MCR Synthesis and Biological Evaluation of Novel Praziquantel Derivatives

Haixia Liu, Samia William, Eberhardt Herdtweck, Sanaa Botros, and Alexander Dömling*

School of Pharmacy and Department of Chemistry, University of Pittsburgh, 3501 Fifth Avenue, BST3 10019, Pittsburgh, PA 15261

AND

Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, Netherlands

List of Content

1.	Chemistry: Procedures and analytical data	2
2.	Selected NOE studies of the Pictet-Spengler reaction cycloadducts	11
3.	Proposed mechanism for the Pictet-Spengler cycloaddition	12
4.	X-ray Structure Information of 9e	13
5.	Biological Screening	16
6.	Copies of ¹ H NMR and ¹³ C NMR	17

1 CHEMISTRY

Experimental Section

General procedure (I) for the Ugi reaction: A mixture of aldehyde (1.2 eq.), amine (1.0 mmol) and carboxylic acid (1.0 eq.) in anhydrous MeOH was treated with isocyanide (1.0 eq.) at 0 °C. After being stirred at room temperature overnight, the reaction mixture was concentrated in vacuo to give Ugi-4CR product, which was used directly in the next step without further purification.

General procedure (II) for the Pictet-Spengler reaction: A mixture of above Ugi product (1.0 eq.) and anhydrous MgSO₄ (2.0 eq.) in anhydrous 1,2-dichloroethane was treated with MsOH (6.0 eq.) slowly under argon at room temperature. The mixture was then kept at 80 $^{\circ}$ C with stirring until the reaction was complete by TLC. After completion, the reaction was quenched by cold aq. NaHCO₃ solution and extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by flash column chromatography.

2-(Cyclohexanecarbonyl)-10-methoxy-2,3,6,7-tetrahydro-1*H***-pyrazino [2,1-a]isoquinolin-4(11b***H***)-one (8a): According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): \delta = 1.27 (m, 3H), 1.52 (m, 2H), 1.81 (m, 5H), 2.47 (tt,** *J* **= 3.0, 11.4 Hz, 1H), 2.71 (d,** *J* **= 14.4 Hz, 1H), 2.85 (m, 3H), 3.79 (s, 3H), 4.07 (d,** *J* **= 17.4 Hz, 1H), 4.46 (d,** *J* **= 17.4 Hz, 1H), 4.75 (1dd,** *J* **= 4.3, 10.8 Hz, 1H), 4.80 (dd,** *J* **= 4.2, 12.0 Hz, 1H), 5.14 (dd,** *J* **= 3.0, 16.8 Hz, 1H), 6.79 (S, 1H), 6.80 (dd,** *J* **= 1.8, 8.4 Hz, 1H), 7.08 (d,** *J* **= 8.4 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 174.82, 164.36, 158.51, 133.69, 130.26, 126.67, 114.08, 110.05, 55.43, 55.08, 49.02, 45.18, 40.79, 39.36, 29.24, 29.01, 27.90, 25.70 ppm. HRMS (EI) calcd for C₂₀H₂₆N₂O₃ [M]⁺: 342.1943, found: 342.1943.**

2-(Cyclohexanecarbonyl)-9,10-dimethoxy-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one

(8b): According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 1.28 (3H, m), 1.55 (2H, m), 1.76 (5H, m), 2.47 (1H, tt, *J* = 3.0, 12.0 Hz), 2.68 (1H, d, *J* = 15.0 Hz), 2.78 (1H, dd, *J* = 11.2, 13.8 Hz), 2.84 (1H, ddd, *J* = 2.4, 12.6, 12.6 Hz), 2.92 (1H, ddd, *J* = 4.2, 15.6, 15.6 Hz), 3.86 (3H, s), 3.87 (3H, s), 4.08 (1H, d, *J* = 17.4 Hz), 4.87 (1H, d, *J* = 17.4 Hz), 4.72 (1H, dd, *J* = 3.6, 10.2 Hz), 4.85 (1H, m), 5.12 (1H, dd, *J* = 3.0, 13.2 Hz), 6.64 (1H, s), 6.72 (1H, s) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 174.86, 164.33,

148.26, 148.06, 126.89, 124.38, 111.62, 108.00, 56.09, 55.92, 54.80, 49.00, 45.35, 40.77, 39.12, 29.24, 29.01, 28.26, 25.70, 25.68, 25.66 ppm. HRMS (ESI) calcd for C₂₁H₂₈N₂O₄Na [M+Na]⁺: 395.1947, found: 395.1947.

Compound 8c: According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 1.27 (m, 3H), 1.54 (m, 2H), 1.80 (m, 5H), 2.45 (tt, *J* = 11.4, 3.0 Hz, 1H), 2.71 (dd, *J* = 11.4, 13.2 Hz, 1H), 2.94 (m, 3H), 4.05 (d, *J* = 17.4 Hz, 1H), 4.48 (d, *J* = 17.4 Hz, 1H), 4.70 (d, *J* = 9.6 Hz, 1H), 5.03 (dd, *J* = 4.8, 13.2 Hz, 1H), 5.14 (dd, *J* = 2.4, 13.8 Hz, 1H), 6.89 (d, *J* = 4.8 Hz, 1H), 7.19 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 174.69, 164.40, 135.07, 131.81, 124.46, 123.71, 54.44, 49.10, 44.20, 40.62, 39.32, 29.55, 28.97, 25.69, 25.66, 24.66 ppm. HRMS (EI) calcd for C₁₇H₁₂N₂O₂S [M]⁺: 318.1402, found: 318.1399.

Methyl 2-(cyclohexanecarbonyl)-4-oxo-2,3,4,6,7,11b-hexahydro-1*H*-pyrazino[2,1-a]isoquinoline-6carboxylate (8d): According to general procedure II was obtained as a wax. ¹H NMR (600 MHz, CDCl₃): δ = 1.28 (m, 3H), 1.54 (m, 2H), 1.58-1.87 (m, 5H), 2.49 (t, *J* = 11.4 Hz, 1H), 2.97 (ddd, *J* = 3.0, 12.0, 12.0 Hz, 1H), 3.17 (dd, *J* = 6.0, 15.6 Hz, 1H), 3.28 (m, 1H), 3.63 (s, 3H), 4.20 (d, *J* = 17.4 Hz, 1H), 4.51 (d, *J* = 17.4 Hz, 1H), 4.96 (m, 2H), 5.63 (dd, *J* = 3.6, 5.4 Hz, 1H), 7.18-7.28 (m, 4H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 174.92, 170.48, 165.41, 131.71, 131.56, 129.13, 127.82, 127.48, 125.68, 53.39, 52.67, 50.28, 48.77, 45.73, 40.87, 30.51, 29.12, 28.97, 25.71 ppm. HRMS (ESI) calcd for C₂₁H₂₆N₂O₄Na [M+Na]⁺: 393.1790, found: 393.1801.

2-(Cyclohexanecarbonyl)-3-methyl-2,3,6,7-tetrahydro-1*H*-**pyrazino [2,1-a]isoquinolin-4(11b***H***)-one (9a):** According to general procedure II was obtained as a wax. ¹H NMR (600 MHz, CDCl₃): δ = 1.25-1.79 (m, 13H), 2.36 (m, 1H), 2.81-3.13 (m, 3H), 3.51 (m, 0.4H), 3.79 (m, 0.6H), 4.00 (m, 0.4H), 4.27 (m, 0.6H), 4.48 (m, 0.6H), 4.58 (m, 0.6H), 4.77 (m, 1H), 4.82 (m, 0.4H), 4.94 (m, 0.4H), 7.17-7.30 (m, 4H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 175.36, 168.54, 135.19, 133.66, 128.87, 127.77, 126.92, 125.01, 54.44, 53.98, 41.83, 40.73, 40.43, 29.92, 29.04, 28.22, 25.61, 19.92 ppm. HRMS (ESI) calcd for C₂₀H₂₆N₂O₂Na [M+Na]⁺: 349.1892, found: 349.1876.

2-(Cyclohexanecarbonyl)-3-cyclopropyl-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one

(9b): According to general procedure II was obtained a wax. ¹H NMR (600 MHz, CDCl₃): δ = 0.67 (m, 4H), 1.25-1.82 (m, 11H), 2.42 (m, 1H), 2.82 (dd, J = 3.0, 12.0 Hz, 1H), 2.93-3.08 (m, 2H), 3.50 (dd, J = 8.4, 8.4 Hz, 0.5H), 3.93 (d, J = 12.6 Hz, 0.5H), 3.99 (d, J = 8.4 Hz, 0.5H), 4.04 (dd, J = 9.6, 24.0 Hz, 0.5H), 4.17 (d, J = 4.8 Hz, 0.5H), 4.60 (d, J = 12.0 Hz, 0.5H), 4.65 (d, J = 6.0 Hz, 0.5H), 4.80 (m, 0.5H), 4.95 (m, 0.5H), 5.12 (m, 0.5H), 7.18-7.31

(m, 4H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 175.82, 167.30, 135.08, 133.19, 128.87, 127.62, 126.88, 125.21, 61.08, 53.30, 44.87, 40.60, 39.74, 29.80, 29.26, 28.41, 25.85, 14.80, 4.46, 3.34 ppm. HRMS (EI) calcd for $C_{22}H_{28}N_2O_2$ [M]⁺: 352.2151, found: 352.2148.

2-(Cyclohexanecarbonyl)-3-isopropyl-2,3,6,7-tetrahydro-1*H***-pyrazino[2,1-a]isoquinolin-4(11b***H***)-one (9c): According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): \delta = 1.03 (d,** *J* **= 6.6 Hz, 1.5H), 1.07 (d,** *J* **= 6.6 Hz, 1.5H), 1.12 (d,** *J* **= 6.6 Hz, 1.5H), 1.17 (d,** *J* **= 6.6 Hz, 1.5H), 1.24 (m, 4H), 1.49-1.47 (m, 2H), 1.67-1.80 (m, 5H), 2.10 (m, 0.5H), 2.24 (m, 0.5H), 2.78-3.06 (m, 3H), 3.50 (dd,** *J* **= 10.8, 10.8 Hz, 0.5H), 3.72 (dd,** *J* **= 5.4, 14.4 Hz, 0.5H), 3.98 (dd,** *J* **= 4.2, 11.4 Hz, 0.5H), 4.10 (d,** *J* **= 9.0 Hz, 0.5H), 4.16 (dd,** *J* **= 8.4, 13.8 Hz, 0.5H), 4.63 (m, 0.5H), 4.81 (dd,** *J* **= 3.0, 13.2 Hz, 0.5H), 4.85 (d,** *J* **= 9.6 Hz, 0.5H), 4.89 (dd,** *J* **= 4.8, 9.8 Hz, 0.5H), 5.02 (dd,** *J* **= 3.6, 9.6 Hz, 0.5H), 7.16 (m, 1H), 7.23 (m, 2H), 7.29 (m, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 176.13, 175.71, 168.68, 167.93, 135.81, 135.00, 134.44, 132.49, 129.51, 128.92, 127.76, 127.56, 126.93, 126.83, 125.98, 125.42, 64.62, 61.00, 53.24, 53.01, 50.21, 44.72, 41.12, 40.70, 39.83, 38.62, 32.19, 31.63, 29.99, 29.92, 29.71, 29.06, 28.50, 28.42, 26.00, 25.69, 25.62, 25.47, 20.21, 20.05 ppm. HRMS (ESI) calcd for C₂₂H₃₀N₂O₂Na [M+Na]^{*}: 377.2205, found: 377.2217.**

(3R,11bS)-2-(Cyclohexanecarbonyl)-3-isobutyl-2,3,6,7-tetrahydro-1*H*-pyrazino[2,1-a]isoquinolin-4(11b*H*)one (9d): According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ □ = 0.96 (d, *J* = 6.0 Hz, 1.5H), 0.99 (d, *J* = 6.0 Hz, 1.5H), 1.07 (d, *J* = 6.0 Hz, 3H), 1.22 (m, 2H), 1.72 (m, 10.5H), 1.92 (m, 0.5H), 2.39 (tt, *J* = 3.0, 11.4 Hz, 1H), 2.80 (m, 1H), 2.98 (m, 2H), 3.57 (dd, *J* = 9.6, 12.0 Hz, 0.5H), 3.78 (dd, *J* = 4.2, 13.8 Hz, 0.5H), 3.97 (dd, *J* = 3.6, 12.0 Hz, 0.5H), 4.13 (dd, *J* = 7.2, 13.8 Hz, 0.5H), 4.43 (dd, *J* = 7.8, 7.8 Hz, 0.5H), 4.62 (m, 0.5H), 4.82 (m, 1H), 4.98 (dd, *J* = 3.6, 9.0 Hz, 0.5H), 5.04 (dd, *J* = 7.2, 7.2 Hz, 0.5H), 7.14 (d, *J* = 6.6 Hz, 0.5H), 7.23 (m, 2H), 7.29 (m, 1.5H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 175.45, 174.98, 169.18, 168.09, 135.96, 135.15, 133.39, 132.44, 129.56, 128.86, 127.77, 127.61, 126.90, 126.81, 125.90, 125.44, 57.24, 54.68, 53.79, 53.61, 49.28, 43.43, 43.40, 42.22, 41.04, 40.63, 40.09, 38.97, 29.97, 29.70, 29.60, 29.04, 28.97, 28.82, 28.60, 28.40, 25.95, 25.92, 25.68, 25.60, 25.02, 24.64, 23.12, 22.42, 22.21, 22.09 ppm. HRMS (ESI) calcd for C₂₃H₃₂N₂O₂Na [M+Na]⁺: 391.2361, found: 391.2352.

2-(Cyclohexanecarbonyl)-3-neopentyl-2,3,6,7-tetrahydro-1*H***-pyrazino**[**2,1-a**]isoquinolin-4(**11b***H*)-one (**9e**): According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 1.03 (s, 5.4H), 1.07 (s, 3.6H), 1.25 (m, 4H), 1.44 (m, 1H), 1.74 (m, 6.6H), 1.99 (dd, *J* = 8.4, 14.4 Hz, 0.4H), 2.35 (tt, *J* = 3.0, 11.4 Hz, 0.6H), 2.48 (tt, *J* = 3.0, 11.4 Hz, 0.4H), 2.78 (dd, *J* = 15.6, 15.6 Hz, 1H), 2.86 (ddd, *J* = 3.0, 12.0, 12.0 Hz, 0.8H), 2.98 (m, 1.2H), 3.74 (dd, J = 8.4, 12.6 Hz, 0.6H), 3.84 (dd, J = 4.8, 13.8 Hz, 0.4H), 3.90 (dd, J = 8.4, 13.8 Hz, 0.4H), 4.01 (dd, J = 4.8, 12.6 Hz, 0.6H), 4.57 (dd, J = 5.4, 8.4 Hz, 0.4H), 4.67 (m, 0.4H), 4.81 (ddd, J = 2.4, 4.8, 13.2 Hz, 0.6H), 4.98 (dd, J = 4.8, 8.4 Hz, 0.4H), 5.03 (dd, J = 4.8, 7.8 Hz, 0.6H), 5.28 (dd, J = 6.6, 6.6 Hz, 0.6H), 7.26 (m, 4H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 174.61$, 170.20, 136.60, 132.73, 129.66, 127.75, 126.80, 125.80, 53.75, 53.50, 48.14, 46.30, 40.89, 39.37, 30.94, 29.70, 29.52, 29.06, 28.56, 25.95, 25.66, 25.56 ppm. HRMS (ESI) calcd for C₂₄H₃₄N₂O₂Na [M+Na]⁺: 405.2518, found: 405.2530.

2-(Cyclohexanecarbonyl)-3-(4-fluorophenyl)-2,3,6,7-tetrahydro-1*H*-**pyrazino[2,1-a]isoquinolin-4(11b***H***)-one** (**9f)**: According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 0.89-1.27 (m, 4H), 1.44-1.88 (m, 6H), 2.26 (m, 1H), 2.83 (m, 1H), 2.95 (m, 2H), 3.52 (dd, *J* = 12.0, 12.0 Hz, 1H), 4.15 (d, *J* = 12.0 Hz, 1H), 4.62 (m, 2H), 5.67 (s, 1H), 7.06-7.18 (m, 3H), 7.24 (m, 3H), 7.36-7.47 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 176.61, 166.78, 162.23, 134.85, 131.95, 128.96, 127.91, 127.24, 127.18, 127.03, 126.20, 116.25, 61.72, 51.87, 49.03, 41.16, 38.95, 29.94, 29.71, 29.06, 28.73, 25.75, 25.34 ppm. HRMS (ESI) calcd for C₂₅H₂₇N₂O₂FNa [M+Na]⁺: 429.1954, found: 429.1953.

2-(Cyclohexanecarbonyl)-3-(hydroxymethyl)-2,3,6,7-tetrahydro-1*H***-pyrazino[2,1-a]isoquinolin-4(11b***H***)-one (9g):** According to general procedure II was obtained as a wax. ¹H NMR (600 MHz, CDCl₃): δ = 1.10 (m, 3H), 1.20 (m, 2H), 1.51 (m, 1H), 1.58 (m, 2H), 1.69 (m, 2H), 2.02 (br s, 1H), 2.12 (tt, *J* = 3.6, 10.8 Hz, 1H), 2.69 (ddd, *J* = 3.0, 3.0, 16.2 Hz, 1H), 2.81 (ddd, *J* = 3.6, 12.0, 12.0 Hz, 1H), 2.91 (ddd, *J* = 4.8, 11.4, 16.2 Hz, 1H), 3.15 (dd, *J* = 8.4, 13.2 Hz, 1H), 3.45 (dd, *J* = 4.8, 13.2 Hz, 1H), 3.76 (dd, J = 3.0, 7.8 Hz, 1H), 4.20 (dd, *J* = 3.0, 10.8 Hz, 1H), 4.43 (dd, *J* = 7.2, 11.4 Hz, 1H), 4.72 (dd, *J* = 4.8, 8.4 Hz, 1H), 4.78 (ddd, *J* = 2.4, 5.4, 13.2 Hz, 1H), 7.08 (m, 1H), 7.09 (m, 1H), 7.16 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 175.66, 166.77, 135.09, 134.28, 129.38, 127.16, 126.66, 124.52, 64.54, 57.21, 57.01, 45.54, 43.04, 39.72, 28.89, 28.85, 25.63, 25.38, 25.34 ppm. HRMS (ESI) calcd for C₂₀H₂₆N₂O₃Na [M+Na]⁺: 365.1841, found: 365.1834.

2-(Cyclopropanecarbonyl)-2,3,6,7-tetrahydro-1*H*-**pyrazino[2,1-a] isoquinolin-4(11***bH***)-one (10a):** According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 0.88 (m, 2H), 1.01 (m, 1H), 1.11 (m, 1H), 1.71 (m, 1H), 2.92 (m, 4H), 4.21 (d, *J* = 17.4 Hz, 1H), 4.70 (d, *J* = 17.4 Hz, 1H), 4.83 (d, *J* = 4.8 Hz, 2H), 5.13 (d, *J* = 17.4 Hz, 1H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.26 (m, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 172.34, 164.46, 134.81, 132.65, 129.30, 127.45, 126.97, 125.58, 54.87, 48.95, 45.58, 39.01, 28.75, 11.22, 8.39, 8.08 ppm. HRMS (EI) calcd for C₁₆H₁₈N₂O₂ [M]⁺: 270.1368, found: 270.1367.

2-Benzoyl-2,3,6,7-tetrahydro-1*H*-**pyrazino**[**2,1-a**]**isoquinolin-4(11b***H*)-**one (10b)**: According to general procedure II was obtained a a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 2.81 (dd, *J* = 2.4, 16.2 Hz, 1H), 2.91 (ddd, *J* = 3.0, 12.0, 12.0 Hz, 1H), 3.00 (ddd, *J* = 4.2, 15.6, 15.6 Hz, 1H), 3.08 (m, 1H), 4.10 (m, 1H), 4.37 (m 1H), 4.82 (m, 1H), 5.00 (m, 1H), 5.28 (m, 1H), 7.22-7.60 (m, 9H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 170.33, 164.22, 134.83, 134.18, 132.73, 130.74, 129.45, 128.76, 127.56, 126.99, 125.50, 54.69, 51.45, 45.95, 39.04, 28.75 ppm. HRMS (EI) calcd for C₁₉H₁₈N₂O₂ [M]⁺: 306.1368, found: 306.1363.

2-(2,4-Dimethylbenzoyl)-2,3,6,7-tetrahydro-1*H*-**pyrazino**[**2,1-a**] **isoquinolin-4(11b***H*)-**one (10c):** According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 2.27 (s, 3H), 2.31 (s, 3H), 2.78-3.08 (m, 4H), 3.92 (d, *J* = 18.0 Hz, 1H), 4.10 (d, *J* = 18.0 Hz, 1H), 4.82 (d, *J* = 10.8 Hz, 1H), 4.97 (dd, *J* = 4.2, 10.2 Hz, 1H), 5.32 (d, *J* = 11.4 Hz, 1H), 7.05-7.40 (m, 7H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 170.38, 164.30, 139.70, 134.78, 132.72, 131.95, 131.48, 129.39, 127.56, 127.03, 126.86, 126.08, 125.51, 125.06, 55.13, 50.27, 45.09, 39.19, 28.73, 21.25, 18.95 ppm. HRMS (ESI) calcd for C₂₁H₂₂N₂O₂Na [M+Na]⁺: 357.1579, found: 357.1549.

2-(4-Fluoro-3-nitrobenzoyl)-2,3,6,7-tetrahydro-1*H***-pyrazino[2,1-a] isoquinolin-4(11b***H***)-one (10d): According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): \delta = 2.82 (dd,** *J* **= 2.4, 15.6 Hz, 1H), 2.93 (ddd,** *J* **= 3.0, 12.6, 12.6 Hz, 1H), 3.01 (ddd,** *J* **= 4.2, 12.0, 12.0 Hz, 1H), 3.13 (m, 1H), 4.23 (m, 2H), 4.83 (m, 1H), 5.01 (d,** *J* **= 7.2 Hz, 1H), 5.20 (m, 1H), 7.22 (m, 2H), 7.29 (m, 2H), 7.44 (dd,** *J* **= 9.0, 9.0 Hz, 1H), 7.83 (m, 1H), 8.28 (dd,** *J* **= 2.4, 7.2 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 166.72, 161.10, 156.07,137.27, 134.83 132.20, 131.09, 129.57, 128.75, 127.79, 127.12, 126.04, 125.35, 119.29, 54.49, 51.28, 46.37, 39.16, 28.68 ppm. HRMS (EI) calcd for C₁₉H₁₆N₃O₄F [M]⁺: 369.1125, found: 369.1136.**

2-(4-Methoxyquinoline-2-carbonyl)-2,3,6,7-tetrahydro-1*H*-**pyrazino [2,1-a]isoquinolin-4(11b***H*)-one **(10e):** According to general procedure II was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 2.82 (m, 1H), 2.94 (m, 1H), 3.04 (m, 1H), 3.14 (dd, *J* = 10.8, 13.2 Hz, 0.5H), 3.25 (dd, *J* = 10.8, 13.2 Hz, 0.5H), 4.03 (d, *J* = 18.0 Hz, 0.5H), 4.12 (s, 1.5H), 4.20 (s, 1.5H), 4.43 (d, *J* = 18.0 Hz, 0.5H), 4.83 (ddd, *J* = 2.4, 4.8, 12.6 Hz, 0.5H), 4.99 (m, 0.5H), 5.00 (d, *J* = 17.4 Hz, 0.5H), 5.06 (dd, J = 4.2, 10.8 Hz, 0.5H), 5.13 (d, *J* = 18.0 Hz, 0.5H), 5.32 (m, 1H), 5.52 (dd, *J* = 3.6, 11.2 Hz, 0.5H), 7.09 (d, *J* = 7.8 Hz, 0.5H), 7.17 (m, 0.5H), 7.21 (m, 1H), 7.25 (s, 0.5H), 7.30-7.35 (m, 2H), 7.41 (d, *J* = 7.8 Hz, 0.5H), 7.60 (dd, *J* = 7.2, 7.2 Hz, 0.5H), 7.63 (dd, *J* = 7.2, 7.2 Hz, 0.5H), 7.76 (dd, *J* = 7.8, 7.8 Hz, 0.5H), 7.80 (dd, *J* = 7.8, 7.8 Hz, 0.5H), 8.06 (dd, *J* = 8.4 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 0.5H), 8.29 (dd, *J* = 8.4 Hz, 0.5H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 167.67, 166.80, 164.87, 164.84, 163.51, 163.46, 153.50, 153.18, 147.43, 147.34, 135.15, 134.92, 132.79, 132.71, 130.69, 130.56, 129.54, 129.41, 129.36, 129.14, 127.54, 127.32, 127.17, 127.14, 127.04, 126.85, 125.63, 125.33, 122.10, 121.82, 121.70, 121.46, 100.81, 100.22, 56.15, 56.13, 56.09, 54.64, 51.17, 51.08, 47.64, 46.51, 38.99, 38.81, 28.95, 28.77 ppm. HRMS (EI) calcd for C₂₃H₂₁N₃O₃ [M]⁺: 387.1583, found: 387.1585.

2-(1-Ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbonyl)-2,3,6,7-tetrahydro-1*H***-pyrazino[2,1a]isoquinolin-4(11b***H***)-one (10f):** According to general procedure II was obtained as a white wax. ¹H NMR (600 MHz, CDCl₃): $\delta = 1.52$ (m, 3H), 2.70 (s, 1.65H), 2.72 (s, 1.35H), 2.79 (m, 1H), 2.91 (m, 1H), 2.98 (m, 1H), 3.13 (m, 1H), 3.99 (d, J = 18.6 Hz, 0.55H), 4.27 (d, *J* = 12.0 Hz, 0.45H), 4.32 (s, 1H), 4.45 (m, 1H), 4.56 (m, 1H), 4.81 (m, 0.55H), 4.95 (m, 1H), 5.00 (dd, *J* = 3.0, 10.8 Hz, 0.45H), 5.17 (dd, *J* = 3.0, 13.2 Hz, 0.55H), 5.50 (d, *J* = 8.4 Hz, 0.45H), 7.11-7.39 (m, 5H), 8.21(s, 0.55H), 8.29 (s, 0.45H), 8.60 (d, *J* = 8.4 Hz, 0.55H), 8.70 (d, *J* = 8.4 Hz, 0.45H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta \square$ = 174.16, 173.69, 166.15, 165.65, 165.50, 165.04, 163.13, 163.04, 148.61, 148.60, 146.99, 146.04, 136.54, 136.50, 135.16, 134.88, 132.92, 132.84, 129.30, 129.23, 127.45, 127.12, 126.98, 126.63, 125.83, 125.66, 121.24, 121.12, 120.42, 120.25, 117.75, 117.41, 56.01, 54.68, 53.77, 51.51, 50.78, 47.39, 46.64, 46.53, 38.95, 38.65, 31.76, 29.26, 29.01, 28.79, 25.22 ppm. HRMS (ESI) calcd for C₂₄H₂₄N₄O₃Na [M+Na]⁺: 439.1746, found: 439.1707.

2-(2-(Pyridin-4-ylthio)acetyl)-2,3,6,7-tetrahydro-1*H*-pyrazino[2,1-a] isoquinolin-4(11b*H*)-one (10g): According to general procedure II was obtained as a yellow wax. ¹H NMR (600 MHz, CDCl₃): δ = 2.79-2.99 (m, 4H), 3.89 (s, 2H), 4.21 (d, *J* = 17.4 Hz, 1H), 4.48 (d, *J* = 17.4 Hz, 1H), 4.83 (m, 2H), 5.06 (ddd, *J* = 1.8, 4.2, 13.2 Hz, 1H), 7.29 (m, 6H), 8.44 (d, *J* = 4.2 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 166.09, 163.44, 149.49, 146.99, 134.74, 132.17, 129.39, 127.68, 125.42, 121.09, 54.72, 49.48, 45.69, 39.18, 33.40, 28.64 ppm. HRMS (EI) calcd for C₁₉H₁₉N₃O₂S [M]⁺: 353.1198, found: 353.1203.

1-(4-Oxo-3,4,6,7-tetrahydro-1*H*-**pyrazino**[**2,1-a**]**isoquino**lin-2(**11***bH*)-**yI**) -2-phenylethane-1,2-dione (10h): According to general procedure II was obtained as a white wax. ¹H NMR (600 MHz, CDCl₃): δ = 2.80 (ddd, *J* = 1.5, 18.8, 18.8 Hz, 1H), 2.87-3.01 (m, 2H), 3.18 (dd, *J* = 11.2, 13.2 Hz, 0.5H), 3.30 (dd, *J* = 10.8, 13.8 Hz, 0.5H), 4.80 (m, 0.5H), 4.89 (m, 0.5 H), 5.00 (m, 1.5H), 5.14 (dd, *J* = 4.2, 13.8 Hz, 0.5H), 6.93 (d, *J* = 7.8 Hz, 0.5H), 7.18 (m, 1H), 7.22 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.33 (m, 2H), 7.51 (dd, *J* = 8.4, 8.4 Hz, 1H), 7.55 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.69 (m, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 190.46, 190.25, 165.12, 164.71, 163.84, 163.22, 135.31, 135.26, 135.08, 134.89, 132.92, 132.60, 132.17, 131.56, 130.02, 129.84, 129.54, 129.51, 129.19, 127.80, 127.70, 127.11, 126.94, 125.42, 125.26, 55.68, 54.92, 49.63, 48.64, 45.49, 44.61, 39.26, 38.89, 28.75, 28.63 ppm. HRMS (EI) calcd for $C_{20}H_{18}N_2O_3$ [M]⁺: 334.1317, found: 334.1321.

General procedure (III) for the amidation of compound 8d: To a mixture of **8d** (1.0 eq.) and amine (1.5 eq.) was added TBD (0.2 eq.). The mixture was heated at 60 °C for 2h and the mixture was purified by flash column chromatography directly to give **11(a-b)**.

2-(Cyclohexanecarbonyl)-N-(2-methoxyethyl)-4-oxo-2,3,4,6,7,11b-hexahydro-1H-pyrazino[2,1-

a]isoquinoline-6-carboxamide (11a): According to general procedure III was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 1.28 (m, 3H), 1.31-1.85 (m, 7H), 2.45 (m, 1H), 3.08 (dd, *J* = 6.0, 15.6 Hz, 1H), 3.26-3.46 (m, 9H), 3.69 (dd, *J* = 7.8, 13.8 Hz, 1H), 4.25 (d, *J* = 18.0 Hz, 1H), 4.40 (d, *J* = 18.0 Hz, 1H), 4.83 (dd, *J* = 3.6, 7.8 Hz, 1H), 5.24 (dd, *J* = 6.0, 6.0 Hz, 1H), 6.50 (br s, 1H), 7.26 (m, 4H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 174.82, 169.37, 165.84, 132.95, 132.90, 128.73, 128.01, 127.15, 124.46, 70.93, 58.83, 53.47, 52.03, 48.94, 43.54, 40.83, 39.32, 29.76, 29.07, 28.99, 25.69 ppm. HRMS (EI) calcd for C₂₃H₃₁N₃O₄ [M]⁺: 413.2314, found: 413.2306.

2-(Cyclohexanecarbonyl)-6-(morpholine-4-carbonyl)-2,3,6,7-tetrahydro -1*H*-pyrazino[2,1-a]isoquinolin-4(11b*H*)-one (11b): According to general procedure III was obtained as a white solid. ¹H NMR (600 MHz, CDCl₃): δ = 1.27 (m, 3H), 1.79 (m, 7H), 2.44 (tt, *J* = 3.0, 11.4 Hz, 1H), 3.10 (m, 2H), 3.69 (m, 9H), 4.18 (d, *J* = 17.4 Hz, 1H), 4.38 (d, *J* = 17.4 Hz, 1H), 4.69 (dd, *J* = 3.6, 13.8 Hz, 1H), 5.04 (dd, *J* = 4.2, 8.4 Hz, 1H), 5.50 (dd, *J* = 6.0, 6.0 Hz, 1H), 7.20 (m, 2H), 7.31 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 174.76, 169.20, 165.12, 133.73, 132.13, 128.31, 127.88, 127.39, 124.33, 66.89, 66.70, 53.53, 48.98, 48.77, 46.40, 43.59, 42.57, 40.81, 30.91, 29.07, 25.69 ppm. HRMS (EI) calcd for C₂₄H₃₁N₃O₄ [M]⁺: 425.2314, found: 425.2307.

General procedure (IV) for the amidation of 10c: To a mixture of 10c (1.0 eq.) and K_2CO_3 (1.0 eq.) in DMF was added amine (1.0 eq.). After being stirred at room temperature overnight, the reaction mixture was diluted with H_2O and extracted with EtOAc. The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash column chromatography affording 11(c-g).

2-(4-(Cyclopropylmethylamino)-3-nitrobenzoyl)-2,3,6,7-tetrahydro-1*H***-pyrazino[2,1-a]isoquinolin-4(11b***H***)one (11c):** According to general procedure IV was obtained as an orange solid. ¹H NMR (600 MHz, CDCl₃): δ = 0.36 (m, 2H), 0.68 (m, 2H), 1.21 (m, 1H), 2.79 (ddd, J = 2.4, 2.4, 15.6 Hz, 1H), 2.92 (ddd, J = 3.0, 12.6, 12.6 Hz, 1H), 2.99 (ddd, J = 4.8, 12.0, 15.6 Hz, 1H), 3.11 (m, 1H), 3.22 (m, 2H), 4.17 (m, 1H), 4.54 (m, 1H), 4.83 (d, J = 10.8 Hz, 1H), 5.01 (dd, J = 4.8, 10.2 Hz, 1H), 5.03 (m, 1H), 6.90 (d, J = 9.0 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.26 (m, 3H), 7.64 (dd, J = 1.2, 8.4 Hz, 1H), 8.36 (t, J = 4.8 Hz, 1H), 8.42 (d, J = 1.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 168.57$, 164.21, 146.50, 135.69, 134.91, 132.45, 130.64, 129.45, 127.56, 127.35, 127.00, 125.44, 120.28, 114.24, 54.76, 48.21, 38.99, 28.75, 10.24, 3.50 ppm. HRMS (EI) calcd for C₂₃H₂₄N₄O₄ [M]⁺: 420.1798, found: 420.1797.

2-(4-Morpholino-3-nitrobenzoyl)-2,3,6,7-tetrahydro-1*H*-**pyrazino [2,1-a]isoquinolin-4(11b***H***)-one (11d):** According to general procedure IV was obtained as an orange solid. ¹H NMR (600 MHz, CDCl₃): δ = 2.80 (ddd, *J* = 3.0, 3.0, 15.6 Hz, 1H), 2.90 (ddd, *J* = 3.0, 12.0, 12.0 Hz, 1H), 3.00 (ddd, *J* = 4.8, 11.4, 22.8 Hz, 1H), 3.16 (m, 5H), 3.87 (dd, *J* = 4.8, 4.8 Hz, 4H), 4.17 (m, 1H), 4.40 (m, 1H), 4.82 (m, 1H), 4.99 (dd, *J* = 4.2, 10.8 Hz, 1H), 5.15 (m, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.28 (m, 3H), 7.65 (d, *J* = 7.8 Hz, 1H), 8.01 (d, *J* = 1.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 167.93, 163.88, 147.41, 141.06, 134.91, 133.09, 129.50, 127.66, 127.05, 126.64, 126.30, 125.40, 120.17, 66.51, 51.36, 39.06, 28.72 ppm. HRMS (EI) calcd for C₂₃H₂₄N₄O₅ [M]⁺: 436.1747, found: 436.1741.

2-(4-(3-Methoxypropylamino)-3-nitrobenzoyl)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-

one (11e): According to general procedure IV was obtained as an orange solid. ¹H NMR (600 MHz, CDCl₃): $\delta = 2.02$ (m, 2H), 2.79 (ddd, J = 2.4, 2.4, 15.6 Hz, 1H), 2.90 (ddd, J = 3.6, 12.0, 12.0 Hz, 1H), 2.99 (ddd, J = 4.8, 12.0, 15.6 Hz, 1H), 3.11 (m, 1H), 3.40 (s, 3H), 3.49 (m, 2H), 3.56 (dd, J = 6.0, 6.0 Hz, 2H), 4.18 (m, 1H), 4.55 (m, 1H), 4.82 (d, J = 10.8 Hz, 1H), 5.02 (dd, J = 3.0, 10.2 Hz, 1H), 5.03 (m, 1H), 6.95 (d, J = 9.0 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.26 (m, 3H), 7.65 (dd, J = 1.2, 9.0 Hz, 1H), 8.41 (d, J = 2.4 Hz, 1H), 8.60 (t, J = 4.2 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 168.65$, 164.27, 146.73, 135.67, 134.91, 132.44, 130.73, 129.45, 127.56, 127.40, 127.01, 125.45, 120.11, 114.08, 70.44, 58.88, 54.84, 50.85, 41.23, 39.00, 28.74 ppm. HRMS (EI) calcd for $C_{23}H_{26}N_4O_5$ [M]⁺: 438.1903, found: 438.1911.

2-(4-(2-Morpholinoethylamino)-3-nitrobenzoyl)-2,3,6,7-tetrahydro-1*H***-pyrazino[2,1-a]isoquinolin-4(11b***H***)one (11f): According to general procedure IV was obtained as an orange solid. ¹H NMR (600 MHz, CDCl₃): δ = 2.55 (m, 4H), 2.77 (m, 3H), 2.90 (ddd,** *J* **= 3.0, 12.6, 12.6 Hz, 1H), 2.99 (ddd,** *J* **= 3.6, 12.0, 15.6 Hz, 1H), 3.11 (m, 1H), 3.42 (m, 2H), 3.77 (m, 4H), 4.17 (m, 1H), 4.54 (m, 1H), 4.82 (d,** *J* **= 11.4 Hz, 1H), 5.02 (dd,** *J* **= 3.0, 10.8 Hz, 1H), 5.03 (m, 1H), 6.89 (d,** *J* **= 9.0 Hz, 1H), 7.20 (d,** *J* **= 10.8 Hz, 1H), 7.26 (m, 3H), 7.66 (d,** *J* **= 8.4 Hz, 1H), 8.42** (d, J = 1.8 Hz, 1H), 8.81 (t, J = 4.2 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 168.59$, 164.22, 146.36, 135.68, 134.91, 132.44, 130.88, 129.45, 127.56, 127.39, 127.00, 125.43, 120.24, 114.41, 66.99, 55.71, 54.76, 53.10, 39.38, 38.99, 28.71 ppm. HRMS (EI) calcd for $C_{25}H_{29}N_5O_5$ [M]⁺: 479.2169, found: 479.2171.

5-(Dimethylamino)-N-(2-(2-nitro-4-(4-oxo-2,3,4,6,7,11b-hexahydro-1H-pyrazino[2,1-a]isoquinoline-2-

carbonyl)phenylamino)ethyl) naphthalene-1-sulfonamide (11g): According to general procedure IV was obtained as an orange solid. ¹H NMR (600 MHz, CDCl₃): δ = 2.81(ddd, *J* = 3.0, 3.0, 15.6 Hz, 1H), 2.88 (s, 6H), 2.92 (ddd, *J* = 3.0, 12.6, 12.6 Hz, 1H), 3.01 (ddd, *J* = 4.8, 12.0, 15.6 Hz, 1H), 3.13 (m, 1H), 3.24 (dd, *J* = 6.0, 12.0 Hz, 2H), 3.44 (dd, *J* = 6.0, 12.0 Hz, 2H), 4.20 (m, 1H), 4.54 (m, 1H), 4.84 (d, *J* = 11.4 Hz, 1H), 5.04 (dd, *J* = 4.2, 10.8 Hz, 1H), 5.71 (t, *J* = 6.0 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 7.21 (d, *J* = 6.6 Hz, 1H), 7.24 (d, *J* = 6.6 Hz, 1H), 7.26 (m, 3H), 7.51 (m, 2H), 7.57 (d, *J* = 8.4 Hz, 1H), 8.19 (t, *J* = 4.8 Hz, 1H), 8.26 (m, 2H), 8.32 (d, *J* = 1.2 Hz, 1H), 8.52 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 168.32, 164.29, 152.09, 146.01, 143.21, 135.63, 134.90, 134.28, 132.44, 131.09, 130.86, 129.87, 129.64, 129.45, 129.40, 128.71, 127.59, 127.37, 127.05, 125.48, 123.13, 120.98, 119.37, 118.34, 115.35, 113.79, 45.40, 42.69, 41.80, 39.05, 28.76 ppm. HRMS (EI) calcd for C₃₃H₃₄N₆O₆S [M]⁺: 642.2260, found: 642.2238.

2 2D NOESY studies of 8e, 9b, 9d, 9f, 9g.

3 A plausible mechanism for the Pictet-Spengler cyclization leading to 9d and 9g

4 X-ray data for 9e

Crystal Structure Determination of 9e

Operator:		*** Herdtweck ***					
Molecular Formula:		$C_{24} H_{34} N_2 O_2$					
Crystal Color / S	Shape	Colorless needle					
Crystal Size		Approximate size of crystal fragment used for data collection:					
		$0.05 \times 0.05 \times 0.36$ mr	n				
Molecular Weig	ht:	382.53 a.m.u.					
F ₀₀₀ :		416					
Systematic Abs	ences:	none					
Space Group:		Triclinic P_1^-	(I.TNo	o.: 2)			
Cell Constants:		Least-squares refinen	nent of 9897 refle	ctions with the	programs "APEX suite" and		
		"SAINT" [1 2]: thoto ro	$nao 1.30^{\circ} < 0 < 25$	15° Mo(K	2 - 71073 pm		
			1190 - 0 - 20	-	$\lambda = 71.075 \text{pm}$		
		a = 580	5.18(2) pm	$\alpha = 8$	9.293(3)		
		D = 119	1.92(5) pm	$\beta = 8$	2.239(2)		
		C = 15/S	9.91(7) pm	$\gamma = 70$	$0.332(2)^{\circ}$		
Diffractomator		$V = 1062.55(8) \cdot 10$ pi	$\prod_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	196 g Cm ; Mos	5. = 0.75		
Dimaciometer:		Kappa APEX II (Area	a Dimaction Syste		(5); rotating anode; graphite		
		monochromator; 60 k	/; 40 mA; λ = 71.07	73 pm; Mo(K $_{oldsymbol{lpha}}$)			
Temperature:		(-120±1) °C;	(153±	:1) K			
Measurement F	Range:	1.30° < θ < 25.45°; h:	-6/6, k: -14/14, I:	-19/19			
Measurement T	ime:	2×10 s per film					
Measurement M	/lode:	measured: 7 runs; 282	21 films / scaled: 7	runs; 2821 films	;		
		φ - and ω -movement;	Increment: $\Delta \phi / \Delta \omega$	= 0.50°; dx = 35	.0 mm		
LP - Correction:	:	Yes [2]					
Intensity Correc	ction	No/Yes; during scaling	g [2]	4			
Absorption Corr	rection:	Multi-scan; during sca	ling; μ = 0.076 mm	⁻¹ [2]			
		Correction Factors:	$T_{min} = 0.59$	976 T _{max}	= 0.7452		
Reflection Data	:	31067 refle	ctions were integra	ted and scaled			
		31067 refle	ctions to be merged	d			
		3771 indep	pendent reflections				
		0.050 R _{int} :	(basis F_o^-)	/ II) I			
		3771 indep	pendent reflections	(all) were used	in refinements		
			bendent reflections	with $I_o > 2\sigma(I_o)$			
		95.8 % COM	Dieteness of the da	ta set			
		o z para	meter full-matrix re	annement			
Solution		9.7 Telle	forence Fourier ev	er			
Dofinoment Der	amotore:	In the asymmetric unit		nineses			
Reinement Fai	ameters.	28 Non by	drogen atoms with	anisotronic disn	lacement narameters		
		20 INUT-HYDROUGH AUTHS WITH ANSOLIOPIC DISPLACEMENT parameters 34 Hydrogen atoms with isotronic displacement parameters					
Hydrogen Atom	is.	All hydrogen atom positions were found in the difference man calculated from the					
nyarogon / aom		model containing all n	on-hydrogen atom	is. The hydroge	n positions were refined with		
		individual isotropic dis	placement parame	ters.			
Atomic Form Fa	actors:	For neutral atoms and	anomalous disper	sion [4]			
Extinction Corre	ection:	no					
Weighting Sche	eme:	$w^{-1} = \sigma^2 (F_0^2) + (a \cdot P)^2 + b$	*Р				
0 0		with a: 0.0318; b: 0.42	10: P: [Maximum(() or E_{2}^{2} +2* E_{2}^{2} 1/3	3		
Shift/Err		Less than 0.001 in the	last cycle of refine	ment	-		
				inent.			
Resid. Electron Density:		+0.21 e ₀ ; ⁻ /A°; -0.18 e ₀ ;	⁻ /A ³				
R1:		$\Sigma(F_{o} - F_{c})/\Sigma F_{o} $					
$[F_{o} > 4\sigma(F_{o});$	N=3305]:				= 0.0349		
[all reflctns;	N=3771]:		4/0		= 0.0412		
wR2:		$[\Sigma w(F_{o}^{2}-F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]$	1/2				
$[F_{o} > 4\sigma(F_{o});$	N=3305]:				= 0.0837		
[all reflctns;	N=3771]:				= 0.0890		

Goodness of fit:	$[\Sigma w(F_o^2 - F_c^2)^2 / (\text{NO-NV})]^{1/2}$	= 1.038
Remarks:	Refinement expression $\Sigma W(F_o^2 - F_c^2)^2$	
Programs:	The program system "WinGX32" [7] with t [5], "SIR92" [3]	he programs: "PLATON" [6], "SHELXL-97"

05 017 N2 N2 N2 N6 N6 C1 C3 C3 C3 C7 C8 C9 C9 C10	-C4 -C16 -C1 -C3 -C16 -C4 -C7 -C15 -C15 -C15 -C4 -C24 -C8 -C9 -C10 -C14 -C11	1.2313(15) 1.2327(15) 1.4538(16) 1.4660(15) 1.3677(15) 1.3524(17) 1.4663(16) 1.5325(17) 1.5257(17) 1.5407(18) 1.522(2) 1.516(2) 1.3985(19) 1.4029(17) 1.382(2)	C11 C12 C13 C14 C16 C18 C19 C20 C21 C22 C24 C25 C25 C25 C25	-C12 -C13 -C14 -C15 -C18 -C19 -C23 -C20 -C21 -C22 -C23 -C25 -C26 -C27 -C28	1.389(2) $1.3854(19)$ $1.3967(17)$ $1.5283(18)$ $1.5183(17)$ $1.5325(18)$ $1.5366(18)$ $1.526(2)$ $1.527(2)$ $1.526(2)$ $1.5452(18)$ $1.526(2)$ $1.5452(18)$ $1.526(2)$ $1.531(2)$ $1.531(2)$ $1.5355(19)$
C1	-H11	0.968(13)	C21	-H211	1.028(18)
C1	-H12	0.993(14)	C21	-H212	0.989(17)
С3	-H31	0.964(12)	C22	-H221	1.010(18)
С7	-H71	1.032(17)	C22	-H222	1.010(17)
С7	-H72	0.981(17)	C23	-H231	0.978(17)
C8	-H81	1.000(18)	C23	-H232	1.002(18)
C8	-H82	0.992(15)	C24	-H241	0.988(14)
C10	-H101	0.990(17)	C24	-H242	0.997(18)
C11	-H111	0.981(17)	C26	-H261	1.001(17)
C12	-H121	0.963(17)	C26	-H262	1.008(19)
C13	-H131	0.971(16)	C26	-H263	1.006(17)
C15	-H151	0.994(12)	C27	-H271	0.990(17)
C18	-H181	0.957(17)	C27	-H272	0.988(17)
C19	-H191	0.987(18)	C27	-H273	0.988(18)
C19	-H192	0.992(17)	C28	-H281	1.017(18)
C20	-H201	1.019(18)	C28	-H282	1.015(17)
C20	-H202	0.992(16)	C28	-H283	0.985(17)
Table	e S2 - Bond	d Angles (Degrees)	for 9 0	e	

Table	S1	-	Bond	Distances	(Angstrom)	for	9e

C1	-N2	-C3	111.62(9)	С9	-C14	-C15	121.22(11)
C1	-N2	-C16	126.53(10)	C13	-C14	-C15	119.40(11)
С3	-N2	-C16	118.69(10)	NG	-C15	-C1	109.69(10)
C4	-N6	-C7	119.50(12)	NG	-C15	-C14	110.40(10)
C4	-N6	-C15	126.85(10)	C1	-C15	-C14	114.87(10)
С7	-N6	-C15	113.26(11)	017	-C16	-N2	120.93(11)
N2	-C1	-C15	110.75(10)	017	-C16	-C18	119.61(10)
N2	-C3	-C4	110.08(10)	N2	-C16	-C18	119.35(10)
N2	-C3	-C24	114.94(10)	C16	-C18	-C19	110.16(11)
C4	-C3	-C24	111.55(10)	C16	-C18	-C23	108.79(10)
05	-C4	-N6	122.31(11)	C19	-C18	-C23	110.88(10)
05	-C4	-C3	119.04(11)	C18	-C19	-C20	111.12(13)
NG	-C4	-C3	118.59(10)	C19	-C20	-C21	111.17(12)
NG	-C7	-C8	107.60(10)	C20	-C21	-C22	111.14(12)
С7	-C8	-C9	111.06(13)	C21	-C22	-C23	110.82(13)
С8	-C9	-C10	120.18(12)	C18	-C23	-C22	111.05(11)
С8	-C9	-C14	121.09(11)	С3	-C24	-C25	117.31(10)
C10	-C9	-C14	118.69(12)	C24	-C25	-C26	110.23(11)
С9	-C10	-C11	121.43(14)	C24	-C25	-C27	112.24(11)

C10	-C11	-C12	119.70(13)	C24	-C25	-C28	106.66(11)
C11	-C12	-C13	119.65(14)	C26	-C25	-C27	109.57(12)
C12	-C13	-C14	121.07(12)	C26	-C25	-C28	108.84(11)
С9	-C14	-C13	119.30(11)	C27	-C25	-C28	109.21(11)
N2	-C1	-H11	111.8(7)	C21	-C20	-H202	109.8(9)
N2	-C1	-H12	107.5(7)	H201	-C20	-H2O2	108.3(13)
C15	-C1	-H11	111.3(7)	C20	-C21	-H211	108.3(9)
C15	-C1	-H12	107.8(8)	C20	-C21	-H212	108.9(9)
H11	-C1	-H12	107.4(10)	C22	-C21	-H211	109.2(9)
N2	-C3	-H31	105.3(8)	C22	-C21	-H212	111.2(10)
C4	-C3	-H31	104.3(8)	H211	-C21	-H212	107.9(13)
C24	-C3	-H31	110.0(8)	C21	-C22	-H221	110.4(10)
NG	-C7	-H71	108.4(9)	C21	-C22	-H222	108.9(10)
NG	-C7	-H72	107.7(9)	C23	-C22	-H221	109.7(10)
C8	-C7	-H71	110.3(8)	C23	-C22	-H222	110.2(10)
C8	-C7	-H72	113.1(9)	H221	-C22	-H222	106.8(14)
H71	-C7	-H72	109.7(13)	C18	-C23	-H231	109.6(9)
С7	-C8	-H81	108.6(9)	C18	-C23	-H232	108.5(9)
С7	-C8	-Н82	110.2(9)	C22	-C23	-H231	109.9(10)
С9	-C8	-H81	109.7(9)	C22	-C23	-H232	109.9(9)
С9	-C8	-H82	109.2(10)	H231	-C23	-H232	107.8(13)
H81	-C8	-H82	108.1(14)	C3	-C24	-H241	107.2(8)
С9	-C10	-H101	118.4(9)	C3	-C24	-H242	109.4(8)
C11	-C10	-H101	120.2(9)	C25	-C24	-H241	107.1(8)
C10	-C11	-H111	119.9(10)	C25	-C24	-H242	108.5(8)
C12	-C11	-H111	120.4(10)	H241	-C24	-H242	106.8(11)
C11	-C12	-H121	120.3(9)	C25	-C26	-H261	111.3(10)
C13	-C12	-H121	120.1(9)	C25	-C26	-H262	111.3(11)
C12	-C13	-H131	118.9(9)	C25	-C26	-H263	110.6(10)
C14	-C13	-H131	120.1(9)	H261	-C26	-H262	109.1(15)
NG	-C15	-H151	106.9(7)	H261	-C26	-H263	106.3(14)
C1	-C15	-H151	107.3(7)	H262	-C26	-H263	108.2(15)
C14	-C15	-H151	107.3(7)	C25	-C27	-H271	112.2(10)
C16	-C18	-H181	110.9(9)	C25	-C27	-H272	109.9(10)
C19	-C18	-H181	108.6(9)	C25	-C27	-H273	111.9(10)
C23	-C18	-H181	107.4(9)	H271	-C27	-H272	106.8(14)
C18	-C19	-H191	108.2(8)	H271	-C27	-H273	107.9(14)
C18	-C19	-H192	108.3(10)	H272	-C27	-H273	107.9(14)
C20	-C19	-H191	110.3(8)	C25	-C28	-H281	111.2(9)
C20	-C19	-H192	111.6(10)	C25	-C28	-H282	110.1(10)
H191	-C19	-H192	107.2(14)	C25	-C28	-H283	111.7(10)
C19	-C20	-H201	109.3(9)	H281	-C28	-H282	108.1(14)
C19	-C20	-H202	109.3(10)	H281	-C28	-H283	107.1(14)
C21	-C20	-H201	108.9(9)	H282	-C28	-H283	108.3(14)

<u>Figure F1</u> –ORTEP drawing with 50% ellipsoids for 9e

5 BIOLOGY

Material and Methods

Syrian golden hamsters (*Mesocrietus auratus*) 100-120 gm each, were obtained from the Schistosome Biological Supply Center (SBSC), Theodor Bilharz Research Institute. They were fed on a standard pelleted diet containing 24% protein, 4% fat and 4-5% fiber and water. *Schistosoma mansoni* cercariae shed from *Biomphalariae alexandrina* snails were used to infect Syrian golden (*Mesocrietus auratus*) hamsters weighing 100-120 g with 350 cercariae each using abdominal skin exposure. Compounds (PZQ derivatives) were prepared as 5 mM stock solutions in DMSO. At day of sacrifice, the stock solution was diluted with complete medium to produce concentrations ranging from 0.4 to 100 µM.

In vitro schistosome worm killing assay: The mother PZQ (Shin Poong Pharmaceutical Co., South Korea) and PZQ derivatives were prepared as 5 mM stock solutions. Immediately before use, the stock solutions were diluted with complete medium to diminishing concentrations of 100, 75, 50, 25, 12.5, 6.0, 30, 1.5, 0.8, 0.4 µM. S. mansoni infected hamsters were sacrificed and worms harvested from the portomesenteric vessels to recover adult schistosomes. Worms was cultured on duplicate Petri dishes with a density of 12 to 16 worms per dish with RPMI 1640 medium (glutamine, 20% fetal calf serum, and antibiotics [streptomycin, penicillin and gentamicin] containing the indicated concentration of test compound was added. The worms were incubated overnight in a CO₂ incubator, washed twice with FBS, and fresh medium without drug was added and the incubation was continued overnight. On the second day, worm motility was observed and the medium was changed again and the incubation continued. On day 5 the numbers of living and dead worms were recorded. Negative controls using pure medium alone or medium with DMSO and positive control media containing various concentrations of PZQ were similarly evaluated. At the end of observation period, worms were examined in a laminar flow hood for their motility and appearance using a stereomicroscope and the final recording of percent mortality was assessed (the number of dead worms [contracted and opaque] relative to the number of worms). The percentages of *Schistosoma mansoni* worm killing in vitro under the influences of different test PZQ derivatives in different concentrations versus untreated and DMSO negative controls and positive controls treated with the mother drug PZQ were determined. Different compounds EC₅₀'s were computed using computerized program "Pharm/PCS" Version 4.2 (Pharmacologic calculation system) by a plot of the percent of worms mortality (versus living worms) against the concentration of the drug.

6 Copies of NMR spectra

LHX-69, CDC13, 600 MHz

LHX-71, CDCl3, 600 MHz

LHX-78, CDC13, 600 Mz

LHX-124b, CDCl3, 600 MHz

LHX-124b, CDCl3, COSY

SI-27

LHX-124a, CDCl3, 600 MHz

LHX-124a, CDCl3, COSY

SI-29

LHX-103, CDCl3, 600 MHz

LHX_74, CDC13, 600 MHz

SI-33

LX-128, CDC13, 600 MHz

2-(cyclohexanecarbonyl)-3-isopropyl-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one

LX-128, CDC13, 600 MHz

0 ppm

LX-106, CDCl3, 600 MHz

LX-106, CDC13, 600 MHz

9d

2-(cyclohexanecarbonyl)-3-isobutyl-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one

0

LHX-123, CDCl3, 600 MHz

LHX-123, CDC13, 600 MHz

2-(cyclohexanecarbonyl)-3-neopentyl-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one

LHX-127, CDC13, 600 MHz

LHX-130

LHX-70, CDCl3, 600 MHz

2-(cyclopropanecarbonyl)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one

ppm

LHX-72, CDC13, 600 MHz

SI-47

LHX-101, CDCl3, NMR600

SI-49

LHX-118, CDCl3, 600 MHz

LHX-140, CDCl3, 600 MHz

LHX-140, CDC13, 600 MHZ

28.95 28.77

 \bigvee

2-(4-methoxyquinoline-2-carbonyl)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one

SI-53

LHX-141, CDCl3, 600 MHz

2-(2-(pyridin-4-ylthio)acetyl)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one

LHX-88, CDC13, 600 MHz

1-(4-oxo-3,4,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-2(11bH)-yl)-2-phenylethane-1,2-dione

SI-57

LHX-142, CDCl3, 600 MHz

LHX-142, CDC13, 600 MHz

LHX-KK108, CDC13, NMR600

 \circ • • • • • • 1 L 1 L L 1 L L 1 1 L L 1 ι 1 J 1 L 4 4 L ι 1

2-(4-(cyclopropylmethylamino)-3-nitrobenzoyl)-2,3,6,7tetrahydro-1*H*-pyrazino[2,1-*a*]isoquinolin-4(11b*H*)-one

LHX-KK108, CDC13, NMR600

LHX-KK106, CDCl3, NMR600

LHX-KK106, CDCl3, NMR600

LHX-KK107, CDCl3, NMR600

LHX-153, CDCl3, 600 MHz

. • . . • . • . NNNNNNNNNNNNNNNNNNNNUUUUUUUUUUUU _ 1 1 1 1 1 1 t 1 1 1 1 1 . NO_2 NH HN 11g 0 ő `O 5-(dimethylamino)-N-(2-(2-nitro-4-(4-oxo-2,3,4,6,7,11b-hexahydro-1H-pyrazino[2,1-a]isoquinoline-2-carbonyl)phenylamino)ethyl)naphthalene-1-sulfonamide 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 4.0 3.0 ppm 10[38] 1.05 2.08 3.28 1.28 1.18 0.98 1.09 2.00 8 2.09 g 24 က 10.63 2 **m** ÷ --SI-68

LHX-153, CDCl3, NMR600

