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1. SI Results
As can be seen in Fig. S5B, the rich-club organization of the
connectivity network peaks earlier than in the coactivation net-
work. Although we present the results of the top 21 strongest
nodes of this network to make it comparable to the coactivation
analysis, here we report the results from the extended group of
regions displaying a rich-club behavior for completeness.
To make it consistent with our method of choosing the rich-club

nodes in the main coactivation analyses (SI Materials and Methods,
Network Metrics), we selected the point of the normalized rich-club
curve where there was a significant departure from 1 (point of no
difference to random networks). As can be seen in Fig. S5B (blue
vertical line), we selected the sharp increase at the top 28.8 per-
centile, including 184 regions. Fig. S6 shows that, although this rich
club included more regions, they were still mostly located in central
and occipital modules, with some medial frontal regions from the
default-mode module. Similarly, they had higher participation co-
efficients than non–rich-club regions (P < 10−4, permutation test),
and this configuration was costly to the system, with connection
distances between rich-club nodes, and between peripheral and
rich-club nodes, being longer than connection distances between
peripheral nodes (both P < 10−4, permutation tests). Although all
these characteristics were very similar to the more selective rich
club shown in the primary analysis, edges within the extended rich-
club group of regions were less central than peripheral or feeder
edges (both P < 10−4, permutation tests). In other words, although
edges within the core of this extended rich-club group of regions
were very central for the network (as shown in the main analysis),
the more extensive definition of this group led to the inclusion of
edges that were less used by the rest of the brain to pass in-
formation within the network.

2. SI Discussion
It is important to consider more closely the methodological
differences between graph theoretical analysis of modules, as
used here, and independent-component analysis (ICA) as used by
Smith et al. (1, 2) in a prior analysis of functional coactivation
also based on the BrainMap database.
The modularity algorithm that we applied partitions a graph

into a set of modules such that there is a high density of intra-
modular edges (between nodes in the same module) and a low
density of intermodular edges (between nodes in different
modules). Note that each brain region (or node of the network)
can be assigned to only one module, but all nodes will be assigned
to a module. Many complex systems, including brain networks (3,
4), demonstrate hierarchical modularity such that it is possible to
decompose the nodes within each module into a community of
submodules. There are many different algorithms available for
modularity analysis; we used a well-established option, the
Newman algorithm (5), to find the partition of the network that
maximizes its modularity, defined quantitatively as follows:
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where Aij is the edge between nodes i and j, with degrees denoted
ki and kj, m denotes the total number of edges of the network,
and si sj is 1 if the nodes belong to the same group or −1 if not.
ICA finds statistically independent patterns of coactivations, so

that a region’s activity is described as a combination of all of the
different activity patterns. Visualization of individual components

is possible after arbitrarily thresholding brain maps of indepen-
dent component scores at each voxel so that only voxels or regions
that load strongly on a particular component are represented as
part of the network of regions that shares the same profile of
(co)activation. Thus, it is possible that the same brain regions
might belong to more than one independent component; note,
for example, the anatomical overlap between the components
denoted BM120, BM220, and BM320 shown in Fig. S8. It is also
possible as a result of ICA that a region might not load strongly
on any single component, and might therefore not appear in
any network map, i.e., the coactivation profile for some regions
may be represented similarly across components and thus not
exceed the arbitrary threshold for visualization as part of any
component map.
These preliminary considerations indicate that it is difficult to

rigorously compare the similarity of network partition by
a modular decomposition to the results obtained by ICA.
Nonetheless, by inspection (Fig. S8), we can see that the four
modules identified by graph analysis correspond closely to one or
more of the components identified by ICA. A major difference is
also evident by inspection: whereas the ICA implemented by
Smith et al. (1) found 20 independent components, our modu-
larity analysis found four larger modules. In the analysis reported
by Smith et al., the maximum number of components was set
a priori to be 20 (with a secondary analysis of 70 components);
post hoc analysis then retained 10 components that had high
reliability between coactivation and connectivity matrices, and
discarded 10 components that were judged to be artifactual or
not interpretable. The modular partitioning algorithm we ap-
plied to similar [resting-state functional MRI (fMRI)] or nearly
identical (BrainMap meta-analytics) data, identified four major
modules. In contrast to ICA, the Newman algorithm (5) does not
find a prespecified number of modules; instead, it maximizes
a global modularity function. The number of modules is thus
more data driven than the number of independent components;
but as noted above, prior studies have shown that fMRI and other
information processing networks have a hierarchical modular
structure, each one of a few large modules (such as identified by
the Newman algorithm) being nearly decomposable into a larger
number of submodules, sometimes with submodules that are
themselves decomposable into subsubmodules, and so on (3, 4).
Thus, both hierarchical modularity analysis and higher di-
mensional ICA have the potential to define variable numbers of
modules (or components) in brain systems and “the true number”
of modules or components is not yet known. What remains
striking about the comparative results presented in Fig. S8 is the
extent to which the larger number of anatomically smaller com-
ponents identified by ICA can be superimposed to approximate
closely the smaller number of anatomically larger modules iden-
tified by the Newman algorithm.
Similarly, both approaches can be tuned to study the relation-

ship between modules or components and more-or-less specific
aspects of cognition. BrainMap database describes the cognitive
characteristics of the paradigms of the studies included in a hi-
erarchical way, starting with generic behavioral domains such as
“action” or “cognition,” followed by subdomains such as action–
execution speech, or cognition–working memory. Researchers
can then choose the level of specificity of the cognitive classifi-
cation they want to explore, balancing the gain of information
with the reliability of the results, because dividing the studies in
more classes or subdomains leads to some cognitive subdomains
being represented by very few primary studies. The level of
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resolution used in the modular or ICA analysis should also be
taken into account: partitions focusing on the higher levels of
the hierarchy (bigger modules or fewer components) probably
will not gain much from relating them to highly specific aspects
of cognition, because many subdomains (possibly those within
the same behavioral domain) will map to one of the big modules
or components. Smith et al. (1) described the relationship of their
independent components to 66 subdomains, of which they high-
lighted 20 that corresponded most strongly to their independent
components. We instead mapped our four topological modules
to the five major behavioral domains defined by BrainMap. Es-
sentially, we preferred reliability of a relatively coarse-grained
cognitive analysis over the potentially greater specificity of a more
fine-grained analysis. This allowed us to test important basic
predictions about the functional specialization of topological
modules and visualize the interactions between modules and
the rich club of the network.

3. SI Materials and Methods
3.1. Further Details on Method Used to Build the Coactivation
Network. Studies were extracted from the BrainMap database,
which at the time of the search (October 5, 2011) included 2,155
neuroimaging papers reporting data on 40,569 subjects. After
excluding studies including patients, subjects under 18 or over 65 y
of age, pharmacological interventions, or less than five subjects,
we were left with 1,641 studies reporting 6,884 contrasts on 21,713
subjects. Peak activations were extracted and modeled as 1-cm3

spheres (Fig. S10A in white), which “activated” a region from the
template if 20% of its area was in it. The need to choose
a threshold was based on activations falling in boundaries be-
tween regions, and at 20% the number of modeled links in the
bipartite graph was at least the number of activations extracted
from the database (see Table S1 for results without modeling the
activation as sphere). The two-mode network is then transposed
to a one-mode network using Jaccard indices, defined as the
intersection of contrasts activating both regions divided by the
union of contrasts activating any. In Fig. S10A, the edge between
blue to green region has a Jaccard index of 2/3, because two
contrasts coactivate both regions (intersection of contrasts is 2),
but an extra contrast activates the blue region only (union of
contrasts is 3). This matrix was then thresholded statistically as
described below. One limitation of this approach is that, similarly
to previous studies (1, 6), we modeled peak activations without
considering the effect of sample size in the primary studies (apart
from excluding small studies with less than five subjects), or the
between- and within-study variances (7). This made the analysis
of more than 6,000 contrasts more expedient, and allowed for an
easier binary solution when building a bipartite graph. Note that
we did not consider the direction of the contrast used (whether it
could be classified as an activation or deactivation), because we
were interested in collaborative behavior, irrespective of the
direction. See also Movie S2 for an illustrative brief summary of
this approach.
For the deactivations analysis, a subgroup of studies that used

rest or fixation as baseline and reported both directions of
contrasts were included. Deactivations and activations from
each pair of contrasts (task > rest, rest > task) were modeled
separately, and a directed line drawn from all of the activations
to all deactivations reported in a pair of contrasts (Fig. S10B).
The direction of the edge is arbitrary, it only intends to high-
light that the relationship is not reversible. For purposes of the
analyses, we first obtained the network characteristics of the
nodes in the activation/deactivation dyads from the coactivation
network. We then looked at whether certain network charac-
teristics from the group of all dyads, built from all of the 110
pairs of contrasts included, were significantly different from the
null model (see below).

3.2. Statistical Correction for Nonsignificant Connections. Although
the weight of the edge was defined by the Jaccard index as detailed
above, the existence of an edge was based on a statistical approach.
To identify those significant connections in the coactivation net-
work, we followed Toro et al. (6) and examined whether activa-
tions in two regions X and Y were best modeled as independent
phenomena (null hypothesis H0, regions activating independently
from each other) or dependent (alternative hypothesis H1, regions
being functionally connected). From the data, we can compute the
maximum-likelihood estimate for an activation in a region under
the null hypothesis:

p=m=N; [S2]

wherem is the number of contrasts that activated region X and N
is the total number of contrasts. We can then say that the likeli-
hood of the null hypothesis (activation in X being independent
from activation in Y) is as follows:

LðH0Þ=Bðk; n; pÞBðm− k;N − n; pÞ; [S3]

where B refers to the binomial distribution, n is the number of
contrasts that activated region Y, and k is the number of con-
trasts that activated both regions X and Y. Likewise, the values
for p1 and p0 under the alternative hypothesis that there is a de-
pendence between activations in both regions is as follows:

p1 = k=n; [S4]

p0 = ðm− kÞ=ðN − nÞ; [S5]

and their likelihood

LðH1Þ=Bðk; n; p1ÞBðm− k;N − n; p0Þ: [S6]

P values were estimated by calculating

−2log
�
LðH0Þ
LðH1Þ

�
; [S7]

which follows χ2 distribution. Connections significant at P < 0.01
corrected for false-discovery rate were maintained.

3.3. Statistical Comparisons of Network Properties. To see whether
certain topological properties of the coactivation network were
nontrivial, we compared theirmedians to a null distribution.Unless
otherwise stated, this null distribution was built frommeasuring
the topological property in 1,000 random graphs, which had the
same degree and weight distribution as the coactivation net-
work (8). All P values from permutation tests reported refer to
the probability of the value in question to be part of this null
distribution.
Three other null models should be mentioned. First, com-

parison of the modularity organization in the coactivation and
connectivity network did not compare it to modularity assignment
of random networks. Instead, we randomly permuted the module
assignment of the nodes of the coactivation network 10,000 times.
Likewise, null distributions for comparisons between rich-club
nodes and peripheral nodes, or rich-club connections, peripheral
connections, and feeder connections, were based on 10,000
iterations of random permutation of assignment of these labels to
the edges of the network. For the purposes of the topological
distribution of the activation/deactivation pairs, the null model
was built by keeping the activations but randomly assigning
deactivations to other nodes, iterated 10,000 times.
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3.4. Alternative Null Models for Comparative Analyses of Brain
Networks. A recent study has shown that networks constructed
from a matrix of pairwise correlations between fMRI time series
tend to overestimate the clustering of the network, and can thus
potentially bias estimation of its small-world properties (9). This
is particularly a problem when the network is compared with
a random graph or a null model created by random link per-
mutation (topological randomization) of the observed graph.
Our coactivation metric was not correlation but the Jaccard in-
dex, a different measure of similarity or association between
nodes. We were not aware of any prior studies to suggest that an
association matrix comprising multiple measures of pairwise
association in terms of the Jaccard index was as susceptible as
a correlation matrix to this potential source of bias in graph
analysis. Nonetheless, to address this possible issue, we repeated
our analysis of the topological properties of the brain co-
activation network by comparing it to an ensemble of random
graphs generated by permuting the regional activations associ-
ated with each contrast (data randomization), to generate a set
of random association matrices, each of which was then thresh-
olded to construct a random graph (Fig. S11). This differed from
our original approach whereby a set of random graphs was
generated by permuting the edges of the network constructed
from the observed association matrix. However, we found that
the results of topological analysis of the coactivation network
were not substantively affected by the choice of null model,
suggesting that the results reported in the main text (based on
random edge permutation) are not attributable to any topolog-
ical bias inherent in the use of the Jaccard index as a measure of
association between nodes (Fig. S1B).
For completeness, we also show results from the connectivity

network with a null model using data randomization (Fig. S1D).
In this case, we calculated small-world parameters for each
subject after randomizing the fMRI time series by taking its
Fourier transform, randomly permuting the phases, and then
reconstructing the time series, as discussed in Zalesky et al. (9).

3.5. Network Metrics.

Degree: number of significant connections that a node has.

Weighted degree (strength): nodal characteristic that de-
scribes the sum of all of the connectivity indices connecting
it to the network. For the coactivation network, this is highly
correlated to degree (r = 0.97).

Density: percentage of existing edges in the network compared
with all possible edges.

Shortest path: the shortest topological distance (geodesic) be-
tween two nodes, where distances for the meta-analytical net-
work are the sum of the inverse of the Jaccard indices of edges
traversed. The shortest path of a network is the average of all
of the shortest paths between all pairs of nodes (10).

Clustering: the proportion of existing links between the neigh-
bors of a node from the possible ones, where neighbors of
a node are the nodes directly connected to them (10).

Global efficiency: the average of the inverse of the shortest
paths between all nodes. Unlike shortest path, it can be used
in weighted or disconnected networks (11).

Local efficiency: the inverse of the shortest paths between
neighbors of a node, averaged across all nodes for the network.
Unlike clustering, it can be used in weighted networks (11).

Small world (σ): this is a ratio between γ and λ. γ is the ratio
between the clustering of the network analyzed and the clus-
tering of comparable random networks (same number of no-
des and edges, same degree and weight distribution), and λ is
the ratio between the shortest path of the network and com-

parable random networks (12). For disconnected networks, we
used a conceptually similar idea and used the ratio between
global efficiency of the network and random networks, divided
by the inverse of the ratio between local efficiency of the
network and random.

Modularity: the best partition of the network into subgroups
that are highly connected between themselves. This is ob-
tained by maximizing a parameter Q, described in Eq. S1 (5).

Participation coefficient: measures how well a node in a given
module is connected to other modules, defined as follows:

Pi = 1−
X�

kis
ki

�2

; [S8]

where kis are the sum of the connections from node i to module
s, and ki its degree (13).

Rich-club configuration: for weighted networks, this is the pro-
portion of the strongest edges of the network that connect
high-degree nodes. Formally, this is defined for a cutoff rich-
ness factor r as follows:

ϕwðrÞ= W>rPE>r
l= 1w

rank
l

; [S9]

where W>r is the sum of the weights of the connections between
nodes with weighted degree higher than r, E>r is the number of
these edges, and the denominator describes the sum of the top
E>r strongest edges of the network (14). This value can be nor-
malized by the same parameter from randomized networks. Al-
though the rich club thus defined is a curve, we explored the
characteristics of the top hub nodes defined by a steep and signif-
icant departure from null (e.g., steep rise in the curve and 95%
confidence interval of normalized rich-club coefficient above 1).
Degree can be used as the richness factor to rank the nodes, rather
than weighted degree (strength). Weighted degree and degree
were correlated in this network, so it is unsurprising that results
are similar if using this definition.

Diversity of contrasts coactivating a pair of regions, Vedge:

Vedge = 1−

 X
d

�
kd
kt

�2
!
; [S10]

where kd is the normalized frequency of coactivation by domain d,
and kt is the sum of the normalized coactivation frequencies
across domains. Values of Vedge near zero mean that the edge
is only coactivated by one domain of cognitive contrasts, whereas
values near 1 describe edges that are coactivated by contrasts in
several domains.

3.6. Effect of Head Motion in Resting-State fMRI Data. We in-
vestigated the effect of head motion in the fMRI blood oxy-
genation level-dependent time series following Power et al. (15).
As Fig. S12A shows, there was little impact of movement on data
quality, with only nine subjects requiring removal of some cor-
rupted frames (frames with a framewise displacement higher
than 0.5 mm; correction included removing one back and two
forward of the marked frame), in all cases being less than 25% of
the data. For those subjects with significant movement, removing
(scrubbing) the affected frames did not uncover a differential
effect of movement on long- and short-range connections in our
data (Fig. S12B). In this context, we did not consider it necessary
to work with censored data in the main analysis presented.
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3.7. Reliability Analysis. We performed several reliability analyses,
looking into the effect of the parcellation scheme we used, the
possible effect of overrepresentation of certain types of tasks in
the database, and the assumption of the size and overlap of the
activation sphere. For the parcellation problem, we reanalyzed
the data using two alternative functionally based templates, one
with regions of similar size (594 regions) and another with bigger
regions (190 regions), excluding the cerebellum (16). Thepossible
publication bias was tackled by including a random subgroup of
all contrasts included, balanced across the different behavioral
domains of BrainMap database. Finally, the assumption of the
activation sphere was reviewed by defining a region as activated
only when the coordinates of the peak activation voxels fell in it.

Table S1 summarizes all these analyses. Weighted networks for
alternative parcellation scheme and modeling the peak activation
only are analyzed at the same density as main findings. Control-
ling for publication bias led to a decrease in the number of studies
included, and therefore we used a less stringent statistical
threshold of P < 0.05, false-discovery rate corrected, when
building the weighted network (density of network, 2.5%). As
shown in Table S1, overall the main results are qualitatively the
same as those reported in the main analysis. Note that the mod-
ularity comparison between different templates was performed at
the voxel level, so differences might be partly due to the lack of
overlap between regions.
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Fig. S1. Small-world behavior of coactivation and connectivity networks. A and B show path length, clustering, and small-world organization of coactivation
network, thresholded at different connection densities. At sparse densities, the network has a path length similar to random but higher clustering, having a small-
world configuration (area in gray). Null model in A is based on random permutation of links of the network (topological randomization), whereas in B the null
graphs are constructed by random permutation of activations (data) reported for each contrast. Both analyses show similar results, demonstrating that, unlike
networks based on correlation matrices, networks based on the Jaccard index as a measure of association do not overestimate the clustering and small worldness
of the network. (C and D) Global (GlE) and local (LocE) efficiency in the connectivity network (resting-state fMRI), and the relationship between their ratios and
random networks (LocE/rLocE/rGlE/GlE). Metrics are conceptually similar to path length, clustering, and small worldness, but can be used on disconnected networks
such as the functional connectivity network (disconnected at densities below 12%). In C, the null model is based on topological randomization, whereas in D the
null graphs are constructed by randomly permuting the time series in the Fourier domain, as described by Zalesky et al. (1), estimating the correlations between all
pairs of permuted time series, and then thresholding the correlation matrices. Note that the local efficiency (a metric similar to clustering) of the null graphs built
using topological randomization (C) is lower than when using data randomization (D), replicating the bias described by Zalesky in correlation networks. Nev-
ertheless, both analyses show that the network has a small-world organization (ratio of LocE/rLocE and rGlE/GlE is higher than 1).

Fig. S2. Connection distance and strength in coactivation and connectivity networks. Median lengths of edges in the two networks divided into 10 percentile
bins according to their strength (weight). Note that the excess of long connections in the coactivation network seen in Fig. 1D is mainly driven by strong long-
range connections.

1. Zalesky A, Fornito A, Bullmore E (2012) On the use of correlation as a measure of network connectivity. Neuroimage 60(4):2096–2106.
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Fig. S3. Association matrices for functional coactivation (Left) and functional connectivity (Right) datasets. Heat maps show the ranked strengths (percentile
scores) of the pairwise associations between regional nodes. Regions were ordered according to their membership of one of the four modules of the co-
activation network, highlighting the existence of more connections within modules (see the block diagonal clustering of hot colors in A), with a similar
modular configuration for the connectivity network (similar clustering formed in B). Some differences are also present, particularly in the level of connectivity
within a module, with the visual module having greater intramodular density of connections in the fMRI connectivity network, whereas the frontoparietal
module had more dense intramodular connectivity in the coactivation network.

Fig. S4. Behavioral domains of edges in modules. Proportion of intramodular edges classified according to the five behavioral domains studied.

Fig. S5. Rich-club organization of coactivation and connectivity networks. Normalized rich-club coefficients (normalized by rich-club coefficients from random
graphs) with 95% confidence interval for coactivation network (A) and connectivity network (B). Rich-club nodes were defined from the coactivation rich-club
curve (A): at weighted degrees above 8, there is a clear and statistically significant increase in the number of strong edges shared by these nodes (marked with
red vertical line). Note that weighted degrees are described in percentiles for the connectivity network (B) to make them comparable to the coactivation
network. Although the connectivity network peaks earlier, for the purposes of comparing the two networks, a subgroup of the strongest nodes was included
(red vertical line; see SI Results and Fig. S6 for characteristics of rich club defined from blue vertical line).

Crossley et al. www.pnas.org/cgi/content/short/1220826110 6 of 10

www.pnas.org/cgi/content/short/1220826110


Fig. S6. Characteristics of extended rich club of the connectivity network. (A) Anatomical location of the nodes belonging to the extended rich club (blue line
in Fig. S5B). Color of nodes corresponds to their module as in Fig. 1. (B) Betweenness centrality of edges, participation coefficient of nodes, and connection
distance of edges defined according to their relationship to the extended rich club. Median and interquartile range are shown.

Fig. S7. Behavioral domains of rich-club edges, and their diversity. (A) Percentage of edges classified according to the five behavioral domains. Note that each
edge is labeled according to the behavioral domain most frequently driving coactivation of the pair of regional nodes that it connects. (B) Diversity of rich-club
edges compared with peripheral and feeder edges. Median and interquartile range are shown.

Fig. S8. Comparison between graph theoretical modules and independent components defined by Smith et al. (1). In each panel, the upper row shows
independent components labeled according to the notation in Smith et al. and uniquely colored to show how the superposition of one or more components
closely approximates the anatomical distribution of one of the four modules from the coactivation network represented in the lower row (colored red and
labeled in accordance with our notation). Note that each of the four modules can be closely approximated by the superposition of one or more of the in-
dependent components. Only two components identified by Smith et al. are not easily reconciled with our results: a cerebellar component, denoted BM 520,
does not correspond to any of our modules because we chose not to include cerebellar regions in our construction of the coactivation network; and a frontal
component, denoted BM 820, overlaps both the default-mode and frontoparietal modules defined by our analysis.

1. Smith SM, et al. (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106(31):13040–13045.
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Fig. S9. Relationship between journal impact factor and degree in coactivation network. As described in the main text, a possible confounding factor could be
the uneven interest of the community in certain tasks or regions. Although in Table S1 we show the effect of balancing the contrasts across behavioral do-
mains, we here explored the relationship of the degrees of the coactivation network and the impact factor of the studies reporting the activations, with the
impact factor used as a proxy measure for the interest of the community in this area (1). (A) Nodes plotted in anatomical space, with their size being pro-
portional to their degree in the coactivation network. Most of the high-degree hubs, which constitute the rich club, are located in frontal, central and parietal
regions. Following Behrens et al. (1), the nodes have been colored according to the sign of significant correlation between activation and journal impact factor
(P < 0.05, uncorrected). Red nodes are positively correlated, and blue nodes are negatively correlated, with impact factor. It can be seen that most of the nodes
positively correlated with impact factor are not high-degree hubs of the coactivation network. (B) Mean impact factor and 95% confidence intervals of studies
reporting activations in the rich-club nodes and in the peripheral nodes; there is no significant difference in impact factor (t test, P = 0.22). In short, we do not
consider that the hubs of the coactivation network are biased by the impact factor of the journals in which the primary data have been reported.

Fig. S10. Building the coactivation network. Diagram showing in stages the construction of the coactivation network (A) and the analysis of deactivations (B).

1. Behrens TE, Fox P, Laird A, Smith SM (2013) What is the most interesting part of the brain? Trends Cogn Sci 17(1):2–4.
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Fig. S11. Null model based on data randomization for coactivation networks. Columns represent different contrasts and rows regions, with 1s denoting
activations. For each contrast included, activations were randomly permuted. Null model has therefore the same distribution of activations per contrasts. On
this null model, we calculated the Jaccard indices looking at coactivation patterns between regions.

Fig. S12. Motion effect on fMRI data. (A) Number of subjects and percentage of noisy frames requiring scrubbing. (B) Differences in all pairwise correlation
indices before and after scrubbing for the whole group of subjects, and its relationship to distance between regions. Note that there is no clear relationship to
distance, suggesting no systematic bias in the group matrix introduced by head movement.

Table S1. Robustness analysis
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Movie S2. Brief schematic summary of network construction and analysis.

Movie S2

Movie S1. Activations (in red) and deactivations (in blue) from 110 contrasts mapped dynamically onto the coactivation network. Colors represent ap-
proximate location of modules as in Fig. 3A.

Movie S1
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