the shedding of epiregulin, EphB4, Tie2, or amphiregulin but activated the release of CD62L and ICAM-1. Shedding was determined as described in *Materials and Methods*. **P* \leq 0.05; ±SEM (*n* = 3).

A TGFα/HB-EGF

= Transmembrane * = AP-tag

MVPSAGQLAL FALGIVLAAC QALENSTSPL SADPPVAAAV VSHTNDCPDS HTQFCFHGTC RFLVQEDKPA CVCHSGYVGA RCEHADLLAV VAASQKKQTI LAVVAVVLSS VCLLVIVGLL MERYHRRGGY DVENEEKVKL GMTNSH

HB-EGF/TGFα

= Transmembrane * = AP-tag

MKLLPSVVLK LFLAAVLSAL VTGESLERLR RGLAAGTSNP DPPTVSTDQL LPLGGGRDRK VRDLQEADLD LLRVTLSSKP QALATPNKEE HGKRKKKGKG LGKKRDPCLR KYKDFCIHGE CKYVKELRAP SCICHPGYHG ERCHGLSLPV ENRLYTYDHT AITALVVVSI VALAVLIITC VLIHCCQVRK HCEWCRALIC RHEKPSALLK GRTACCHSET VV

TGF α /HB-EGF JM = Transmembrane * = AP-tag

MVPSAGQLAL FALGIVLAAC QALENSTSPL SADPPVAAAV VSHFNDCPDS HTQFCFHGTC RFLVQEDKPA CVCHSGYVGA RCHGLSLPVE NRLYTYDHTT ILAVVAVVLS SVCLLVIVGL LMFRYHRRGG YDVENEEKVK LGMTNSH

= Transmembrane * = AP-tag

HB-EGF/TGFα JM

MKLLPSVVLK LFLAAVLSAL VTGESLERLR RGLAAGTSNP DPPTVSTDQL LPLGGGRDRK VRDLQEADLD LLRVTLSSKP QALATPNKEE HGKRKKKGKG LGKKRDPCLR KYKDFCIHGE CKYVKELRAP SCICHPGYHG ERCEHADLLA VVAASQKKQA ITALVVVSIV ALAVLIITCV LIHCCQVRKH CEWCRALICR HEKPSALLKG RTACCHSETV V

B

S A D

Chimera primers: Universal

ΕX	FOR:			CTTAACTGGCTTATCGAAATTAATAC
ΕX	FC	R Ne	ested:	ATACGACTCACTATAGGGAGACCCAAGCTT
Cyt	0	REV:		GTCGAGGCTGATCAGCGAGCTCTAGCA
Cyt	0	REV	Nested:	GTGACACTATAGAATAGGGCCCTCTAGA

TGFa/HB-EGF

EX REV:	CACCACAGCCACCACGGCCAGGATGGTCTGCTTCTTCTGGCTGG
Cyto FOR:	GTGGTGGCTGCCAGCCAGAAGAAGCAGACCATCCTGGCCGTGGTGGCTGTGGTG

HB-EGF/TGF α

EX REV:	GGAGACCACCAAGGCGGTGATGGCTGTGTGGTCATAGGTATATAAGCGATT
Cyto FOR:	AATCGCTTATATACCTATGACCACACAGCCATCACCGCCTTGGTGGTGGTCTCC

TGFα/HB-EGF JM

EX REV:	TTCCACTGGGAGGCTCAGCCCATGACAGCGTGCACCAACGTACCCAGAATGGCA
CYTO FOR:	TGCCATTCTGGGTACGTTGGTGCACGCTGTCATGGGCTGAGCCTCCCAGTGGAA

HB-EGF/TGF α JM

EX REV:	CACGGCCAGGAGGTCCGCATGCTCACACCTCTCTCCATGGTAACCCGGGTGGCA
CYTO FOR:	TGCCACCCGGGTTACCATGGAGAGAGGTGTGAGCATGCGGACCTCCTGGCCGTG

Fig. S4. Chimera between TGF α -AP and HB-EGF-AP. (*A*) Table of the amino acid sequences of the TGF α -AP/HB-EGF-AP chimera expression constructs used in this study. Domain components for TGF α and HB-EGF are presented in blue and red, respectively. The transmembrane region is highlighted in yellow. Asterisks indicate the modified insertion site of the AP tag. (*B*) Primer sequences used for overlap extension PCR to generate the chimera between TGF α -AP and HB-EGF-AP.

Fig. S5. Membrane topology and sequence of iRhom2. (A) Diagram of the predicted membrane topology of iRhom2, with asterisks indicating potential N-linked glycosylation sites in the extracellular loop of iRhom2. (*B*) Amino acid sequence of iRhom2 with the predicted N-terminal cytoplasmic domain highlighted in yellow, the predicted transmembrane domain highlighted in green, and the extracellular/luminal domains in orange, the potential N-linked glycosylation sites in the extracellular loop of iRhom2 in red, and the small cytoplasmic loops between transmembrane domains in white. (*C*) Primer sequences used for cytoplasmic domain-deletion mutant of iRhom2.