Fig. S1: The full m/z ratios, 700-1800, of CstR (A-C) and CsoR (D-F). A and D are unreacted controls, B and E were reacted with SeO₃²⁻, and C and F reacted with TeO₃²⁻ as described in the materials and methods. Unreacted CstR displays a m/z range from +6 to +13 and cross-linked CstR ranges from +11 to +20. Unreacted CsoR displays a m/z range from +7 to +15 and cross-linked CsoR from +13 to +23.

Fig. S2: Fragmentation patterns of the Cys31 (A), MMEEGKDCKDVITQISASK, and Cys60 (B), LMGIIISENLIECVK, containing peptides from a tryptic digest of reduced CstR. Both peptides readily fragment as most ions are readily observed. These spectra were used to help identify cross-linked CstR peptides.

Fig. S3: CstR reacted with SeO_3^{2-} contains prominent disulfide peaks with oxidized cysteine residues. (A) Sum of +4 ions detected over the elution range of CstR cross-linked species. The labeled cross-linked peptides are; 1, disulfide cross-linked CstR (fragmentation pattern in Fig. 2B, main text); 2, disulfide crosslinked CstR with one oxidized methionine (fragmentation data not shown); 3, disulfide cross-linked CstR with two oxygen atoms distributed between the cysteine residues (fragmentation shown in panel B); 4, Same as 3 with an oxidized methionine (fragmentation data not shown); 5, selenotrisulfide cross-linked CstR (fragmentation pattern in Fig. 3D, main text); 6, selenotrisulfide cross-linked CstR with one oxidized methionine (fragmentation data not shown). (B) Fragmentation pattern of disulfide cross-linked CstR with two cysteine oxidations (peak $\underline{3}$ from panel A). Cross-linked AB_{yn} ions contain a mass shift of +32 Da and correspond to two total oxygen atom adductions on one or both cysteine Sy atom. An oxidation of either Met residue on peptide "A" yields an A_{b7} ion with a mass of approximately 837 or 853 Da for one or two oxygen atoms, respectively. The observed A_{b7} ion has a mass consistent with the reduced state, 821 Da. Similarly, a Met residue oxidation on peptide "B" would yield B_{bn} ions with a mass shift of +16 or +32 Da, e.g., the observed B_{b3} ion would shift to approximately 318 or 334 Da with one or two oxygen atoms, respectively. As a result, we conclude that the oxygen adducts here (*) are assignable as either a mixture of thiosulfonates or α -disulfoxide (Fig. 4, main text).

Fig. S4: Reaction products observed by ESI-MS from the reaction (17 h, RT) of C31A CstR (A and B) and C60A CstR (C and D) with tetrathionate (panels A and C) and SeO₃²⁻ (panels B and D). Deconvoluted masses from these spectra are shown in Table S4. Addition of tetrathionate to C31A CstR leads to the formation of disulfide cross-linked CstR as ⁶⁰CysS-SCys^{60'} likely across the tetramer interface (see Fig. 1, main text) (m/z of +12 to +24). The analogous reaction with C60A CstR forms nearly exclusively ³¹CysS-S₂O₃ (m/z of +7 to +12). Reaction with selenite (panels B and D) leads to significant unreacted, reduced CstRs and a mixture of products dominated by the di- and selenotrisulfide cross-linked species, again likely linking cysteines on different dimers. In addition to these species, the reaction of C60A CstR with selenite (panel D) also yields a detectable amount of the monofunctionalized ³¹CysS-SeO₃²⁻ (*filled* circles) (Table S4). The small amount of this product is consistent with that of a reaction intermediate on pathways to cross-linked species, although this was not investigated here. (E) Fluorescence anisotropy titrations of reduced C31A (open circles^{*}) or C60A (open squares^{*}) CstR before and following full derivatization with selenite (closed symbols). Derivatization was complete after 48 h. *Titrations shown are the same as those shown in Fig. 5, main text.

Table S1: CstR cysteine mutant QuikchangeTM mutagenesis primers used in this study. Underlined characters are bases changed to introduce cysteine to alanine mutations. *cst* OP1 corresponds to the DNA used in fluorescence anisotropy experiments where 'F' denotes fluorescein.

Primer	Direction	Primer Sequence
C31A CstR	Forward	GGAGGAAGGAAAAGAC <u>GC</u> TAAAGATGTCATTAC
	Reverse	GTAATGACATCTTTA <u>GC</u> GTCTTTTCCTTCCTCC
C60A CstR	Forward	GTGAGAATTTAATAGAA <u>GC</u> TGTAAAAGCAGCTGCGG
	Reverse	CCGCAGCTGCTTTTACA <u>GC</u> TTCTATTAAATTCTCAC
cst OP 1	Forward	ATGTGTCAAATACCCCTAGAGGTATTTG
	Reverse	F-CAAATACCTCTAGGGGTATTTGACACAT

Table S2: Summary of deconvoluted CstR masses observed by LC-ESI-MS. All mass shifts are relative to $CstR^{RS-H}$ or $CstR_2^{(RS-SR')}$ as indicated by (-).

Modifier	M _r Expected	M _r Observed	Mass Shift	Assignment
None	9641.2	9641.3	-	CstR ^{RS-H}
	9663.2	6443.4	22.1	CstR ^{RS-H} + Na
	19280.4	19282.3	-	CstR ₂ ^{RS-SR'}
SeO ₃ ²⁻	9641.2	9638.2	-	CstR ^{RS-H}
	9663.2	9660.4	22.2	CstR ^{RS-H} + Na
	19280.4	19277.5	-	CstR ₂ ^{RS-SR'}
	19312.4	19309.7	32.2	$CstR_2^{RS-SR'} + 2 O$
	19359.4	19357.4	79.9	CstR ₂ ^{RS-Se-SR'}
	19391.4	19389.6	112.1	$CstR_2^{RS-Se-SR'} + 2 O$
	19425.4	19422.5	145	$CstR_2^{RS-Se-SR'} + 3 Na$
	19438.3	19437.1	159.6	CstR ₂ ^{(RS-Se-SR')2}
	19470.3	19468.8	191.3	$\text{CstR}_2^{(\text{RS-Se-SR'})2} + 2 \text{ O}$
	19503.4	19500.3	222.8	$CstR_2^{(RS-Se-SR')2} + 3 Na$
	19517.3	19515.8	238.3	$CstR_2^{(RS-Se-SR')2} + Se$
TeO ₃ ²⁻	9641.2	9640.2	-	CstR ^{RS-H}
	9657.2	9656.2	16	$CstR^{RS-H} + O$
	9673.2	9671.6	31.4	$CstR^{RS-H} + 2 O$
	9768.8	9767.5	127.3	$CstR^{RS-H} + Te$
	19280.4	19279.7	-	CstR ₂ ^{RS-SR'}
	19312.4	19311.4	31.7	$CstR_2^{RS-SR'} + 2 O$
	19408	19407.3	127.6	CstR ₂ ^{RS-Te-SR'}
	19440	19439.1	159.4	$CstR_2^{RS-Te-SR'} + 2 O$
	19535.6	19534.6	254.9	CstR ₂ ^{(RS-Te-SR')2}
	19567.6	19567.6	287.9	$CstR_2^{(RS-Te-SR')2} + 2 O$
$S_4O_6^{2-}$	9641.2	-	-	CstR ^{RS-H}
	19280.4	19279.4	-	CstR ₂ ^{RS-SR'}
	19302.4	19300.6	21.2	$CstR_2^{RS-SR'} + Na$
	19312.4	19311.6	32.2	CstR ₂ ^{RS-S-SR'}
	19324.4	19322.4	43	$CstR_2^{RS-SR'} + 2 Na$

Modifier	M _r Expected	M _r Observed	Mass Shift	Assignment
None	11036.6	11034.9	-	CsoR ^{RS-H}
	11058.6	11057.0	22.1	CsoR ^{RS-H} + Na
SeO ₃ ²⁻	11036.6	11035.4	-	CsoR ^{RS-H}
	11058.6	11057.5	22.1	CsoR ^{RS-H} + Na
TeO ₃ ²⁻	11036.6	11033.2	-	CsoR ^{RS-H}
	21069.2	22065.4	-	CsoR ^{RS-SR'}
	21196.8	22192.2	126.8	CsoR ₂ ^{RS-Te-SR'}
	21324.4	22318.1	252.7	CsoR ₂ ^{(RS-Te-SR')2}

Table S3: Summary of deconvoluted CsoR masses observed by LC-ESI-MS. All mass shifts are relative to $CsoR^{RS-H}$ or $CsoR_2^{(RS-SR')}$ as indicated by (-).

Protein	Modifier	M _r Expected	M _r Observed	Mass Shift	Assignment
C31A	None	9609.1	9607.2	-	CstR ^{RS-H}
	MMTS	9656.2	9653.3	46.1	CstR ^{RS-SCH3}
	SO_3^{2-}	9609.1	9606.5	-	CstR ^{RS-H}
		9631.1	9627.9	21.4	CstR ^{RS-H} + Na
		9653.1	9648.6	42.1	CstR ^{RS-H} +2 Na
	SeO ₃ ²⁻	9609.1	9606.0	-	CstR ^{RS-H}
	5	9625.1	9622.3	16.3	$CstR^{RS-H} + O$
		19216.2	19211.6	_	CstR ₂ ^{RS-SR'}
		19295 2	19290 2	78.6	CstR ₂ ^{RS-Se-SR'}
		19327.2	19326.4	114.8	$CstR_2^{RS-Se-SR'} + 2 O$
	$S_4 \Omega_c^{2-}$	9609 1	9606.2	-	CstR ^{RS-H}
	5400	19216.2	19211.5	-	CstR ₂ ^{RS-SR'}
		19232.2	19227 5	16.0	$CstR_2^{RS-SR'} + O$
		19238.2	19232.6	21.1	$CstR_2^{RS-SR'} + 2 Na$
		19260.2	19254.8	43.3	$CstR_2^{RS-SR'} + 2 Na$
C60A	None	9609.1	9607.0	_	CstR ^{ŘS-H}
	MMTS	9656.2	9653.5	46.5	CstR ^{RS-SCH3}
	SO_{3}^{2}	9609.1	9607.3	-	CstR ^{RS-H}
		9631.1	9628.3	21.0	CstR ^{RS-H} + Na
		9689.2	9687.4	80.1	CstR ^{RS-SO3}
		9711.2	9708.3	101.0	CstR ^{RS-SO3} + Na
	$\mathrm{SeO_3}^{2-}$	9609.1	9606	-	CstR ^{RS-H}
		9625.1	9622.5	16.5	$CstR^{RS-H} + O$
		9641.1	9638.3	32.3	$CstR^{RS-H} + 2O$
		9688.1	9684.5	78.5	$CstR^{RS-H} + Se$
		9720.1	9717.7	111.7	CstR ^{RS-SeO2}
		9736.1	9738.8	132.8	CstR ^{RS-SeO3}
		19216.2	19211.6	-	$CstR_2^{RS-SR'}$
		19248.2	19245.4	33.8	$CstR_2^{RS-SR'} + 2 O$
		19295.2	19290.3	78.7	$CstR_2^{RS-Se-SR'}$
	_	19327.2	19323.3	111.7	$CstR_2^{RS-Se-SR'} + 2 O$
	$S_4O_6^{2-}$	9609.1	-	-	CstR ^{RS-H}
		9721.1	9718.1	112.1	CstR ^{RS-S2O3}
		9753.1	9750.7	144.7	CstR ^{RS-S3O3}
C31/60A	None	9577.0	9575.3	-	No Thiol

Table S4: Summary of deconvoluted CstR cysteine mutant masses observed by LC-ESI-MS. All mass shifts are relative to $CstR^{RS-H}$ or $CstR_2^{RS-SR'}$ as indicated by (-).*

*Major species observable by ESI-MS deconvoluted from the data shown in Fig. S4 are highlighted in *red*. The expected RS-SeO₃²⁻ adduct on Cys31 in C60A CstR is highlighted in bold font.