## **Supplementary Information**

# c-MYC is required for germinal center selection

## and cyclic re-entry

David Dominguez-Sola, Gabriel D. Victora, Carol Y. Ying, Ryan T. Phan, Masumichi Saito, Michel C. Nussenzweig and Riccardo Dalla-Favera



Supplementary Figure 1: Gating strategy for the identification and isolation of specific GC B cell subpopulations via Fluorescence Activated Cell Sorting (FACS). (a) Gating strategy to identify GC B cells (top) and LZ, DZ subpopulations (bottom) in mononuclear cell suspension from human tonsils. (b) Same as in (a), but applied to murine spleen and lymph node mononuclear cell suspensions. (c) Upon identification of GC B cells or LZ,DZ subsets in GFPMYC mice, GFP+ and GFP- cells were selected based on the gating shown in the top and bottom panels. WT mice littermates (GFPMYC-/-) were used as negative controls in order to accurately set the sorting gates (compare top and bottom panels).



Supplementary Figure 2: Relationship between MYC and BCL6 protein expression in antigenprimed B cells and developing GC during T cell-dependent antigen responses (related to Fig.2). This is the full kinetics analysis of the experiment described in Figure 2. B1-8<sup>hi</sup>/GFPMYC<sup>+</sup> (CD45.1) B cells were transferred to CD45.2 host mice, and their behavior upon NP-OVA immunization followed over time. (a) FACS gating sequences for the analysis of each of the indicated populations. Gate coloring corresponds with the line colors in the histogram plots below (Red, CD45.1 non-primed B cells; Blue, CD45.1 primed B cells). (b) The top panels show the changes in surface expression of IgD and Ig $\lambda$  in antigen-primed CD45.1/Iq $\lambda$  B1-8<sup>hi</sup> B cells. Primed cells (IqD<sup>hi</sup>-Iq $\lambda$ <sup>hi</sup> at Day 0, red cloud) internalize their B cell receptors (blue cloud, IqD $\lambda$  is lost from the cell surface) and progressively expand in number, to reach a plateau between Day 5 and 8. Each dot corresponds to one FACS event. CD45.1/  $lg\lambda$  B1-8<sup>hi</sup> cells not primed by the antigen remain double positive (red population). Middle and Bottom panels: Using the same color code for each population shown in the top panels, the histograms depict the distribution of GFPMYC (middle panel) and BCL6 (bottom panel) proteins in primed and non-primed B cell populations. Shadowed grey histograms correspond to the CD45.2<sup>+</sup> host B cell population, shown as negative controls. (c) Histograms show the distribution of GFPMYC and BCL6 expression within primed and non-primed CD45.1-Ig $\lambda$  B1-8<sup>hi</sup> B cells (red/blue); and (d) the distribution of GFPMYC<sup>+</sup> and GFPMYC<sup>-</sup> cells (greenarev) within GC-committed (BCL6<sup>+</sup>) antigen-primed B cell populations. CD45.2 host B cells, or Naïve B cells (IgD<sup>hi</sup>) are used as reference. D1, D4, D8 correspond to Day 1, 4 and 8 after NP-OVA immunization, respectively. (e) Immunofluorescence analysis in paraffin-embedded sections corresponding to lymph nodes as in (c,d). Arrows in D1 highlight small clusters of MYC<sup>+</sup> primed B cells. D4 and D8 show clusters of GC-committed, BCL6<sup>+</sup> cells (outlined), organized within B cell follicles. Scale bars, 100 µm. (f) The size of BCL6<sup>+</sup> clusters (cell numbers) is plotted relative to the number of MYC<sup>+</sup> cells within. Measurements performed on fluorescence microscopy images of individual clusters using the "Cell Counter" plug-in in ImageJ software (Rasband, WS., ImageJ, NIH, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2011). The linear regression curve and p-value are plotted within the image.



## Supplementary Figure 3: Analysis of the relationship between MYC and BCL6 expression in mature germinal centers (related to Fig. 3). (a) Top panel, quantitative RT-PCR analysis of Bcl6 mRNA levels in GFPMYC<sup>+</sup> and GFPMYC<sup>-</sup> GC B cells. Average of 3 mice, 3 technical replicates per mouse. Error bars, SD. Bottom panel, relative levels of Bcl6 mRNA in GFPMYC<sup>+</sup> and GFPMYC<sup>-</sup> GC B cell samples, gene expression profile raw data in Affymetrix Mouse 430.2 genome arrays (see Methods online). Average of 4 mice per group. Error bars, SD. (b) Immunofluorescence analysis of MYC and BCL6 expression in a human GC (reactive lymph node). Orange arrows point to cells in which MYC and BCL6 protein coexpression is evident. Arrowheads point to cells with exclusive MYC protein expression. The bulk of GC B cells are BCL6<sup>+</sup>, MYC<sup>-</sup>. Scale bars, 50 $\mu$ m. (c) GC stained as shown in panel (b) were analyzed by counting single cells (>5.000 cells, corresponding to 7 GCs) and the distribution of MYC and BCL6 protein expression in each cell scored. The results are summarized in the scatter plot, along with the percentage of each population (average of 5,000 cells). P-value < 0.0001 (One-way ANOVA). Note that the majority of cells (>91%) have exclusive MYC or BCL6 expression. (d) Using the same approach shown in (c) we estimated the mean fluorescence intensity (MFI, RGB channel, 0-255) of MYC and BCL6 signals using Adobe Photoshop PS3 and the 'Histogram' and 'Analysis' tools. Cells with MYC MFI above 120 (MFI range 0-255) were considered MYC<sup>+</sup>. All counted cells were plotted relative to their BCL6 MFI levels. The average MFI of each group is shown by horizontal bars, along with errors bars corresponding to the SD, and the relative difference (1.46 fold) between the two groups (MYC<sup>+</sup> and MYC<sup>-</sup>). P-value calculated using a twotailed T-test (unequal variances). (e,f) BCL6 chromatin immunoprecipitation analysis in isolated human tonsillar LZ and DZ GC B cell fractions. Panel (e) shows the gating strategy (CXCR4-CD83) and number of cells isolated in each fraction from a single tonsil (2x10<sup>8</sup> mononuclear cells). Panel (f) shows the average of 3 technical qPCR replicates. Because of the number of cells, we only assessed binding to the B1 region (as shown in Fig. 3 in the main text), which shows the strongest binding in bulk CD77+ GC B cells. Data represented as fold enrichment of BCL6 binding in B1 vs that found in a control region (C1, >2Kb away from B1), upon normalization for the background detected in immunoprecipitates with irrelevant samespecies antibody. (**g,h**) Analysis of the transcriptional activity of a luciferase reporter construct driven by the -1128/+63 MYC promoter region in Mutul and MutuIII Burkitt Lymphoma cell lines (EBV latency type I, III).

Their different EBV latency type program is associated to the presence or absence of BCL6 protein expression, as shown in (**g**). Both cell lines were transfected with 2  $\mu$ g of the luciferase reporter construct, along with a Renilla reporter construct to monitor for transfection efficiency (pRL-SV40), using Lipofectamine 2000 (Life Technologies). 48 hours after transfection cells were harvested and analyzed as reported in the Methods section, online. Shown in (**h**) is the average of two independent transfections (error bars, SD). P-value was calculated using a two-tailed T-test. (**i**,**j**) In a similar manner, the P493-6 B lymphoblastoid cell line<sup>1</sup>, engineered to express a BCL6-ERT2 chimera, was transfected with 2  $\mu$ g of the (-1128/+63) MYC reporter construct using Lipofectamine 2000. 48hr after transfection, cells were divided in two wells and treated in parallel with either Ethanol (vehicle) or 4-hydroxy-tamoxifen (4-OHT, 400nM) for 24 hours to induce nuclear translocation of BCL6-ERT2, as confirmed in the immunofluorescence shown in panel (**i**), scale bars, 50  $\mu$ m. (**j**) Cells were harvested and Luciferase activity was assessed as described. Shown is the average of two independent transfections (error bars=SD). P-value, two-tailed T-test.

### Supplementary Figure 4



Rest GC GFPMYC+

8

SMS GFPT1

GLUD1

SLC38A1

SLC1A5 PFKFB3 GFPMYC+

NES= 2.73

P VAL < 0.00001

FDR 0%

Rest GC

#### Supplementary Figure 4: Enrichment on MYC-related gene sets in GFPMYC<sup>+</sup> GC B cells (related to

**Table 1).** (a) Unsupervised hierarchical clustering of gene expression data from GFPMYC<sup>+</sup> and GFPMYC<sup>-</sup> GC B cell subsets. Average linkage clustering, Euclidean metrics. Clusters were built using all genes with changes >2 fold among samples<sup>2</sup>. The heat map depicts the relative expression values across samples. (b) Summary of the results obtained after Supervised Analysis of gene expression (SPLASH algorithm; 2% delta, full support<sup>2, 3</sup>, see Methods section online). Representative genes/probesets were distributed in GO\_BP (biological process) categories, and heat maps generated using MultiExperiment Viewer (MeV v4.8; TM4 Microarray Software Suite<sup>4</sup>). (c) Gene Set Enrichment Analysis (GSEA<sup>5</sup>) was used to assess the distribution of the GFPMYC<sup>+</sup> gene signature across LZ and DZ GC B cell subpopulations, isolated from NP-KLH immunized mice (reported in<sup>6</sup>). Enrichment plot (NES, Normalized Enrichment Score; FDR, False Discovery Rate). (d) Venn diagram illustrating the overlap between the GFPMYC signature and a validated MYC target gene set<sup>7</sup> (genes physically bound and upregulated by MYC). The statistical significance was estimated using a hypergeometric distribution, considering the 6569 genes available in the Affymetrix Mouse 430.2 genome chip as the total gene population. (e) GSEA Enrichment plot for the previous overlap. (f) List of MYC-related gene signatures (Broad Institute's Molecular Signature Database, MSigDB), with significant enrichments in the gene expression profile of GFPMYC<sup>+</sup> GC B cells. Shown are signatures built in B cells, or those integrating data on chromatin immunoprecipitation data, promoter analysis and responsiveness to MYC activation. Nominal P-values and False Discovery rates (FDR) calculated using the GSEA algorithm. (g) Genes that integrate the "T-cell MYC metabolome" signature (metabolic genes upregulated by MYC in primed T cells, as extracted from<sup>8</sup>). (h) GSEA enrichment plot illustrating the specific enrichment for the "T-cell MYC metabolome" in GFPMYC positive GC B cells.

#### Supplementary Figure 5



**Supplementary Figure 5: MYC<sup>+</sup> GC B cells neighbor T cells and upregulate the activation marker CD70** (related to Figure 6). (a) Quantitative analysis of *Cd70* (*Tnfsf7*) mRNA expression in GC B cell subsets. Shown is the average of 3 independent experiments, 2 mice per experiment. Error bars=SD. (b) Histogram depicting the distribution of surface Cd70 protein in GC B cell subpopulations from spleens of SRBC-immunized GFPMYC<sup>+</sup> mice. Shown is a representative experiment (n=3). (c) Immunofluorescence on paraffinembedded sections of lymph node (LN) and spleen (Sp) (12 days after SRBC immunization). T cells, CD3 surface staining (red); MYC<sup>+</sup> GC B cells, MYC nuclear staining (green); GC, AID staining (blue). SCS, lymph node subcapsular sinus; T-zone, T cell zone; RP, red pulp (spleen). The white arrows point to MYC<sup>+</sup> GC B cells neighbored by T cells in the LZ of GCs. Scale bar, 50 μm.



**Supplementary Figure 6: MYC expression within the GC is restricted to B cells (related to Figure 7).** (a) Immunofluorescence analysis of paraffin-embedded sections of mouse spleens, 12 days after SRBC immunization. B cells are highlighted by surface B220 (CD45R) expression (red). MYC<sup>+</sup> cells are shown in green. The white square is centered on the GC, from which an inset is shown in the panel below. Note the presence of surface B220 in all MYC<sup>+</sup> cells. Scale bars= 50 μm. (b) Dot plots show the gating strategy to define GC B cells (PNA<sup>hi</sup>-CD95<sup>hi</sup>), T-helper cells (Th, CD4+), Follicular T-helper (Th-Fo, CD4+, CXCR5<sup>hi</sup>, PD-1<sup>hi</sup>) and non-B non-T subpopulations in suspensions of mononuclear cells from mouse spleens, 12 days after SRBC immunization. The relative levels of GFPMYC in these three populations are shown in the histograms on the bottom right panel; and quantified in the scatter plot shown in panel (c). P-value of the differences between GC B cells and T cells, p<0.0001(One-way ANOVA; Bonferroni Multiple Comparison test correction). Note the restriction of GFP expression to B cell subsets.



**Supplementary Figure 7: Technical validation of the anti-MYC (clone Y69) rabbit monoclonal antibody (associated to the Methods online section).** (**a**) Immunoblot in whole cell lysates from the lymphoblastoid cell line P493-6<sup>1</sup>. MYC protein expression is absent in the presence of Doxycycline in the culture medium. (**b,c**) Cells were treated with PBS or Doxycyline (1 μg/ml) for 24 hours, and harvested for immunoblot, cytospins prepared for immunofluorescence analysis (panel **b**) or formalin-fixed, paraffin-embedded cell pellets (panel **c**) prepared for immunohistochemical analysis (Scale bars, 50 μm). The strict correlation of the immunofluorescence (MYC stained in red, Cy3 dye) and immunohistochemical (MYC stained in brown, HRP-AEC) with presence or absence of MYC expression (immunoblot) confirms the specificity of the Y69 antibody.

#### SUPPLEMENTARY TABLES

Supplementary Table 1: BCL6 ChIP-on-chip binding profile across the proximal region of the MYC locus (NCBI36-hg18 Genome Assembly). Provided in Excel format, available online.

#### Supplementary Table 2: GFPMYC signature genes.

Provided in Excel format, available online.

#### Supplementary Table 3: Gene Set Enrichment Analysis of GFPMYC signatures (related to Table 1).

Full compendium of all results. Provided in Excel format, available online.

#### Supplementary Table 4: Consensus immune activation signature (related to Fig.4).

Identity of Immune Activation Signatures obtained from literature and signature databases, and full list of genes found to be present in 2 or more gene signatures related to immune activation .

| GENESET NAME                   | Size | NES  | P-val               | FDR   |
|--------------------------------|------|------|---------------------|-------|
| DIRMEIER_LMP1_RESPONSE_LATE_UP | 42   | 2.47 | <1x10 <sup>-5</sup> | 0     |
| BCR_IGM_STAUDT                 | 75   | 2.40 | <1x10 <sup>-5</sup> | 0     |
| MARZEC_IL2_SIGNALING_UP        | 95   | 2.35 | <1x10 <sup>-5</sup> | 0     |
| BASSO_CD40_SIGNALING_UP        | 81   | 1.56 | <1x10 <sup>-5</sup> | 0.013 |
| GOLDRATH_ANTIGEN_RESPONSE      | 329  | 1.39 | <1x10 <sup>-5</sup> | 0.049 |
| GLYNNE_FOREIGN_ANTIGEN_1H_UP   | 81   | 1.13 | 0.23                | 0.239 |
| IL6_STAUDT                     | 33   | 1.88 | <1x10 <sup>-5</sup> | 0.016 |
| JAK_IL10_STAUDT                | 29   | 1.72 | <1x10 <sup>-5</sup> | 0.016 |

NES, Normalized Enrichment Score; FDR, False Discovery Rate. GSEA algorithm.

| <b>Consensus Immune Activation Signature</b> (p=1.27x10 <sup>-/</sup> , | hypergeometric distribution) |
|-------------------------------------------------------------------------|------------------------------|
|-------------------------------------------------------------------------|------------------------------|

| GENE SYMBOL   | Gene Name (Description)                         |  |  |  |
|---------------|-------------------------------------------------|--|--|--|
| AHR           | Aryl-hydrocarbon Receptor                       |  |  |  |
| BCL2          | Predicted Gene 3655; B-cell Leukemia/Lymphoma 2 |  |  |  |
| BCL2L1        | Bcl2-like 1                                     |  |  |  |
| BIRC3         | Baculoviral IAP Repeat-containing 3             |  |  |  |
| CCL3          | Chemokine (C-C Motif) Ligand 3                  |  |  |  |
| CCL4          | Chemokine (C-C Motif) Ligand 4                  |  |  |  |
| CCND2         | Cyclin D2                                       |  |  |  |
| CD70 (TNFSF7) | CD70 Molecule                                   |  |  |  |
| CD83          | CD83 Antigen                                    |  |  |  |
| CFLAR         | CASP8 And FADD-like Apoptosis Regulator         |  |  |  |
| DUSP2         | Dual Specificity Phosphatase 2                  |  |  |  |
| EGR1          | Early Growth Response 1                         |  |  |  |
| EGR2          | Early Growth Response 2                         |  |  |  |
| ELL2          | Elongation Factor RNA Polymerase II 2           |  |  |  |
| GADD45B       | Growth Arrest and DNA-damage-inducible 45 Beta  |  |  |  |

| GARS      | Glycyl-tRNA Synthetase                                      |
|-----------|-------------------------------------------------------------|
| GART      | Phosphoribosylglycinamide Formyltransferase                 |
| HK2       | Hexokinase 2                                                |
| IER3      | Immediate Early Response 3                                  |
| IL10      | Interleukin 10                                              |
| IL1R2     | Interleukin 1 Receptor, Type II                             |
| IRF4      | Interferon Regulatory Factor 4                              |
| JUND      | Jun Proto-oncogene Related Gene D                           |
| MAPKAPK2  | MAP Kinase-activated Protein Kinase 2                       |
| MEF2C     | Myocyte Enhancer Factor 2C                                  |
| MIF       | Macrophage Migration Inhibitory Factor-like                 |
| MYC       | Myelocytomatosis Oncogene                                   |
| PIM1      | Proviral Integration Site 1                                 |
| PPP1R15A  | Protein Phosphatase 1, Regulatory (Inhibitor) Subunit 15A;  |
| RGS1      | Regulator of G-protein Signaling 1                          |
| SERPINB9  | Serine (Or Cysteine) Peptidase Inhibitor, Clade B, Member 9 |
| SLC3A2    | Solute Carrier Family 3 (Activators Of Dibasic And Neutral  |
| SPP1      | Secreted Phosphoprotein 1                                   |
| TNFAIP8   | Tumor Necrosis Factor, Alpha-induced Protein 8              |
| TNFRSF12A | Tumor Necrosis Factor Receptor Superfamily, Member 12a      |
| TNFRSF1B  | Tumor Necrosis Factor Receptor Superfamily, Member 1b       |
| UCK2      | Uridine-cytidine Kinase 2                                   |
| ZFP36     | Zinc Finger Protein 36                                      |

#### Supplementary Table 5: Summary of sequencing results on VH186.2-JH2 segments of GC B-cells (LZ

#### MYC+, LZ MYC- and DZ), after NP-KLH immunization (related to Figure 5).

All sequences were aligned to germline Vh186.2 and JH2 segments, using the IMGT- V Quest tool (www.imgt.org). The summary of two independent experiments is shown.

|                                                       | LZ, GFPMYC+ LZ, GFPMYC-          |                 | DZ, GFPMYC-                      |                  |                                  |                  |
|-------------------------------------------------------|----------------------------------|-----------------|----------------------------------|------------------|----------------------------------|------------------|
| W33L (CDR1)                                           | 22%                              |                 | 1.1%                             |                  | 5.4%                             |                  |
| (W33L/Total mut)                                      | (19/3                            | 86)             | (1/88)                           |                  | (5/92)                           |                  |
| (%Exp1-%Exp2)                                         | (29%-14%)                        |                 | (2%-0%)                          |                  | (8.8%/2%)                        |                  |
| R/S ratio (V)                                         | 5.575                            |                 | 3.21                             |                  | 2.58                             |                  |
| (Exp1/Exp2)                                           | (5.96/4.85)                      |                 | (4.09/2.20)                      |                  | (2.49/2.75)                      |                  |
| (Non silent/Silent)                                   | (201)                            | /40)            | (199/62)                         |                  | (194/75)                         |                  |
|                                                       | CDR                              | FR              | CDR                              | FR               | CDR                              | FR               |
| R/S ratio,<br>CDR/FR<br>(Non silent/silent)           | 21<br>(105/5)                    | 2.74<br>(96/35) | 4.62<br>(74/16)                  | 2.71<br>(125/46) | 2.85<br>(80/28)                  | 2.42<br>(114/47) |
| <b>Ts/Tv</b><br>(Exp1/Exp2)<br>(Total Ts/Total<br>Tv) | 1.55<br>(2.35/0.67)<br>(160/103) |                 | 1.40<br>(1.12/2.17)<br>(152/108) |                  | 1.35<br>(1.47/1.18)<br>(154/114) |                  |
| <b>D segment<sup>#</sup></b><br>(Exp1/Exp2)           | DFL16.1=95%<br>(100/90)          |                 | DFL16.1=84.7%<br>(81/88)         |                  | DFL16.1=79%<br>(78/80)           |                  |

Replacement/silent ratios (R/S) are calculated for the whole V segment, and shown below for each CDR/FR regions. [Ts, transitions); Tv, transversions]. <sup>#</sup> DFL16.1 segments are preferentially used in BCR with high affinity for NP<sup>9-11</sup>.

Supplementary Table 6: List of primers used in real-time quantitative RT-PCR (qRT-PCR), quantitative chromatin immunoprecipitation (qChIP) and IgH-V gene sequence analysis.

BED format file, available online.

Supplementary Table 7: Antibodies used for Flow Cytometry (FC), Immunofluorescence analysis on paraffin-embedded tissues (IF), Western Blot (WB) and Chromatin Immunoprecipitation (ChIP).

| Molecule/Antigen   | Application | Species | Fluorochrome  | Clone     | Manufacturer |
|--------------------|-------------|---------|---------------|-----------|--------------|
| B220               | FC          | Mouse   | PCP           | RA3-6B2   | BD           |
| B220               | FC          | Mouse   | A450          | RA3-6B2   | eBioscience  |
| CD4                | FC          | Mouse   | APC           | RM4-5     | BD           |
| PNA                | FC          | Mouse   | Biotin        | FL-1071   | Vector       |
| PNA                | FC          | Mouse   | FITC          | FL-1071   | Vector       |
| CD95 (FAS)         | FC          | Mouse   | PE            | Jo2       | BD           |
| CD95 (FAS)         | FC          | Mouse   | PE-Cy7        | Jo2       | BD           |
| CD38               | FC          | Mouse   | A700          | 90        | BD           |
| CD70               | FC          | Mouse   | PCP-eFluor710 | FR70      | eBioscience  |
| CD86               | FC          | Mouse   | APC           | GL1       | eBioscience  |
| CXCR4              | FC          | Mouse   | PCP-eFluor710 | 2B11      | eBioscience  |
| CXCR4              | FC          | Mouse   | PE            | 2B11      | eBioscience  |
| CD45.1             | FC          | Mouse   | PCP Cy5.5     | A20       | BD           |
| CXCR5              | FC          | Mouse   | PE            | SPRCL5    | eBioscience  |
| PD-1 (CD279)       | FC          | Mouse   | Biotin        | RMP1-30   | Biolegend    |
| BCL6               | FC          | Mouse   | PE            | K112-91   | BD           |
| lgD                | FC          | Mouse   | A647          | 11.26c.2a | Biolegend    |
| lgλ <sub>1-3</sub> | FC          | Mouse   | A700          | R26-46    | BD           |
| lgк                | FC          | Mouse   | Biotin        | 187.1     | BD           |
|                    |             |         |               |           |              |
| CD38               | FC          | Human   | PE            | HIT2      | BD           |
| lgD                | FC          | Human   | FITC          | IA6-2     | BD           |
| CD3                | FC          | Human   | FITC          | UCHT1     | BD           |
| CXCR4              | FC          | Human   | PE-Cy7        | 12G5      | BioLegend    |
| CD83               | FC          | Human   | Biotin        | HB15e     | BioLegend    |
|                    |             |         |               |           |              |
| Streptavidin       | FC          | -       | APC           |           | BD           |
| Streptavidin       | FC          | -       | eFluor450     |           | eBioscience  |

#### Supplementary Table 7, continued.

| Molecule/Antigen | Application | Specificity | Conjugate | Clone                    | Manufacturer                |
|------------------|-------------|-------------|-----------|--------------------------|-----------------------------|
| CD23             | IF          | Human       | -         | NCL-23 (mouse)           | Novocastra                  |
| MYC              | IF          | Human/Mouse | -         | Y-69 (rabbit)            | Epitomics                   |
| МҮС              | WB          | Human/Mouse | -         | 9E10+C33<br>(mouse)      | Santa Cruz<br>Biotechnology |
| BCL6             | IF          | Human/Mouse | -         | GI191E/A8<br>(mouse)     | Cell Marque                 |
| BCL6             | FC/IF       | Human/Mouse | PE / none | K112-91 (mouse)          | BD                          |
| BCL6             | WB          | Human/Mouse | -         | #4242 (rabbit)           | Cell Signaling              |
| BCL6             | ChIP        | Human/Mouse | -         | N3 (sc-858)              | Santa Crux<br>Biotechnology |
| Beta-ACTIN       | WB          | Human/Mouse | -         | AC-74                    | Sigma                       |
| AID              | IF          | Human/Mouse | -         | MAID-2 (rat)             | eBiosciences                |
| CD3ɛ             | IF          | Human/Mouse | -         | M-20 (sc-1127)<br>(goat) | Santa Cruz<br>Biotechnology |
| IgG (H+L)        | IF          | Mouse       | -         | Cat #1010-01             | Southern Biotech            |
| PNA              | IF/FC       | Mouse       | Biotin    | FL-1071                  | Vector                      |
| GFP              | IF          | -           | A555      | Cat #A31851              | Life Technologies           |

#### Secondary Antibodies

| Anti-Rabbit      | IF | EnVision+<br>System<br>Labelled<br>Polymer<br>HRP | Cat #K4002        | Dako                                      |
|------------------|----|---------------------------------------------------|-------------------|-------------------------------------------|
| Anti-Mouse IgG1  | IF | Biotin                                            | A85-1             | BD                                        |
| Anti-Rat         | IF | Biotin                                            | Cat # 6430-08     | Southern Biotech                          |
| Anti-Goat        | IF | СуЗ                                               | Cat # 705-105-003 | Jackson<br>Immunoresearch                 |
|                  |    |                                                   |                   |                                           |
| Streptavidin-Cy3 | IF | СуЗ                                               | Cat # 016-160-084 | Jackson<br>Immunoresearch                 |
| Neutravidin-A350 | IF | A350/AMCA                                         | Cat # A11236      | Life<br>Technologies/Mol<br>ecular Probes |

#### REFERENCES

- 1. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr Biol 9, 1255-1258 (1999).
- 2. Klein, U. *et al.* Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. *J Exp Med* **194**, 1625-1638 (2001).
- Califano, A., Stolovitzky, G. & Tu, Y. Analysis of gene expression microarrays for phenotype classification. Proceedings / ... International Conference on Intelligent Systems for Molecular Biology ; ISMB. International Conference on Intelligent Systems for Molecular Biology 8, 75-85 (2000).
- Saeed, A.I. *et al.* TM4: a free, open-source system for microarray data management and analysis. *BioTechniques* 34, 374-378 (2003).
- Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* 102, 15545-15550 (2005).
- 6. Victora, G.D. *et al.* Identification of human germinal center light and dark zone cells and their relationship to human B cell lymphomas. *Blood* (2012).
- 7. Zeller, K.I., Jegga, A.G., Aronow, B.J., O'Donnell, K.A. & Dang, C.V. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. *Genome biology* **4**, R69 (2003).
- 8. Wang, R. *et al.* The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. *Immunity* **35**, 871-882 (2011).
- 9. Shih, T.A., Meffre, E., Roederer, M. & Nussenzweig, M.C. Role of BCR affinity in T cell dependent antibody responses in vivo. *Nat Immunol* **3**, 570-575 (2002).
- 10. Shih, T.A., Roederer, M. & Nussenzweig, M.C. Role of antigen receptor affinity in T cell-independent antibody responses in vivo. *Nat Immunol* **3**, 399-406 (2002).
- 11. Rajewsky, K., Forster, I. & Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. *Science* **238**, 1088-1094 (1987).