1	SUPPLEMENTARY ONLINE CONTENT
2	
3	Bartlett JR, et al. Genetic modifiers of liver disease in cystic fibrosis. Submitted to JAMA, 2009.
4	
5	Supplementary Information:
6	Supplemental Methods
7	Supplemental Results
8	Supplemental Discussion
9	Supplemental Reference List
10	Supplemental Figure Legends
11	eTables 1 through 6
12	eFigures 1 and 2
13	

14 SUPPLEMENTAL - METHODS

15 Patients - Initial (first) study

16 The CFLD patients were ascertained from 22 CF Centers from 10 countries: Australia (n=8) 17 patients), Canada (n=17 patients), Czech Republic (n=17 patients), Germany (n=3 patients), Italy 18 (n=28 patients), Netherlands (n=1 patient), Scotland (n=2 patients), Slovakia (n=4 patients), 19 Turkey (n=4 patients), and U.S. (n=44 patients). Of these 128 subjects, 4 were excluded due to 20 the CFLD diagnosis not being made until after the age of 30 years. The 843 CF (control) subjects 21 without CFLD were ascertained from two countries (Canada, 84 patients from 32 Centers, and 22 U.S., 759 patients from 42 Centers). By age 15 years, 83.7% of CF patients who developed 23 CFLD were already diagnosed; therefore, CF control subjects younger than 15 years of age were 24 excluded. 25

26 Patients - Replication (second) study

27 The CFLD patients were ascertained from 35 CF Centers from 10 countries: Argentina (n=5 28 patients), Australia (n=5 patients), Canada (n=24 patients), Chile (n=1 patient), France (n=9 29 patients), Ireland (n=8 patients), Israel (n=7 patients), Italy (n=14 patients), United Kingdom (n=4 30 patients) and U.S. (n=62 patients). Of these 139 subjects, 3 were excluded due to the diagnosis 31 of CFLD not being made until after the age of 30 years. The 1088 CF (control) subjects without 32 CFLD were ascertained from five countries (Canada, 391 patients from 32 Centers; Czech 33 Republic, 30 patients; Ireland, 6 patients; Italy, 71 patients; and U.S., 590 patients from 54 34 Centers).

35

36 Enrollment criteria

37 Pertinent clinical documentation was reviewed independently by two hepatologists (P.R.D.,

38 S.C.L.) to ensure inclusion and exclusion criteria were met for CF liver disease (i.e. case report

39 forms, radiology reports, endoscopy reports, physical examinations and clinical notes containing

- 40 documentation of CFLD). When there was not consensus for any patient, these two reviewers
- 41 met and additional information was requested if it would clarify the diagnosis of CFLD. No patient

was excluded because of race or ethnic background, which were self-reported. A total of 47
subjects were enrolled post liver transplant (26 in initial study, 21.0%; 21 in replication study,
15.4%). For these patients, source documentation for CFLD criteria was required from medical
records prior to liver transplant. Exclusion criteria for CFLD were alcohol abuse, biliary atresia,
liver cancer, portal vein thrombosis, clinically significant viral hepatitis, use of parenteral nutrition,
and Wilson disease.

49 Distribution of the age of diagnosis of CFLD

50 The average first documentation of portal hypertension, i.e. diagnosis of CFLD, in the population 51 of liver disease subjects was 10.6 (± 5.4) years. Males had an earlier age of diagnosis of CFLD 52 than females for all subjects (males=8.5 yrs, females=10.5 years; P=0.007) and self-reported 53 Caucasians (males=9.7 yrs, females=11.5 yrs; P=0.027). The diagnosis of CFLD was first 54 established after the age of 30 in 7 subjects (ages of 32, 33, 35, 35, 40, 43, and 47 years), which 55 is \geq 4 SD from the mean of the normal distribution; therefore, these patients were excluded from 56 the genetic analyses (4 patients from the initial study, and 3 patients from the replication study as 57 mentioned above). Of the 260 CFLD patients, data was obtained to define/determine the year of 58 CF diagnosis in 213 of the patients.

59

60 *CFTR* genotypes

61 For the initial study, the majority of the 124 patients with CFLD had 2 identified pancreatic

62 insufficient (PI) mutations (80.7%, n=100), most of which were DF508/DF508 (56.5%, n=70). In

63 addition, 30 subjects carried biallelic PI mutations, including: DF508/G542X (n=4), DF508/1717-

64 1G>A (n=3), DF508/G551D (n=2), DF508/R553X (n=2), and DF508/N1303K (n=2) and other

65 combinations of 2 PI alleles (n=17). A few subjects had either one (n=16) or two (n=3) PI alleles

66 without an identified *CFTR* mutation. Only 5 subjects (4%) had one "pancreatic sufficient" (PS) or

67 variable PS allele, including G85E (n=2), R347P (n=2) and A455E (n=1).

The majority of the CF subjects in the initial control population was ascertained from the
 GMS Lung Study patient population¹, which accounts for the high percentage of DF508

70 homozygotes (92.6%). In addition, 55 subjects had biallelic PI mutations, including 71 DF508/N1303K (n=10), DF508/G542X (n=6), DF508/G551D (n=5), DF508/621+1G>T (n=3), 72 W1282X/W1282X (n=3), DF508/DI507 (n=2), DF508/3659delC (n=2) and other combinations of 2 73 PI alleles (n=24). Only 7 subjects did not have an identified CFTR mutation on one allele. 74 In the replication study, CFTR genotypes in CFLD subjects were similar to those in the 75 initial study. The majority of the 136 patients with CFLD had 2 PI mutations (85.4%, n=116), and 76 many were DF508/DF508 (45.6%, n=62). In addition 54 subjects had biallelic mutations, 77 including DF508/G542X (n=8), DF508/G551D (n=5), DF058/621+1G>T (n=4), DF508/1717-1G>A 78 (n=3), DF508/N1303K (n=3), DF508/R553X (n=3), DF508/R560T (n=2), DF508/W1282X (n=2), 79 and W1282Z/W1282X (n=2), plus 22 other biallelic mutations. A few subjects had either one 80 (n=14) or two (n=2) alleles without an identified CFTR mutation. Only 4 subjects (3%) had PS or 81 variable PS mutations, including G85E (n=1), R347P (n=1), A455E (n=1), or 3849+10kbC>T 82 (n=1). 83 For the 1088 replication control CF subjects without liver disease, the majority had 2 PI 84 mutations (93.5%), most of which were DF508/DF508 (62.5%, n=685). In addition to the DF508 85 homozygotes, 332 subjects had biallelic PI mutations, including DF508/G551D (n=54), 86 DF508/G542X (n=52), DF508/N1303K (n=35), DF508/621+1G>T (n=23), DF508/1717-1G>A 87 (n=14), DF508/W1282X (n=14), DF508/R553X (n=12), and DF508/R1162X (n=11); the remaining 88 117 subjects had genotypes that occurred in \leq 10 patients. The replication control population had 89 56 subjects with either one (n=44) or two (n=12) alleles with an unidentified CFTR mutation. 90 Finally, 15 subjects had PS (or variable PS) mutations: A445E (n=5), G85E (n=4), 91 3849+10kbC>T (n=2), R334W (n=1), R117H (n=1), R347P (n=1), and 2789+5G>A (n=1). 92 93 **Data collection** 94 Only initials and dates of birth for the CFLD subjects were available on source documents (other 95 identifying information was blacked out). Clinical data that were provided on standard case report 96 forms included: self-reported race/ethnicity, pancreatic exocrine status, medical history, results of

97 physical examination, laboratory blood work values, and abdominal radiology reports. In addition,

98 we requested the following procedure reports if available: liver explant pathology (from liver

99 transplant), liver biopsy, endoscopy and colonoscopy. Clinical information was double-entered

- 100 into the database to ensure accuracy.
- 101

102 DNA extraction and genotyping

103 For the majority of CFLD subjects enrolled in the study, blood was collected by venipuncture and

104 DNA was extracted from peripheral blood leukocytes from one or two tubes of blood using

105 standard protocols.² The remaining tubes were used for lymphocyte isolation, then further

106 subjected to EBV-mediated transformation to establish immortal cell lines. DNA was isolated

107 from the lymphoblastoid cell lines using 'Epicentre MasterPure Complete DNA and RNA

108 purification kit' (Epicentre, Madison, WI). For a few CFLD subjects, genomic DNA was provided

- 109 by the CF center enrolling the patient.
- 110

111 Initial study – genotyping

112 Mutations in *SERPINA1* (Z and S allele) were tested as described³ or by direct sequencing.

113 MBL2 promoter and structural variants were determined by direct sequencing or microsphere-

based genotyping (Luminex-100). *MBL2* structural (null) variants (B, C and D) were combined to

115 construct the O/O genotype. ACE (D or I deletion), GSTP1 (rs947894) and TGFB1 (rs1800469,

116 rs1982073, and rs1800471) were genotyped by direct sequencing or by Illumina BeadArray™

117 technology (San Diego, CA). For the alleles that were sequenced (SERPINA1 Z; MBL2 B, C and

118 D "null" alleles), PCR products were purified either using 'QIAquick PCR purification kit' (Qiagen,

119 Valencia, CA) or ExoSAP-IT (USB, Cleveland, OH) as per manufacturer's instructions. The

120 purified PCR products were sequenced using 'Big Dye Terminator Cycle Sequencing Kit' and run

121 on ABI PRISM 3100, 3130 or 310 according to the manufacturer's protocol (Applied Biosystems,

122 Foster City, CA). *MBL2* structural ("null") variants (B, C, D) were combined to construct the O/O

- 123 (null/null) genotype. The low-expression promoter variant (X) was combined with the normal
- 124 structural (A) sequence to construct the XA allele, since XA produces low levels of MBL2 protein
- 125 (Crosdale et al., 2000).⁴ The assays performed by Illumina (SERPINA1 S; GSTP1: MBL2

Supplement - Page S6

126 promoter variant, Y and X, which are the normal and low expression variants, respectively; TGFB1) used an established BeadArray (Illumina) technology ^{5,6} or the variants were sequenced 127 128 directly by our lab. Other genetic variants (ACE and CFTR) were tested using standard 129 methods.⁷⁻⁹ For ACE, genotyping of the insertion (I) or deletion (D) polymorphism of the Alu 130 repeat sequence in intron 16 of the ACE gene was performed by the method previously 131 reported.⁷ Briefly PCR products were run on a 3% agarose gel (NuSieve, Cambrex Bio Science 132 Rockland Inc., Rockland, ME) and DNA fragments of 490 bp (insertion) and 190 bp (deletion) 133 were visualized by staining with ethidium bromide. For SERPINA1, ACE, and MBL2, PCR was 134 performed in 25 µl reaction volume containing 100 ng genomic DNA, 0.4 µM each forward and 135 reverse primers, 1X buffer (1 mM (NH₄)₂S0₄, 67 mM Tris-HCI (pH8.8), 0.01% Tween-20), 1-3 mM 136 MgCl₂, 100-200 µM dNTP mix and 0.75-1.25 units of AmpliTaq DNA polymerase (Perkin Elmer, 137 Foster City, CA). PCR cycling conditions comprised of initial denaturation at 94°C for 5 minutes 138 followed by 30-35 amplification cycles (94°C for 30-60 s, 55-60°C for 30 s, 72°C for 30-45 s) and 139 concluded with 6-10 minutes extension at 72°C. PCR primer sequences table (below) included 140 primers used for DNA amplification.

141

142 Replication study – genotyping

143 For the replication study, genotyping of SERPINA1 Z allele and TGFB1 codon 10 polymorphisms 144 were performed from DNA extracted from peripheral blood leukocytes or lymphoblastoid cell 145 lines. Genotyping was performed by sequencing from PCR-amplified product. For Z allele 146 sequencing, PCR was performed in 25 µl reaction volume containing 100 ng genomic DNA, 0.4 147 µM each forward and reverse primer (see PCR primer sequences table below), 1X buffer (1 mM 148 (NH₄)₂SO₄, 67 mM Tris-HCI (pH8.8), 0.01% Tween-20, 1.0 mM MgCl₂, 100 µM dNTP mix, and 149 0.75 units AmpliTag DNA Polymerase (Perkin Elmer). PCR conditions comprised of initial 150 denaturation at 94°C for 5 minutes followed by 35 amplification cycles 94°C for 60 s, 58.5°C for 151 30 s, 72°C for 30 s and concluded with 10 minutes extension at 72°C. The purified PCR products 152 were sequenced using 'Big Dye' and run on ABI PRISM 3100 or 3130 according to the 153 manufacturer's protocol (Applied Biosystems).

154 For *TGFB1* codon 10 sequencing, PCR was performed in 25 µl reaction volume

155 containing 100 ng genomic DNA, 0.4 µM each forward and reverse primer (see PCR primer

sequences table below), 1X buffer (1 mM (NH₄)₂SO₄, 67 mM Tris-HCl (pH8.8), 0.01% Tween-20,

- 157 1.0 mM MgCl₂, 100 µM dNTP mix, 5% DMSO and 1.25 units AmpliTaq DNA polymerase. PCR
- 158 conditions comprised of initial denaturation at 94°C for 5 minutes followed by 35 amplification
- 159 cycles 94°C for 30 s, 55°C for 30 s, 72°C for 45 s and concluded with 5 minutes extension at
- 160 72°C. The purified PCR products were sequenced using 'Big Dye' and run on ABI PRISM 3100
- 161 or 3130 according to the manufacturer's protocol (Applied Biosystems).
- 162 PCR primer sequences table

ACE I/D Forward	CTG GAG ACC ACT CCC ATC CTT TCT
ACE I/D Reverse	GAT GTG GCC ATC ACA TTC GTC AGA
α1AP Z Allele Forward	CGA TGC TCT TCC CTG TTC TGA
a1AP Z Allele Reverse	GAG GGG AGA CTT GGT ATT TTG TTC
α1AP S Allele Forward	TAA CAT CCA GCA CTG TAA GAA G
a1AP S Allele Reverse	GGT TCA CCC TCC TCA GCC C
TGFβ1 Promoter Forward	ATT GGG GAC AGT AAA TGT ATG GGG T
<i>TGFβ1</i> Promoter Reverse	AGG ACC AGG CGG AGA AGG CT
<i>TGFβ1</i> Codon 10 and 25 Forward	TGT AAA ACG ACG GCC AGT GGG ATA CTG AGA CAC CCC CG
<i>TGF</i> β1 Codon 10 and 25 Reverse	CGG GTG ACC TCC TTG GCG TAG

163

164 Statistical analysis

165 Stratified Fisher's exact T tests

166 Stratified association analyses were performed using Fisher's exact tests to assess the effects of

167 genotype separately in men and women. Given the potential concern of population stratification,

168 we additionally performed Fisher's exact tests restricted to Caucasian subjects in the initial,

169 replication and combined datasets. All tests of association were performed using S.A.S. (version

170 9.1.3, Cary, NC).

171

172 Description of covariate adjustment in logistic regression models

- 173 We performed multivariable logistic regression models with variable levels of covariate
- adjustment for ethnicity, gender, *CFTR* genotype and *TGFB1* codon 10 genotype. Ethnicity was
- treated as a class variable with five levels, defined by subjects of Caucasian, African, Hispanic,
- 176 Asian or mixed descent. CFTR and TGFB1 codon 10 genotypes were each scored as a three-

level class variable. *CFTR* genotype was scored for the number of DF508 mutations (0, 1 or 2)
the subject carried. *TGFB1* codon 10 genotype was scored for the number of copies of the minor
allele (0, 1 or 2) the subject carried.

180

181 **Population attributable risk**

182 We estimated the population attributable risk percentage (PAR%) of CFLD associated with 183 exposure to the SERPINA1 Z allele risk (heterozygous) genotype using a modification of Levin's 184 formula.^{10,11} The observed absence of homozygotes for the minor (Z) allele in both our CFLD 185 cases and controls at the SERPINA1 Z locus facilitates the application of Levin's formula, which 186 assumes a dichotomous exposure variable. Our study, a retrospective case-control study on 187 CFLD, does not measure disease prevalence. However, Levin and others have shown that the 188 population attributable risk may be estimated from a retrospective case-control study, provided 189 the disease prevalence is low, which ensures that the rate of exposure to the risk genotype is 190 similar in the control population and the general CF population. The total incidence of CFLD among CF patients is estimated to be approximately 3-5%¹² and we have demonstrated (see 191 192 Figure 1) that the rate of the risk genotype at the SERPINA1 Z locus is similar in our controls to 193 the general population (and therefore expected to be similar to the general CF population). 194 Applying the formula of Levin and Bertell (1978)¹¹ to estimate the population attributable risk, we 195 have: PAR% = (Pr(AG|case) – Pr(AG|control))/(1 – Pr(AG|control)) x 100, where AG represents 196 the risk (heterozygous) genotype at the a1AP Z locus. We obtain an estimated PAR% of 6.7% 197 when using all subjects (initial plus replication samples) and 6.6% when using all Caucasian 198 subjects only.

200 SUPPLEMENTAL - RESULTS

201 Genetic tests for association of *TGFB1* variants in the initial and replication studies

- 202 There was some evidence (uncorrected p < 0.05) for an association between CFLD and *TGFB1*
- 203 (SNPs -509 and Codon 10) in the initial total population, but there was no significant evidence in
- 204 only Caucasian subjects in the initial population. In the replication and combined populations,
- there was no association of the *TGFB1* codon 10 variant with CFLD. This lack of association
- 206 could not be explained by variation in CFTR genotypes (data not shown; eTables 4-5).
- 207

208 Age of diagnosis of CFLD

- 209 The age of diagnosis of CFLD in male subjects (8.5 years) was significantly earlier (P=0.007)
- 210 than in female subjects (10.5 years). Similarly, in self-reported Caucasians, males were
- 211 diagnosed significantly earlier (P=0.027) than in females (males=9.7 years, females=11.5 years).

212

214 SUPPLEMENTAL – DISCUSSION

215 Clinical implications of a rare allele with high penetrance

- 216 The estimated population attributable risk for CF liver disease is 6.7% for the relatively rare
- 217 SERPINA1 Z allele. A similar population attributable risk might be obtained for a common SNP
- with a much weaker effect, such as is typically identified in genome wide studies of complex
- 219 genetic diseases. From a clinical perspective, a rare variant with large penetrance (such as the Z
- allele) may be more useful, as it is now relatively easy and inexpensive to screen for genetic
- 221 polymorphisms. Further, given the substantial increased risk associated for carriers of the
- 222 SERPINA1 Z allele, a clinician might be more inclined to seek and use this information.

224	SU	PPLEMENTAL REFERENCES
225 226	1.	Drumm ML, Konstan MW, Schluchter MD, et al. Genetic modifiers of lung disease in cystic
227		fibrosis. <i>N Engl J Med.</i> 2005;353(14):1443-1453.
228	2 .	Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold
229		Spring Harbor: Cold Spring Harbor Laboratory Press, 1989.
230	3 .	Tazelaar JP, Friedman KJ, Kline RS, Guthrie ML, Farber RA. Detection of alpha 1-
231		antitrypsin Z and S mutations by polymerase chain reaction-mediated site-directed
232		mutagenesis. Clin Chem. 1992;38(8 Pt 1):1486-1488.
233	4.	Crosdale DJ, Ollier WE, Thomson W, et al. Mannose binding lectin (MBL) genotype
234		distributions with relation to serum levels in UK Caucasoids. Eur J Immunogenet.
235		2000;27(3):111-117.
236	5 .	Oliphant A, Barker DL, Stuelpnagel JR, Chee MS. BeadArray technology: enabling an
237		accurate, cost-effective approach to high-throughput genotyping. Biotechniques.
238		2002;Suppl:56-1.
239	6 .	Fan JB, Oliphant A, Shen R, et al. Highly parallel SNP genotyping. Cold Spring Harb Symp
240		<i>Quant Biol.</i> 2003;68:69-78.
241	7.	Ashavaid TF, Shalia KK, Nair KG, Dalal JJ. ACE and AT1R gene polymorphisms and
242		hypertension in Indian population. J Clin Lab Anal. 2000;14(5):230-237.
243	8 .	Yim JJ, Park GY, Lee CT, et al. Genetic susceptibility to chronic obstructive pulmonary
244		disease in Koreans: combined analysis of polymorphic genotypes for microsomal epoxide
245		hydrolase and glutathione S-transferase M1 and T1. Thorax. 2000;55(2):121-125.
246	9.	Wilson AG, di Giovine FS, Blakemore AI, Duff GW. Single base polymorphism in the
247		human tumour necrosis factor alpha (TNF alpha) gene detectable by Ncol restriction of
248		PCR product. <i>Hum Mol Genet.</i> 1992;1(5):353.
249	10.	Levin ML. The occurrence of lung cancer in man. Acta Unio Int Contra Cancrum.
250		1953;9(3):531-541.
251	11.	Levin ML, Bertell R. RE: "simple estimation of population attributable risk from case-control
252		studies". <i>Am J Epidemiol.</i> 1978;108(1):78-79.

- 253 **12**. Welsh MJ, Ramsey BW, Accurso FJ, Cutting GR. Cystic Fibrosis. In: Scriver CR, Beaudet
- AL, Sly WS, Valle D, eds. *The metabolic and molecular bases of inherited disease.* 8th ed.
- 255 New York: McGraw-Hill; 2001:5121-5188.

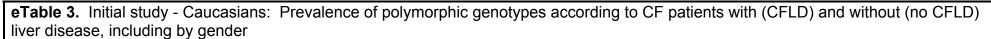
257 SUPPLEMENTAL FIGURE LEGENDS

eFigure 1: Age of liver disease diagnosis in CFLD subjects. Age distribution of diagnosis of liver disease (portal hypertension) in all patients with CFLD. Only 7 patients with CFLD had the diagnosis of portal hypertension made after the age of 30 yrs. These patients were excluded from the study population and the final analysis, due to being outliers (≥ 4SD from the mean) of the normal distribution.

263

264 eFigure 2: Accumulation of SERPINA1 (α 1AP) protein in a CFLD subject with and without 265 the Z allele. Histological sections from two CF subjects (homozygous for DF508 CFTR) with 266 cirrhosis and portal hypertension (x300). Top panels: α 1-antiprotease (α 1AP, SERPINA1) MZ 267 heterozygote, Bottom panels: SERPINA1 MM homozygote. Histological sections using periodic 268 acid Schiff, diastase resistant (PAS-D) stain (left top and bottom) show changes consistent with 269 severe CFLD in both patients, including large droplet fat in hepatocytes, numerous proliferated 270 ductules, fibrous tissue and low grade cholangitis. However, tissue from the MZ subject, shows 271 accumulation of PAS-D positive droplets within hepatocytes adjoining the fibrotic interface (left 272 top), which are not observed in the MM subject with CFLD (left bottom). Immunoperoxidase stain 273 using an antibody against SERPINA1, shows positive staining in the same area as the PAS-D 274 positive droplets in tissue from the MZ subjects (middle top), which is not observed in the MM 275 subject (middle bottom). It is clear that the positive stain for SERPINA1 is within hepatocytes of 276 the MZ tissue and not sinusoidal lining cells or macrophages, which show positive CD68 staining 277 for macrophages (right top and bottom).

Genetic Modifiers of Liver Disease in Cystic Fibros)_supp_2_kf>	0			
eTable 1. Summary of clinical lab	values for (o ≤ 2X		2X
	Study	Number of patients	Norma %	ll range #	%	J ≦ ZA #	%	2 ∧ #
Aspartate transaminase (AST)	Initial	122	23.0	28	43.4	53	33.6	41
,	Replication	132	16.7	22	47.7	63	35.6	47
(range of values)			(≤ 30	0 U/L)	(31-6	0 U/L)	(> 60) U/L)
Alanine transaminase (ALT)	Initial	116	47.4	55	35.3	41	17.2	20
	Replication	133	44.4	59	37.6	50	18.0	24
(range of values)			(≤ 40	0 U/L)	(41-80 U/L)		(> 80) U/L)
Gamma glutamyl transferase (GGT)	Initial	110	24.5	27	16.4	18	59.1	65
	Replication	114	19.3	22	28.1	32	52.6	60
(range of values)			(≤ 30 U/L)		(31-6	0 U/L)	(> 60) U/L)
Total bilirubin (T Bili)†	Initial	106	66.0	70	18.9	20	15.1	16
	Replication	111	70.3	78	17.1	19	12.6	14
(range of values)			(≤ 1.2	mg/dl)	(1.3-2.4	1 mg/dl)	(> 2.4	mg/dl)
Albumin‡	Initial	104	49.0	51	42.3	44	8.7	9
	Replication	120	56.7	68	39.2	47	4.1	5
(range of values)			(≥ 3.	5 g/dl)	(2.5-3	4 g/dl)	(< 2.5	5 g/dl)
International normalized ratio (INR)	Initial	88	28.4	25	51.1	45	20.5	18
	Replication	90	32.2	29	47.8	43	20.0	18
(range of values)			(<	1.2)	(1.2	-1.5)	(> '	1.5)


† Total bilirubin abnormal in 40.9% of patients (9 out of 22) in Initial Study and 38.1% of patients (8 out of 21) in Replication Study, prior to liver transplant.
 ‡ Albumin abnormal in 61.9% of patients (13 out of 21) in Initial Study and 50.0% of patients (10 out of 20) in Replication Study, prior to liver transplant.

eTable 2. Initial study: Prevalence of polymorphic genotypes according to CF patients with (CFLD) and without (no CFLD) liver disease, including by gender

Gene	Variant	SNP rs#	Status of liver disease	Geno-		ents ith otype	Geno- type		ts with otype	Geno- type	Patients with genotype		Number of	P value*
					#	%		#	%		#	%	patients	
			CFLD		90	88.2		12	11.8		0	0.0	102	0.28
			Male	AA	65	87.8	AT	9	12.2	TT	0	0.0	74	0.26
	S allele	17580	Female		25	89.3		3	10.7		0	0.0	28	0.47
	(T2313A)	17560	no CFLD		619	92.6		49	7.3		1	0.1	669	
			no CFLD male	AA	331	91.9	AT	29	8.1	TT	0	0.0	360	
SERPINA1			no CFLD female		288	93.2		20	6.5		1	0.3	309	
SERFINAT			CFLD		110	88.7		14	11.3		0	0.0	124	6.5x10 ⁻⁵
			Male	GG	82	93.2	AG	6	6.8	AA	0	0.0	88	0.04
	Z allele	28929474	Female		28	77.8		8	22.2		0	0.0	36	6.1x10 ⁻⁵
	(G4627A)	20929474	no CFLD		741	97.4		20	2.6		0	0.0	761	
			no CFLD male	GG	403	97.6	AG	10	2.4	AA	0	0.0	413	
			no CFLD female		338	97.1		10	2.9		0	0.0	348	
			CFLD		43	35.0		54	43.9		26	21.1	123	0.69
			Male	DD	30	34.5	DI	36	41.4	II	21	24.1	87	0.47
ACE	D/I deletion	N/A	Female		13	36.1		18	50.0		5	13.9	36	0.94
ACE	(T2313A)	N/A	no CFLD		250	37.3		300	44.7		121	18.0	671	
			no CFLD male	DD	144	39.9	DI	149	41.3	II	68	18.8	361	
			no CFLD female		106	34.2		151	48.7		53	17.1	310	
			CFLD		40	41.7		41	42.7		15	15.6	96	0.33
			Male	AA	31	44.9	AG	28	40.6	GG	10	14.5	69	0.73
GSTP1	(A1375G)	947894	Female		9	33.3		13	48.2		5	18.5	27	0.23
GOIFI	(A13730)	341034	no CFLD		316	43.7		331	45.8		76	10.5	723	
			no CFLD male	AA	171	43.8	AG	173	44.4	GG	46	11.8	390	
			no CFLD female		145	43.5		158	47.5		30	9.0	333	

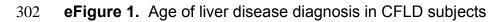
enetic Modifier	S OI LIVEI DISEASE II	IT Cystic Tibrosis	CFLD		<u>69</u>		kfxqp7.doc	42	35.9		6	5.1	117	0.91
			Male	AA	47	59.0 56.6	40	42 32	38.6	00		5.1 4.8	83	0.91
				AA	47 22	50.0 64.7	AO	32 10	38.0 29.4	00	4	4.8 5.9		0.84
	0	N/A	Female					-			2		34	0.76
			no CFLD		384	57.9	4.0	248	37.4	00	31	4.7	663	-
			no CFLD male	AA	207	57.9	AO	138	38.5	00	13	3.6	358	-
MBL2			no CFLD female		177	58.0		110	36.1		18	5.9	305	
			CFLD	O 11	95	82.6		14	12.2		6	5.2	115	0.63
			Male	Other	67	81.7	XA/O	11	13.4	0/0	4	4.9	82	0.71
	XA/O	N/A	Female		28	84.8		3	9.1		2	6.1	33	0.85
			no CFLD		567	85.5		65	9.8		31	4.7	663	+
			no CFLD male	Other	303	84.7	XA/O	42	11.7	0/0	13	3.6	358	<u>_</u>
			no CFLD female		264	86.6		23	7.5		18	5.9	305	
			CFLD		44	39.6		52	46.9		15	13.5	111	0.04
			Male	CC	34	42.5	СТ	35	43.7	TT	11	13.8	80	0.14
	Promoter	1800469	Female	+	10	32.3		17	54.8		4	12.9	31	0.14
	(C-509T)		no CFLD	сс	413	49.6		356	42.7		64	7.7	833	
			no CFLD male		225	49.4	СТ	198	43.4	TT	33	7.2	456	
			no CFLD female		188	49.9		158	41.9		31	8.2	377	
			CFLD		33	29.5		54	48.2		25	22.3	112	0.01
			Male	TT	26	32.1	СТ	36	44.4	CC	19	23.5	81	0.04
TGFB1	Codon 10	1000470	Female		7	22.6		18	58.0		6	19.4	31	0.09
IGFB1	(C29T)	1800470	no CFLD		343	40.7		390	46.4		109	12.9	842	
			no CFLD male	TT	186	40.3	СТ	216	46.9	СС	59	12.8	461	
			no CFLD female		157	41.2		174	45.7		50	13.1	381	
			CFLD		93	83.8		18	16.2		0	0.0	111	0.61
			Male	GG	67	82.7	GC	14	17.3	СС	0	0.0	81	0.66
	Codon 25	4000474	Female		26	86.7		4	13.3		0	0.0	30	0.83
	(G74C)	1800471	no CFLD		592	85.9		92	13.4		5	0.7	689	
			no CFLD male	GG	318	85.3	GC	53	14.2	СС	2	0.5	373	1
			no CFLD female		274	86.8		39	12.3		3	0.9	316	1

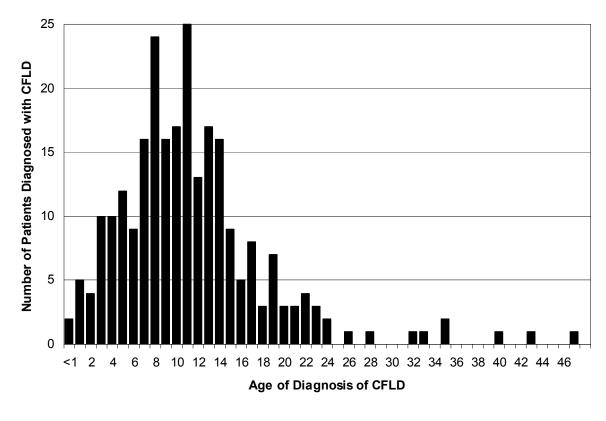
Gene	Variant	SNP rs#	Status of liver disease			Geno- type	w	ents ith otype	Geno- type	Patients with genotype		Number of patients	P value*	
					#	%		#	%		#	%	-	
			CFLD		81	89.0		10	11.0		0	0.0	91	0.31
			Male	AA	60	89.6	AT	7	10.4	TT	0	0.0	67	0.48
	S allele (T2313A)	17580	Female		21	87.5		3	12.5		0	0.0	24	0.28
	(12313A)		no CFLD		605	92.5		48	7.3		1	0.2	654	
			no CFLD male	AA	326	91.8	AT	29	8.2	TT	0	0.0	355	
			no CFLD female		279	93.3		19	6.4		1	0.3	299	
SERPINA1			CFLD		100	90.1		11	9.9	AA	0	0.0	111	6.9x10 ⁻⁴
			Male	GG	76	95.0	AG	4	5.0		AA	0	0.0	80
	Z allele	28929474	Female		24	77.4		7	22.6		0	0.0	31	1.0x10 ⁻⁴
	(G4627A)		no CFLD		726	97.4		19	2.6		0	0.0	745	
			no CFLD male	GG	397	97.5	AG	10	2.5	AA	0	0.0	407	
			no CFLD female		329	97.3		9	2.7		0	0.0	338	
			CFLD		38	34.2		49	44.2		24	21.6	111	0.61
			Male	DD	27	33.8	DI	34	42.4		19	23.8	80	0.48
105	D/I deletion	N1/A	Female		11	35.5		15	48.4		5	16.1	31	0.97
ACE	(T2313A)	N/A	no CFLD		243	37.0		296	45.2		117	17.8	656	
			no CFLD male	DD	142	39.9	DI	147	41.3	П	67	18.8	356	
			no CFLD female		101	33.7		149	49.6		50	16.7	300	
			CFLD		35	40.7		37	43.0		14	16.3	86	0.24
			Male	AA	28	45.2	AG	25	40.3	GG	9	14.5	62	0.69
COTDA	(110750)	047004	Female		7	29.2		12	50.0		5	20.8	24	0.08
GSTP1	(A1375G)	947894	no CFLD		309	43.8		325	46.0		72	10.2	706	
			no CFLD male	AA	167	43.5	AG	172	44.8	GG	45	11.7	384	
			no CFLD female	1	142	44.1		153	47.5]	27	8.4	322	

Genetic Modifier			CFLD		61	57.6		40	37.7		5	4.7	106	0.95
			Male	AA	43	56.6	AO	30	39.5	00	3	3.9	76	0.97
			Female		18	60.0		10	33.3		2	6.7	30	0.90
	0	N/A	no CFLD		379	58.5		240	37.0		29	4.5	648	
			no CFLD male	AA	204	57.8	AO	136	38.5	00	13	3.7	353	-
			no CFLD female		175	59.3		104	35.3		16	5.4	295	
MBL2			CFLD		86	82.7		13	12.5		5	4.8	104	0.58
			Male	Other	62	82.7	XA/O	10	13.3	0/0	3	4.0	75	0.81
			Female		24	82.8		3	10.3		2	6.9	29	0.60
	XA/O	N/A	no CFLD		557	85.9		62	9.6		29	4.5	648	
			no CFLD male	Other	299	84.7	XA/O	41	11.6	0/0	13	3.7	353	
			no CFLD female		258	87.5		21	7.1		16	5.4	295	
			CFLD		41	41.4		47	47.5		11	11.1	99	0.20
			Male	СС	32	44.4	СТ	32	44.5	TT	8	11.1	72	0.41
	Promoter	4000400	Female		9	33.3		15	55.6		3	11.1	27	0.22
	(C-509T)	1800469	no CFLD		408	50.0		344	42.2		64	7.8	816	
			no CFLD male	СС	225	50.0	СТ	192	42.7	TT	33	7.3	450	
			no CFLD female		183	50.0		152	41.5		31	8.5	366	
			CFLD		31	31.0		49	49.0		20	20.0	100	0.06
			Male	TT	24	32.9	СТ	34	46.6	CC	15	20.5	73	0.17
TGFB1	Codon 10	1800470	Female		7	25.9		15	55.6		5	18.5	27	0.24
IGFBI	(C29T)	1800470	no CFLD		339	41.1		378	45.8		108	13.1	825	
			no CFLD male	TT	186	40.9	СТ	210	46.1	CC	59	13.0	455	
			no CFLD female		153	41.4		168	45.4		49	13.2	370	
			CFLD		84	84.8		15	15.2		0	0.0	99	0.82
			Male	GG	60	82.2	GC	13	17.8	CC	0	0.0	73	0.63
	Codon 25	1800471	Female		24	92.3		2	7.7		0	0.0	26	0.81
	(G74C)	1000471	no CFLD		579	85.9		90	13.4		5	0.7	674	
			no CFLD male	GG	313	85.1	GC	53	14.4		2	0.5	368	
			no CFLD female		266	86.9		37	12.1	_	3	1.0	306	

eTable 4. Replication & combined studies: Prevalence of polymorphic genotypes according to CF patients with (CFLD) and without

Gene	Study	Variant	SNP rs#	Status of liver disease	Geno- type	Pati wi genc	th	Geno- type	w	ients ith otype	Geno- type			Number of	P value*
				liver disease	type	#	%	type	#	%	type	#	%	patients	value
				CFLD		127	93.4		9	6.6		0	0.0	136	0.005
				Male	GG	75	91.5	AG	7	8.5	AA	0	0.0	82	0.009
	Replication	Z allele	00000474	Female		52	96.3		2	3.7		0	0.0	54	0.25
	study	(G4627A)	28929474	no CFLD		1062	98.0		22	2.0		0	0.0	1084	
				no CFLD male	GG	571	97.6	AG	14	2.4	AA	0	0.0	585	
SERPINA1				no CFLD female		491	98.4		8	1.6		0	0.0	499	
SERPINAT				CFLD		237	91.2		23	8.8		0	0.0	260	9.3x10
				Male	GG	157	92.4	AG	13	7.6	AA	0	0.0	170	1.2x10
	Combined	Z allele	28929474	Female		80	88.9		10	11.1		0	0.0	90	1.3x1(
	studies	(G4627A)	20929474	no CFLD		1803	97.7		42	2.3		0	0.0	1845	
				no CFLD male	GG	974	97.6	AG	24	2.4	AA	0	0.0	998	
				no CFLD female		829	97.9		18	2.1		0	0.0	847	
				CFLD		51	38.1		62	46.2		21	15.7	134	1.00
				Male	TT	32	39.5	СТ	37	45.7	CC	12	14.8	81	0.99
	Replication	Codon 10	1800470	Female		19	35.8		25	47.2		9	17.0	53	0.98
	study	(C29T)	1000470	no CFLD		290	38.3		349	46.1		118	15.6	757	
				no CFLD male	TT	171	40.7	СТ	186	44.3	CC	63	15.0	420	
TGFB1				no CFLD female		119	35.3		163	48.4		55	16.3	337	
				CFLD		84	34.1		116	47.2		46	18.7	246	0.10
				Male	TT	58	35.8	СТ	73	45.1	CC	31	19.1	162	0.19
	Combined	Codon 10	1800470	Female		26	31.0		43	51.1		15	17.9	84	0.37
	studies	(C29T)	1000110	no CFLD	ļ	633	39.6			46.2		227	14.2	1599	
				no CFLD male	TT	357	40.5	СТ	402	45.7	CC	122	13.8	881	
				no CFLD female		276	38.4		337	47.0		105	14.6	718	

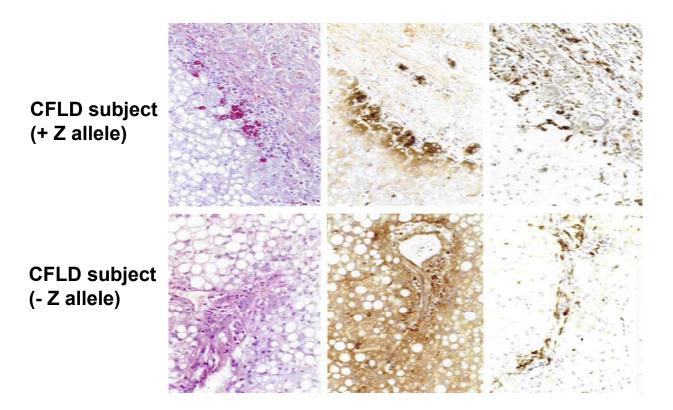

eTable 5. Replication & combined studies - Caucasians: Prevalence of polymorphic genotypes according to CF patients with (CFLD) and without (no CFLD) liver disease, including by gender


Gene	Study	Variant	SNP rs#	# Status of G liver disease f		Pati wi genc	th	Geno- type	Patients with genotype		Geno- type	Patients with genotype		Number of	P value*
					type	#	%		#	%	-91	#	%	patients	
				CFLD		109	92.4		9	7.6		0	0.0	118	2.2x10 ⁻¹
				Male	GG	68	90.7	AG	7	9.3	AA	0	0.0	75	6.5x10 ⁻
	Replication	Z allele	28929474	Female		41	95.3		2	4.7		0	0.0	43	0.19
	study	(G4627A)	28929474	no CFLD		1040	97.9		22	2.1		0	0.0	1062	
				no CFLD male	GG	558	97.6	AG	14	2.4	AA	0	0.0	572	
SERPINA1				no CFLD female		482	98.4		8	1.6		0	0.0	490	
SERPINAT				CFLD		209	91.3		20	8.7		0	0.0	229	4.2x10 ⁻
				Male	GG	144	92.9	AG	11	7.1	AA	0	0.0	155	4.8x10⁻
	Combined	Z allele	28929474	Female		65	87.8		9	12.2		0	0.0	74	1.0x10 ⁻
	studies	(G4627A)	26929474	no CFLD		1766	97.7		41	2.3		0	0.0	1807	
				no CFLD male	GG	955	97.5	AG	24	2.5	AA	0	0.0	979	
				no CFLD female		811	97.9		17	2.1		0	0.0	828	
				CFLD		46	39.7		52	44.8		18	15.5	116	0.96
				Male	TT	30	40.5	СТ	33	44.6	CC	11	14.9	74	1.00
	Replication	Codon 10	1800470	Female		16	38.1		19	45.2		7	16.7	42	0.98
	study	(C29T)	1000470	no CFLD		285	38.7		338	45.9		113	15.4	736	
				no CFLD male	TT	167	41.0	СТ	181	44.5	СС	59	14.5	407	
TGFB1				no CFLD female		118	35.9		157	47.7		54	16.4	329	
IGEDI				CFLD		77	35.6		101	46.8		38	17.6	216	0.28
				Male	TT	54	36.7	СТ	67	45.6	CC	26	17.7	147	0.36
	Combined	Codon 10	1800470	Female		23	33.3		34	49.3		12	17.4	69	0.62
	studies	(C29T)	1000470	no CFLD		624	40.0		716	45.8		221	14.2	1561	
				no CFLD male	TT	353	41.0	СТ	391	45.3	CC	118	13.7	862	
				no CFLD female		271	38.8		325	46.5		103	14.7	699	

	Odds ratio	
	(95% CI)	P value***
Covariate - ethnicity		
All Patients (n=2105)	4.26 (2.49 - 7.28)	1.1x10 ⁻⁷
CFLD (n = 260)		
CF no LD (n = 1845)*		
Caucasians (n=2036)	4.12 (2.37 - 7.17)	5.3x10 ⁻⁷
CFLD (n = 229)		
CF no LD (n = 1807)		
Covariate - ethnicity, gender, Cl	FTR and TGFB1 codon 10 gen	otype
All Patients (n=1760)**	4.66 (2.55 - 8.53)	5.9x10 ⁻⁷
CFLD (n = 246)		
CF no LD (n = 1514)		
Caucasians (n=1693)	4.53 (2.44 - 8.40)	1.8x10 ⁻⁶
CFLD (n = 216)		
CF no LD (n = 1477)		

*** All P values were calculated with the use of Fisher's exact test of comparisons of the genotypes.

300



- 303 304
- 305
- 306

309 **eFigure 2.** Accumulation of SERPINA1 (α 1AP) protein in a CFLD subject with

- 310 and without the Z allele
- 311
- 312

- 313
- 314
- 315
- 316