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Enzyme Evidence supporting demethylation Evidence against demethylation

Direct removal

MBD2 - In vitro assays (1)
- Stably binds to methylated DNA (2,3)

- Normal methylation patterns in null mice (4)

5meC glycosylases

DME

ROS1/DML1

DML2

DML3

- In vitro assays (5–9)

- Loss of function mutants exhibit expres-

sion of imprinted genes and hypermethyla-

tion (5, 10)

TDG
- Excision activity is much lower against 5meC 

compared to thymine (11)

MBD4

- Excision activity is much lower against 5meC 

compared to thymine (12)

- Null zygotes exhibit paternal genome dem-

ethylation (13)

Deaminases

AID

APOBEC1

 - In vitro oligonucleotide and E. coli assay 

(14)

- Deamination and BER of methylated when 

expressed in zebrafish embryos (15)

- Subtle hpermethylation in AID-deficient 

PGCs (16)

- Knockout of AID or APOBEC1 are viable and 

fertile (18–21)

- Majority of demethylation is maintained in 

AID-deficient PGCs (16)

Dnmt3a

Dnmt3b
- In vitro assays (17)

- Deamination reaction can only occur in the 

absence of SAM (17)

Nucleotide excision repair

Gadd45a

- Loci-specific and global demethylation 

after overexpression, hypermethylation after 

knockdown (22)

- Knockdown of NER machinery results in 

hypermethylation (23)

- Lack of direct biochemical evidence

- Irreproducibility (25)

- No expected hypermethylation in knockout 

mouse (26)

Gadd45b
-Deficiency results in promoter hypermethy-

lation (24)

- Lack of direct biochemical evidence

- Null zygotes undergo paternal genome dem-

ethylation (27)

Oxidative demethylation

Tet1

Tet2

Tet3

- In vitro assays (28, 29)

- 5hmC is present in ES cells and Purkinje 

neurons (28, 30)

Radical SAM

Elongator
- Paternal genome is not demethylated after 

knockdown in zygotes (27)
- Lack of direct biochemical evidence
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