Supp. Methods

Exome Sequencing and Analysis

All patient DNA samples were collected by local internal review board criteria, abiding by the Helsinki Treaty, and de-identified. Genomic DNA was isolated from peripheral blood samples using the Puregene Blood Kit (Qiagen; Valencia, CA). DNA quantification and quality assessment was performed using a NanoDrop spectrophotometer (Thermo Scientific; Wilmington, DE) and agarose gel electrophoresis. The Agilent SureSelect Version 4 (51Mb) exome enrichment kit was used prior to sequencing on an Illumina HiSeq 2000 instrument (Asan, et al., 2011; Bennett, 2004; Clark, et al., 2011; Parla, et al., 2011; Sulonen, et al., 2011). One hundred nucleotide long paired end reads were used to sequence each exome to an average coverage of approximately 50X before the removal of PCR duplicates.

The sequence analysis pipeline used for this study is based on the best practice variant detection guidelines developed by the Broad Institute for the Genome Analysis Tool Kit (GATK) suite of software utilities (McKenna, et al., 2010). The overall process can be described as three stages alignment to the reference genome, identification of high-quality variations and genotypes, and annotation with biologically relevant information. Raw fastq files were quality controlled using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and aligned to the human genome reference sequence (build hg19) with BWA (Li and Durbin, 2009). The SAM/BAM standard format was used to store the alignment results (Li and Durbin, 2009). GATK Samtools (Li and Durbin, 2009), and Picard tools (McKenna, et al., 2010), (http://picard.sourceforge.net/) were used for single nucleotide variation (SNV) and small insertion and deletion (indel) detection and quality control filtering from the SAM/BAM files. This process included the removal of duplicate reads, local re-alignment of the reads, recalibration of base quality values, identification and genotyping of single nucleotide substitutions and small insertions/deletions (GATK Unified Genotyper), and variant quality score recalibration.

Prior to gene-content and functional annotation, we identified those variants that were found at greater than 1% in the 1000 Genomes Project (2010), dbSNP (Sherry, et al., 2001) (build 135),

and the Exome Variant Server (Wassink, et al., 2001). Furthermore, all variants were also compared to our own internal database of exome sequencing results from patients without the same phenotype. Following these initial variant filtration steps, annotation of remaining variants was performed using SnpEff and SnpSift (Cingolani, et al., 2012), the dbNSFP (Liu, et al., 2011), and the Human Gene Mutation Database Professional Version (HGMD) (Stenson, et al., 2003). HGMD was used to exclude a previously known disease causing mutation. The dbNSFP database was used to provide likely variant functional consequence with annotations from SIFT (Ng and Henikoff, 2003), Polyphen2 (Adzhubei, et al., 2010), LRT (Sul, et al., 2011), MutationTaster (Schwarz, et al., 2010), conserved domain sites from InterPro (Hunter, et al., 2012), GERP scores (Cooper, et al., 2005), and SiPhy scores (Garber, et al., 2009). Variation prioritization was accomplished by three methods 1) heuristic filtering based on suspected disease inheritance, 2) likely variant functional consequence (damaging variations such as nonsense and frameshift as well as nonconservative amino acid changes in highly conserved sites receiving higher priority), and 3) a probabilistic search algorithm, VAAST (Yandell, et al., 2011). Various quality control metrics were used throughout the analysis process. Fastq files were evaluated using FastQC, mapping was evaluated using both Samtools and Qualimap (to evaluate mapping performance and evaluate coverage of target, respectively) (Garcia-Alcalde, et al., 2012; Li and Durbin, 2009), and variant quality was assessed using parallel strategies of hard filtering (thresholds used were those recommended by the GATK Best Practices) and variant quality score recalibration. We assumed that any causative variant would be transmitted in a dominant manner and exhibit near complete penetrance. VarSifter (Teer, et al., 2012) was used to perform the inheritance based, variant segregation analysis via the custom query feature. VarSifter was also used to de-prioritize those variants that failed either hard filtering criteria or variant quality score recalibration. We retained any quality controlled variants that were found in 4 out of the 7 affected family members provided that in the other 3 samples there was insufficient information to make a call and not a discordant call. Those variants that fulfilled the hypothesized inheritance model were further prioritized according to in silico predictions of pathogenicity, nucleotide conservation, and presence within a conserved protein domain. These results were then intersected with those from the VAAST algorithm. VAAST was run assuming dominant inheritance, complete penetrance, and no locus heterogeneity. The results from VarSifter and VAAST were intersected and then sorted by the VAAST probability score and

variant functional consequence scores. A quality controlled, prioritized list of genes and variants that fit our hypothesized inheritance model is available in Supp. Table S1. The highest scoring variant/gene was the chr1:236201527 G>A variant in NID1 which produces a stop codon in place of a glutamine at amino acid position 388 (Q388*). This variant (NM_002508.2 (NID1_v001): c.1162C>T, p.(Gln388*)) was found in all 14 of the affected family members in pedigree 1 by Sanger sequencing. Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence. The initiation codon is codon 1.

The NID1 nonsense mutation was not found in the proband from pedigree 2. Therefore, potential NID1 interacting proteins were ascertained from several different sources and the union was used to screen all rare variants from the exome sequencing analysis of this individual. Databases used included the commercial Ingenuity Pathway Analysis (IPA) Knowledge Base (www.ingenuity.com), STRING (Szklarczyk, et al., 2011), VisAnt (Hu, et al., 2009), and GeneMania (Warde-Farley, et al., 2010), and PUBMED search for interacting proteins. Lists obtained from these databases using default settings and the gene NID1 are available as Supp. Table S1. All rare coding variants (less than 1% frequency in databases mentioned above) within these genes were identified and assess for their potential pathogenicity in the proband from pedigree 2. The list of genes and variants matching these criteria in this individual are available in Supp. Table S2. Primers and conditions used for Sanger sequencing (all with Invitrogen platinum Taq) of *NID1* and *LAMC1* exons are listed in Supp. Table S3. We discovered a novel LAMC1 variant: NM_002293.3 (LAMC1_v001): c.2237C>T, p.(Thr746Met) (nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence with the initiation codon being codon 1). This variant submitted the LOVD LAMC1 was to at https://grenada.lumc.nl/LOVD2/mendelian genes/home.php?select db=LAMC1)

Protein Structures

We used the Yasara Structure (version 12.10.3) to generate a homology model of human LAMC1 EGF-like-6 domain (residues 722-770) using structures of other Laminin EGFlike

domains (pdb id: 1NPE, 3ZYG, 1KLO, 3TBD, 2Y38) as templates. Sequence alignment with the templates was first used to build a backbone model for aligned residues followed by loop modeling and side chain optimization using a combination of steepest descent and simulated annealing minimization. The top ranking of the 6 models generated was used as the homology model of LAMC1 EGF-like-6 domain. The above steps were automated using Yasara's hm_build macro (http://www.yasara.org). Another homology model was generated using the Phyre server (version 2.0) (http://www.sbg.bio.ic.ac.uk/~phyre), which showed agreement with the Yasara model (rmsd of 0.591 over 35 Cα atoms) for the domain. PyMOL (Schrodinger, LLC) was used to visualize the homology model and to generate figures.

Supp. References

- 2010. A map of human genome variation from population-scale sequencing. Nature 467(7319):1061-73.
- Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. 2010. A method and server for predicting damaging missense mutations. Nat Methods 7(4):248-9.
- Asan, Xu Y, Jiang H, Tyler-Smith C, Xue Y, Jiang T, Wang J, Wu M, Liu X, Tian G and others. 2011. Comprehensive comparison of three commercial human wholeexome capture platforms. Genome Biol 12(9):R95.
- Bennett S. 2004. Solexa Ltd. Pharmacogenomics 5(4):433-8.
- Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80-92.
- Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, Butte AJ, Snyder M. 2011. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 29(10):908-14.
- Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A. 2005. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15(7):901-13.

- Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. 2009. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics 25(12):i54-62.
- Garcia-Alcalde F, Okonechnikov K, Carbonell J, Ruiz LM, Gotz S, Tarazona S, Meyer TF, Conesa A. 2012. Qualimap: evaluating next generation sequencing alignment data. Bioinformatics.
- Hu Z, Hung JH, Wang Y, Chang YC, Huang CL, Huyck M, DeLisi C. 2009. VisANT
 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res 37(Web Server issue):W115-21.
- Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, BorkP, Burge S and others. 2012. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40(Database issue):D306-12.
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754-60.
- Liu X, Jian X, Boerwinkle E. 2011. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat 32(8):894-9.
- McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M and others. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297-303.
- Ng PC, Henikoff S. 2003. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812-4.
- Parla JS, Iossifov I, Grabill I, Spector MS, Kramer M, McCombie WR. 2011. A comparative analysis of exome capture. Genome Biol 12(9):R97.
- Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. 2010. MutationTaster evaluates diseasecausing potential of sequence alterations. Nat Methods 7(8):575-6.
- Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. 2001. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308-11.
- Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN. 2003. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21(6):577-81.

- Sul JH, Han B, Eskin E. 2011. Increasing power of groupwise association test with likelihood ratio test. J Comput Biol 18(11):1611-24.
- Sulonen AM, Ellonen P, Almusa H, Lepisto M, Eldfors S, Hannula S, Miettinen T, Tyynismaa H, Salo P, Heckman C and others. 2011. Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol 12(9):R94.
- Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P and others. 2011. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561-8.
- Teer JK, Green ED, Mullikin JC, Biesecker LG. 2012. VarSifter: visualizing and analyzing exome-scale sequence variation data on a desktop computer. Bioinformatics 28(4):599-600.
- Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT and others. 2010. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue):W214-20.
- Wassink TH, Piven J, Patil SR. 2001. Chromosomal abnormalities in a clinic sample of individuals with autistic disorder. Psychiatr Genet 11(2):57-63.
- Yandell M, Huff C, Hu H, Singleton M, Moore B, Xing J, Jorde LB, Reese MG. 2011. A probabilistic disease-gene finder for personal genomes. Genome Res 21(9):1529
 42.

Supplementary Table 1: Potential NID1 Interacting Partners										
Database Queried	IP	A	STRING	VisAnt	GeneMania	PUBMED PATHWAY	PUBMED CO-EXPRESSION			
Genes	AHR BMI1 CHUK COL18A1 COL1A1 COL4A2 ELN ERBB2 ERBB3 ERBB4 FBLN1 FBLN2 FGA FGB Fibrinogen FN1 HRAS HSPG2 IKBKB IKBKG IL13 ITGA3 ITGB1	LACRT LAMA1 LAMC1 LAMC2 LAMC3 Laminin1 LGALS3BP MDK MMP1 MMP12 MMP14 MMP2 MMP3 MMP7 NFKBIA NID1 NID2 PLXDC1 PLXDC1 PTPRF RHO SERPING1 SKIL TNF	CLIC1 PLXDC1 NID1 HSPG2 COL4A1 PLAU FBLN2 FBLN1 FN1	HSPG2 PRELP MDK FBLN2 FBLN1 LAMA1 SKIL COL1A1 LGALS3BP COL1A1 IGA FGB FGA LAMC2 LAMC1 COL4A1 APP LACRT PTPRF PLAU PLXDC1 ITGAV NID1 ITGB3	NID1 HSPG2 LAMC1 COL4A1 COL4A2 PLXDC1 NID2 FBLN2 ENPEP COL3A1 LRRC17 COL18A1 LACRT LAMC2 COL6A3 SPARC CALD1 SERPINH1 LAMB1 FBLN1 PDGFRB	COL3A1 COL6A1 COL4A2 NID2 SPARC KDR HSPG2	FOXC1 PLXCD1 ZIC ZIC2 ZIC3 ZIC4			

.. -

Supplementary Table 2: Rare Coding Variants within Genes that Encode Proteins Predicted to be NID1 Interacting Partners

Chr	LeftFlank	RightFlank	Gene_name	type	muttype	ref_allele	var_allele			
chr3	13613080	13613082	FBLN2	DOWNSTREAM;NON_SYNONYMOUS_CODING	SNP	С	Т			
chr1	22167603	22167605	HSPG2	UPSTREAM;NON_SYNONYMOUS_CODING						
chr18	6956510	6956512	LAMA1	UPSTREAM;NON_SYNONYMOUS_CODING						
	133962979	133962981	LAMC3	NON_SYNONYMOUS_CODING						
chr1	183091221	183091223	LAMC1	UPSTREAM;NON_SYNONYMOUS_CODING						
chr18	7033037		LAMA1	NON_SYNONYMOUS_CODING						
chr22	45944567	45944569	FBLN1	NON_SYNONYMOUS_CODING						

Da	arbro et al., H	uman Mutation	8
Suppleme	entary Table 3	: NID1 and LAMC1 PCR primers and annealing Temper	ratures
NID1	direction	primer sequence	annealing Temp
Exon 1	Forward	GTTACATCCCCGCCTTCCT	60°C
	Reverse	CCTGCTACGCCCAAGTCC	
Exon 2	Forward	AGCATGGGTACAGCTGACAGT	60°C
	Reverse	CACAAGGCGTGAGACCAAAG	
Exon 3	Forward	TGAGAATATTGCCATCGCTCT	60°C
	Reverse	TGCAAAACTTAAATCCATAGGAA	
Exon 4	Forward	TTGCAGACCAACACAGATCC	60°C
	Reverse	AACTGACATCTCCCCAGCAG	
Exon 5	Forward	AGTGCTTGAGGGTGCCTAGA	60°C
	Reverse	TGTGGGTAAAGCAACATGGA	
Exon 6	Forward	GACCCCAGTGCTGTTTTGTT	60°C
	Reverse	GAGTTCTCCTTCCATCCATCC	
Exon 7	Forward	ACCAACCCCACTCCACACT	58°C
	Reverse	CTCCAGATCCCAGAGACAGC	
Exon 8	Forward	TTATGGGCAGGGAATACCAC	60°C
	Reverse	TTTTTCCTGCCAGAAGATACTTT	
Exon 9	Forward	AGTTGTGGTTGACTTTCTGTGG	60°C
	Reverse	GGTTTACAGAACGTGGATGC	
Exon 10	Forward	GCAAGACTCCATCTCGGAAA	60°C
	Reverse	CAGCACCTTCCAACTTGACC	
Exon 11	Forward	TCCAGGCATGGTCTCTCTTT	60°C
	Reverse	TGAGTTGGTGATTGGCACAT	
Exon 12	Forward	TTTGAGTAAGTGGCTTAAATTATTGG	60°C
	Reverse	ATGGACAGGGCAGGCAAT	
Exon 13	Forward	TGATGAAACAAAACCCAGTGA	60°C
	Reverse	GGTCCAGCAGAAGAGCAAAG	
Exon 14	Forward	ACCTGATGTGTGGGTGTGTG	60°C
	Reverse	CCTGGGGTTCTGGTCTGATA	
Exon 15	Forward	CAAAAGATATCCAAATGCCTGT	60°C
	Reverse	TTTGGCTTCATTTGCTGTTC	
Exon 16	Forward	GGATTGGACACCATGTGAAA	60°C
	Reverse	CAGGAGACCAATGCTGGAGT	
Exon 17	Forward	TGTTTTCATGTCTGCCAATCA	60°C
	Reverse	CAGGTGGCTGGTTAGATTTG	
Exon 18	Forward	CCACTCTTGCCCTCATTACTC	58°C
	Reverse	AGAGGCCAGATGGGAAGG	
Exon 19	Forward	TGGCCTCCAGTTTATCCTCA	60°C
	Reverse	CATACGGGTAGCAGCCAGAG	
Exon 20	Forward	CACACAAGAAGGAGCCCACT	60°C
	Reverse	CAGCCAGAGGACACTTTTCA	

LamC1	direction	primer sequence	annealing Temp
xon1A	Forward	CAGGCTCAAGCAGCGAAG	56°C
xon1A	Reverse	CGTCGCACAGGTGACAGG	
xon1B	Forward	ATGCCCGAGTTCGTCAAC	58°C
xon1B	Reverse	GCTGGCGAGCAGTAGCAG	
xon2	Forward	CCAAACTAAGCTGGGAATAGAGG	58°C
xon2	Reverse	GCTCTCTGTCTGTGTTGCTCA	
xon3	Forward	GTGCTAAAGAGGGCGTAAGTT	58°C
Exon3	Reverse	TGCAAAAGCTCCAAACACTTT	
xon4	Forward	GGACTTTGCAGCTGTTCCAT	58°C
xon4	Reverse	GGCCTTTCAGAGCTTTCCTT	
xon5	Forward	TCTGTCTCAGAGATGTGGGAAAT	58°C
xon5	Reverse	GTCCAAATGCCTTGGAAACA	
Exon6	Forward	GGCCGAATTTTTGTTTGACA	58°C
xon6	Reverse	TTACCCTGCTGCCAATAAGC	
xon7	Forward	TGTAAAACAAAGGGCTGACTTG	60°C
xon7	Reverse	TTGAAATATGGTAACAGAAAACACA	
xon8	Forward	TGTCGAAGGCTTCAATTGTG	58°C
xon8	Reverse	CAAAAAGCCCTCAAAGAGTCA	
xon9	Forward	TTTTTATGATACATAGAGGACCTGAA	58°C
xon9	Reverse	TGGGCAAGAATGTGAGACTG	
xon10	Forward	CAGTCTGACCTGCTGTGTGC	58°C
xon10	Reverse	CACCACAATAACCCAGAAGTTTT	
xon11	Forward	TCCAGAATTGTCCTTACAGAGG	58°C
xon11	Reverse	GGAAAGAGAAACTTTTGCATTATCA	
xon12	Forward	TCTGGAATTTGGGGTCTAGTT	56°C
xon12	Reverse	AAGACAATGAGCACTTTCTACACAA	
xon13	Forward	ATATACTTGTACATTTGCCTGTTTTC	58°C
xon13	Reverse	CCCCTTTCCCCTAGGTCTTT	
xon14	Forward	CCAGTGGTAATCTAGCACCAAA	58°C
xon14	Reverse	AAGAGACACAAGAATTCTCACAA	
xon15	Forward	CAGCTACCAACCTGGCAAC	58°C
Exon15	Reverse	GCAAAGATTACTTTCACCAAAGG	
xon16	Forward	CCATTCAGTTTTCTGATACAAGTTACA	58°C
xon16	Reverse	GGCTAGACTGAGGCTGTCAAA	
Exon17	Forward	TCTCTGCTAAACAGACTTAGCCATT	56°C
xon17	Reverse	CAGTAAGTTGCCACTCAACGTC	
xon18	Forward	TGTGTGTCCTACCTTTCCCTTT	58°C
xon18	Reverse	TGGTCCATCTCACAGAAGTCA	
Exon19	Forward	TGAGATGATATGATCCTCTTCAGAT	58°C
xon19	Reverse	CATCCCCACCTCAGACGTT	
Exon20	Forward	AATGTAAATAATTCAGTCCTTTGAGAA	56°C
xon20	Reverse	ACCCCATAACAGAAGCCACA	
xon21	Forward	CCTGAATTTTACTTATGTCCCTATCA	58°C
xon21	Reverse	AGGGGTGTAAACCACTTTCAA	
xon22	Forward	TGCTAAAAGCAGCTAAGATTGTCA	58°C
xon22	Reverse	ATAGACTTGGGGGGAGAGACG	
xon23	Forward	TGCAGTTCTTTTAAAAATATCATTGAG	58°C
xon23	Reverse	CTCAAGAAATGAAGCGACCTG	
xon24	Forward	GAGCCTTGTCTGTCCAGGAG	58°C
xon24	Reverse	CACTCTAGTGGCGGAAGCAT	
xon25	Forward	ACCCTGACTTCCATTGTTCA	56°C
xon25	Reverse	GCTCTGAGGGTCTGGAAAGA	
xon26	Forward	AGCGGGAGCATACTTGAGAA	56°C
xon26	Reverse	TCAACAAGTGGGGGATCTTT	
xon27	Forward	TTAGATTTGTTGGGTCATTGG	58°C
xon27	Reverse	CAAAAGATTCAGAGACTGACAAAAA	
xon28	Forward	САССТАСТТСТСААССАТСАТТ	58°C
xon28	Reverse	ACTCTGTGGCCTCACAACTG	