Supplementary informatuon S1 (table) | Evidence for and against DNA demethylation in mammailian cells

Enzyme	Evidence supporting demethylation	Evidence against demethylation
Direct removal		
MBD2	- In vitro assays (1)	Stably binds to methylated DNA (2,3)Normal methylation patterns in null mice (4)
5meC glycosylases		
DME	- In vitro assays (5–9)	
ROS1/DML1 DML2 DML3	- Loss of function mutants exhibit expression of imprinted genes and hypermethylation (5, 10)	
TDG		- Excision activity is much lower against 5meC compared to thymine (11)
MBD4		- Excision activity is much lower against 5meC compared to thymine (12)
MUDT		- Null zygotes exhibit paternal genome demethylation (13)
Deaminases		
	- <i>In vitro</i> oligonucleotide and <i>E. coli</i> assay (14)	- Knockout of AID or APOBEC1 are viable and
AID APOBEC1	- Deamination and BER of methylated when expressed in zebrafish embryos (15)	fertile (18–21)
, ii	- Subtle hpermethylation in AID-deficient PGCs (16)	- Majority of demethylation is maintained in AID-deficient PGCs (16)
Dnmt3a Dnmt3b	- In vitro assays (17)	- Deamination reaction can only occur in the absence of SAM (17)
Nucleotide excision repair		
Gadd45a	 Loci-specific and global demethylation after overexpression, hypermethylation after knockdown (22) 	- Lack of direct biochemical evidence
		- Irreproducibility (25)
	- Knockdown of NER machinery results in hypermethylation (23)	- No expected hypermethylation in knockout mouse (26)
Gadd45b	-Deficiency results in promoter hypermethy- lation (24)	- Lack of direct biochemical evidence
		- Null zygotes undergo paternal genome demethylation (27)
Oxidative demethylation		
Tet1 Tet2	- In vitro assays (28, 29)	
Tet3	- 5hmC is present in ES cells and Purkinje neurons (28, 30)	
Radical SAM		
Elongator	 Paternal genome is not demethylated after knockdown in zygotes (27) 	- Lack of direct biochemical evidence

SUPPLEMENTARY INFORMATION

- Bhattacharya, S. K., Ramchandani, S., Cervoni, N. & Szyf, M. A mammalian protein with specific demethylase activity for mCpG DNA. *Nature* 397, 579–583 (1999).
- Ng, H. H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet. 23, 58–61 (1999).
- Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. *Mol. Cell. Biol.* 18, 6538–6547 (1998).
- Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. *Genes Dev.* 15, 710–723 (2001).
- Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814 (2002).
- Agius, F., Kapoor, A. & Zhu, J. K. Role of the *Arabidopsis* DNA glycosylase/lyase ROS 1 in active DNA demethylation. *Proc. Natl Acad. Sci. USA* 103, 11796–11801 (2006).
- Gehring, M. et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124, 495–506 (2006)
- Morales-Ruiz, T. et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl Acad. Sci. USA 103, 6853– 6858 (2006)
- Penterman, J. et al. DNA demethylation in the Arabidopsis genome. Proc. Natl Acad. Sci. USA 104, 6752

 –6757 (2007)
- Choi, Y. et al. DEMÉTER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33–42 (2002)

- Zhu, B. et al. 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc. Natl Acad. Sci. USA 97, 5135–5139 (2000).
 Zhu, B. et al. 5-Methylcytosine DNA glycosylase
- Zhu, B. et al. 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res. 28, 4157–4165 (2000).
- Hendrich, B., Hardeland, U., Ng, H. H., Jiricny, J. & Bird, A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401, 301–304 (1999).
- 14. Morgan, H. D., Dean, W., Coker, H. A., Reik, W. & Petersen-Mahrt, S. K. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. *J. Biol. Chem.* 279, 52353–52360 (2004).
- Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and GADD45. Cell 135, 1201–1212 (2008).
- Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105 (2010).
- Metivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. *Nature* 452, 45–50 (2008).
- Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).
- Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565– 575 (2000).

- Hirano, K. et al. Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J. Biol. Chem. 271, 9887–9890 (1996)
- Morrison, J. R. et al. Apolipoprotein B RNA editing enzyme-deficient mice are viable despite alterations in lipoprotein metabolism. Proc. Natl Acad. Sci. USA 93, 7154–7159 (1996).
- Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675 (2007).
- Schmitz, K. M. et al. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol. Cell 33, 344–353 (2009).
- Ma, D. K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).
- Jin, S. G., Guo, C. & Pfeifer, G. P. GADD45A does not promote DNA demethylation. *PLoS Genet.* 4, e1000013 (2008).
- 26. Engel, N. et al. Conserved DNA methylation in Gadd45a⁺ mice. Epigenetics **4**, 98–9 (2009).
- Okada, Y., Yamagata, K., Hong, K., Wakayama, T. & Zhang, Y. A role for the elongator complex in zygotic paternal genome demethylation. *Nature* 463, 554– 558 (2010).
- Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).
- Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES cell self-renewal, and ICM specification. Nature 18 Jul 2010 (doi:10.1038/nature09303).
- Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009)