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SUMMARY

Here, we present a simple and highly efficient
method for generating and detecting mutations
of any gene in Drosophila melanogaster through
the use of the CRISPR/Cas9 system (clustered
regularly interspaced palindromic repeats/CRISPR-
associated). We show that injection of RNA into the
Drosophila embryo can induce highly efficient muta-
genesis of desired target genes in up to 88% of
injected flies. These mutations can be transmitted
through the germline to make stable lines. Our sys-
tem provides at least a 10-fold improvement in effi-
ciency over previously published reports, enabling
wider application of this technique. We also describe
a simple and highly sensitive method of detecting
mutations in the target gene by high-resolution melt
analysis and discuss how the new technology
enables the study of gene function.
INTRODUCTION

The fruit fly Drosophila melanogaster is one of the most highly

developed genetic model organisms. Nevertheless, despite the

large number and power of available techniques, the generation

of novel mutant alleles in a chosen gene by homologous recom-

bination remains a relatively time-consuming procedure (Mag-

gert et al., 2008; Rong and Golic, 2000; Venken and Bellen,

2005). Several genome-engineering techniques have recently

been developed for guiding nucleases to selected target sites

in the genome, making it possible to engineer mutations in a

number of model organisms (Cong et al., 2013; DiCarlo et al.,

2013; Gaj et al., 2013; Hwang et al., 2013; Mali et al., 2013),

including flies (Beumer et al., 2008; Gratz et al., 2013; Liu et al.,

2012).

The type II CRISPR/Cas9 system (clustered regularly inter-

spaced short palindromic repeats/CRISPR-associated) is used

by bacteria as an RNA-guided defense system against invading

viruses and plasmids (Barrangou et al., 2007; Ishino et al., 1987).

In Streptococcus pyogenes, the Cas9 endonuclease is guided to

its target site by complementary base pairing of CRISPR RNAs
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(crRNAs) with the target DNA sequence, and this requires a third

component, the trans-activating CRISPR RNA (tracrRNA), which

recruits the crRNA into the Cas9 complex (Brouns et al., 2008;

Gasiunas et al., 2012; Jinek et al., 2012). This system has

recently been adapted to target double-strand breaks in the

genomes of other organisms, including studies in human cells

(Cong et al., 2013; Mali et al., 2013), mice (Wang et al., 2013),

and zebrafish (Hwang et al., 2013).

We have modified a two-component system described previ-

ously (Cong et al., 2013; Dahlem et al., 2012; Jinek et al., 2012;

Mali et al., 2013), in which the crRNA and tracrRNA are fused

into a single synthetic guide RNA (sgRNA) (Figure 1A) to effi-

ciently create targeted mutations in the Drosophila yellow and

white genes by direct injection of Cas9 mRNA and an sgRNA

into the embryo. We show that the induced double-strand

breaks can result in small insertions and deletions (indels) at

the target sites as a result of inefficient repair by nonhomologous

end joining (NHEJ) (Bibikova et al., 2002). This process occurs

with extremely high efficiency, with up to 88% of injected flies

having detectable mutations. Mutations can also be transmitted

through the germline to the following generation at a rate of up to

one-third of total offspring. Our method offers a 10- to 100-fold

improvement in efficiency over a recently published report (Gratz

et al., 2013), enabling its general application to gene knockouts.

We also describe a system for simple and effective detection of

the indels created in the injected generation (G0) by high-resolu-

tion melt analysis (HRMA). This can be applied to any gene and

makes it possible to knock out a chosen gene within 1 month.

This will allow the rapid mutation of genes that do not appear

in the current mutant catalogs (Bellen et al., 2011), enables

isogenic lines to be generated more easily, and offers the ability

to combine mutations with pre-existing stocks. It also opens up

the possibility of a new generation of large-scale genetic

screening and mosaic analyses to be performed in Drosophila.

RESULTS

A Simple CRISPR/Cas9 System for Drosophila

Mutagenesis
We adapted the CRISPR/Cas9 system to mutagenize genes in

Drosophila by injecting a mix of Cas9 mRNA and sgRNA into

syncytial blastoderm-stage embryos. The sgRNAs were created

by in vitro transcription of a PCR template generated with a
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Figure 1. CRISPR/Cas9 System for Target-

ing Double-Strand Breaks

(A) The two-component system for inducing dou-

ble-strand breaks. The synthetic guide RNA

(sgRNA) contains a region of complementarity to

the target site on the DNA, as well as stem loops

from the tracrRNA to mediate binding to the Cas9

protein. Cas9 protein is indicated by a yellow

circle, cleavage sites by arrowheads, and the

protospacer adjacent motif (PAM, NGG) required

for cleavage in red.

(B) The PCR-based system for generation of

sgRNAs. Two oligonucleotides are used to

generate the sgRNA template for in vitro tran-

scription (black lines). The first includes a T7 pro-

moter (highlighted in blue) and upstream

sequence for efficient in vitro transcription, fol-

lowed by a GGN18 target-site sequence and a

portion of the sgRNA stem loops. The second in-

cludes the entire sgRNA sequence after the target

site. PCR is performed with the two primers but

without any other DNA template.

See also Figure S1 and Table S1.
unique forward primer containing a T7 polymerase binding site

and the gene-specific guide sequence, as well as a common

overlapping reverse primer containing the remainder of the

sgRNA sequence necessary for incorporation into the Cas9-

sgRNA complex (Figure 1B, Figure S1, and Table S1). This

process is easily expandable to high-throughput targeting of

many genes, because it requires the synthesis of a single oligo-

nucleotide, one PCR, and an in vitro transcription reaction for

each new sgRNA.

The sgRNA target sequence (20 nt) must be followed by an

NGG protospacer adjacent motif (PAM), which is absolutely

required for Cas9 cleavage (Jinek et al., 2012) (Figure 1A).

Also, the T7 polymerase requires that the first two bases of the

sgRNA target sequence are GG (Figure 1B). Despite these

sequence constraints, our analysis shows that there are still

more than 5 3 105 potential target sites in the Drosophila

melanogaster genome, placed every 300 bases on average.

Recent studies have shown that the first seven bases of the 20

nt target sequence are dispensable for CRISPR target recogni-

tion and cleavage (Cong et al., 2013), suggesting that the

requirement for a GG sequence at the beginning of the target

sequence may be relaxed if necessary.

Mutagenesis of the yellow Gene Is Highly Efficient and
Concentration Dependent
We initially designed an sgRNA to target a double-strand break

at the beginning of the second exon of the yellow gene in flies

(y1, Figures 2A and 2B), because its mutation would provide

an easy readout of effectivemutagenesis by loss of pigmentation

in the body of the fly. It is also X-linked, meaning that mutation of
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a single copy would result in a visible

phenotype in males of the injected gener-

ation (G0).

We tested a variety of concentrations

of Cas9 mRNA:sgRNA and found the effi-
ciency of NHEJ-based deletions to be concentration dependent

(Table 1). Remarkably, at the highest concentration (1,000 ng/ml),

we found that 86% of the surviving flies from the injected

generation (G0) showed mosaic yellow expression. Surprisingly,

this included female flies, which require mutation of both alleles

of the yellow gene in order to manifest a phenotype, indicating

that mutagenesis had been highly efficient (Figure 2C).

As the concentration of RNA was reduced, the adult survival

rates following injection increased from 3% to 11%, but the pro-

portion of mosaic adults decreased from 86% to 10% (Table 1).

We therefore decided to use the highest concentration of RNA

for subsequent experiments, because in most situations it is

preferable to produce a higher proportion of mutant flies to

reduce the number of offspring that need to be screened in order

to identify a mutant.

Different sgRNAs Show Different Efficiencies
To compare mutagenesis efficiencies of different sgRNAs, we

designed a second sgRNA targeting the yellow gene (y2) and

an additional two sgRNAs targeting the second (w1) or third

(w2) exons of the white gene (Figures 2A and 2B). The white

gene is again X-linked, and its disruption would be expected to

result in a visible eye-color phenotype in adult flies. These target

sites showed substantially different efficiencies of cleavage,

resulting in 88%, 75%, 4%, or 25% mosaic adults for y1, y2,

w1, and w2 respectively (Table 2). It seems unlikely that this is

due to differences in the chromatin environment around the

target sites, given that the pairs of sites are very close; rather,

the sgRNA sequence is likely to have an impact on mutagenesis

efficiency. The w2 sgRNA efficiently induced large patches of
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Figure 2. CRISPR/Cas9-Induced Deletions at the yellow and white Loci

(A) A schematic of the yellow andwhite genes showing the sgRNA target sites. Exons are shown as black boxes, transcriptional start sites as arrows, and sgRNA

target sites as black triangles.

(B) Sequence of sgRNA targets. The 20 nt target sequence corresponding to each target site is indicated in orange, along with the neighboring NGG protospacer

adjacent motif (PAM) in red.

(C) Mosaic yellow expression in the injected G0 flies. Female flies showing mosaic yellow expression upon injection with Cas9 mRNA and y1 sgRNA are shown.

Patches of yellow mutant tissue can be observed (arrowheads) and are outlined by dotted lines.

(D) Mosaic white expression in the injected G0 flies. Female and male flies showing mosaic white expression upon injection with Cas9 mRNA and w2 sgRNA are

shown. Patches of white mutant tissue can be observed (arrowheads).

(legend continued on next page)
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Table 1. y1 Mutagenesis Is Concentration Dependent

RNA Concentration (ng/ml)

% Survival

% Mosaic AdultsLarvae Adults

1000 10% 3% 86%

500 16% 7% 50%

250 16% 6% 17%

125 17% 8% 10%

0 20% 11% 0%

No injection 28% 16% 0%

Survival rates of embryos to first instar larvae and adults as well as

percentage of mosaic adults are shown for a variety of different con-

centrations of injected RNA targeting the y1 target site. The highest muta-

genesis efficiency was observed with the highest concentration of RNA,

although survival rates were reduced slightly. ‘‘No injection’’ indicates

embryos that were treated in the same way as the other samples but

were not injected.
mosaic tissue in the G0 generation, even in female flies, which

require two separate targeting events (Figure 2D). However,

injection of this construct resulted in low survival rates of <3%

(Table 2). In contrast, the w1 sgRNA failed to show any visible

mosaic white expression in the injected G0 generation but had

an improved survival rate of 12% (Table 2).

The presence of mutations was confirmed by the sequencing

of PCR products spanning the cleavage site and showed a

selection of indels consistent with previous studies in Drosophila

(Liu et al., 2012), zebrafish (Hwang et al., 2013), and human cells

(Cong et al., 2013; Mali et al., 2013) (Figure 2E, F).

Transmission of Mutations to Subsequent Generations
We were interested in investigating whether the transmission of

mutations to subsequent generations is efficient, because this is

a prerequisite for analysis of any mutations generated. All of the

flies were backcrossed to flies carrying mutations in the yellow

andwhite genes, and numbers of yellow orwhitemutant progeny

in the subsequent generation were scored (Figure 3). This

showed that mutations could be generated within the germline

and transmitted to subsequent generations at a very high effi-

ciency. With the use of the y1 sgRNA, 58% of the flies (79% of

the fertile flies) were able to give rise to at least one mutant

offspring, and a total of 34.5% of all the offspring contained a

mutation in the yellow gene (Figure 3A). The proportion of flies

obtained from those crosses giving rise to mutant progeny

ranged from 5.3% to 88.5% (Figure 3B).

The efficiency of germline transmission largely followed the

proportion of mosaic flies in the G0 generation, but it was

possible to generate mutant offspring with no visible mosaic

tissue (w1, Figure 2F and Figure 3). This is likely to reflect germ-

line mutant tissue not being detectable, because yellowmutants

give a cuticular phenotype and white mutants an eye-color

phenotype, neither of which overlaps germline tissue.
(E) Sequencing of induced mutations in the yellow gene. PCR products spanning

represents wild-type sequence, and subsequent lines show individual mutant clo

black triangle. Deleted bases are marked with dashes, and inserted or substitute

(F) Sequencing of induced mutations in the white gene, as in (E).
We also observed that although the w2 sgRNA was able to

efficiently target mutagenesis, resulting in mosaic white expres-

sion in the injected generation, no mutant offspring were pro-

duced (Figure 3). The failure to generate mutant offspring may

be due to high efficiency of double-strand break induction, which

may result in toxicity or sterility, as indicated by the low survival

and fertility rates (Figure 3 and Table 2). This suggests that the

concentration of injected RNA may need to be optimized on

the basis of the cleavage efficiency of a particular sgRNA.

Detection of Mutations by HRMA
Although the yellow and white genes provide visible readouts in

the injected, G0 generation, this is not true of the majority of

genes that one would wish to target. A number of techniques

have been developed for the detection of indels at the target

sites, such as Surveyor assays (Miller et al., 2007), T7 endonu-

clease assays (Kim et al., 2009), lacZ disruption assays (Hisano

et al., 2013), heteroduplex mobility (Ota et al., 2013), HRMA

(Dahlem et al., 2012), and loss of restriction sites (Bedell et al.,

2012). We found that HRMA was optimal in terms of speed

and sensitivity. This technique utilizes differences in the melting

temperature of heteroduplexes containing insertions or deletions

to differentiate them from wild-type homoduplexes. We there-

fore designed an HRMA assay for the sgRNA target sites in the

yellow and white genes, and we used it to detect mutations in

the mosaic G0 flies. This was extremely effective in detecting

mosaic mutations (Figures 4A–4D), and it recognized 100% of

the flies that had a visible mosaic yellow or white expression in

our analysis. Additionally, it identified one fly that did not have

visible mosaic white expression but was able to produce mutant

offspring (Figure 3). One can apply it to any desired target gene

by designing a 100–200 bp PCR amplicon spanning the CRISPR

target site.

This technique can also be used to detect heterozygousmuta-

tions in the following generation in order to screen for those flies

that inherit the mutation of interest. We used a fly line containing

a single base deletion generated at the y1 target site (Figure 4E)

to test the sensitivity of this assay, and we found that even with

such a subtle change, the mutation was readily detectable in

heterozygous flies (Figures 4F and 4G).

Analysis of Off-Target Cleavage
We also applied the HRMA technique to address potential con-

cerns with off-target cleavage. Other studies have suggested

that the final 12 nt of the target sequence within the sgRNA

(the ‘‘seed’’) and the PAM sequence (NGG) are sufficient for effi-

cient cleavage and that substitutions at any position within these

sequences abolish target recognition (Cong et al., 2013). When

designing the sgRNAs, we avoided any sequences that con-

tained a perfect match to the ‘‘seed’’ sequence of the sgRNA

and the adjacent PAM sequence. However, for each sgRNA

we designed, at least one other region in the Drosophila genome

contained amatch of 10 or 11 nt followed by the PAM sequence.
the sgRNA target sites were analyzed for indels. The first line in each alignment

nes. Target sites are indicated in orange, PAM in red, and cleavage sites by a

d bases are indicated in lower case.
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Table 2. Mutagenesis Efficiency Depends on Target Site

sgRNA

% (#) Survival % (#) Mosaic Adults

Larvae Adults Visible HRMA

y1 9% (36) 8% (33) 88% (29) 88% (29)

y2 11% (24) 7% (16) 75% (12) 75% (12)

w1 16% (32) 12% (25) 0% (0) 4% (2)

w2 4% (10) 3% (8) 25% (2) 25% (2)

Comparison of survival rates and mutagenesis efficiency between

different target sites. All RNA was injected at 1000 ng/ml RNA concen-

tration. Different target sites show different survival rates and mutagen-

esis efficiencies as measured by the proportion of mosaic adults. Mosaic

mutations were determined visually (visible) or by high-resolution melt

analysis (HRMA). Absolute numbers are indicated in brackets.
We therefore tested these seven sites for off-target mutations by

HRMA, but no evidence for any mutagenesis was observed at

any of these sites (Figure 5). This information about off-target

effects will help to guide target choice in the future.

DISCUSSION

Here, we describe a simple, efficient, and rapid technique for

the creation of novel targeted mutations in a chosen gene

through adaptation of the CRISPR/Cas9 system to Drosophila

melanogaster. This allows the production of a novel mutation in

virtually any genetic background within a month, thereby

permitting future high-throughput analyses of gene function to

be performed.

The ability to rapidly generate newmutations in a chosen gene

with our technique will permit simpler compounding of mutations
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to generate double or triple mutants, particularly with genetically

linked genes. Recent studies of CRISPR/Cas9 injection into

mouse zygotes or embryonic stem cells (Wang et al., 2013),

human cells (Cong et al., 2013), and Drosophila (Gratz et al.,

2013) have suggested that several sgRNAs can be used simulta-

neously to target multiple independent genes, opening up the

possibility of removing whole gene families in a single step.

A recent report of the CRISPR/Cas9 system for targetedmuta-

genesis in Drosophila has demonstrated that mutations and

deletions can be generated in the yellow and rosy genes (Gratz

et al., 2013). However, the efficiency of mutagenesis in their

study is considerably lower than that described here in terms

of both the number of flies with germline mutations (5.9%

compared to our rate of 58%) and the proportion of mutant

progeny (0.25% compared to our 34.5%) (Figure 3A). These

differences may be explained by their injection of plasmid DNA

encoding the Cas9 and sgRNA components of the system rather

than RNA. Expression of RNA from a plasmid template is likely to

be at levels lower than those seen with direct RNA injection and

perhaps to occur later, once the germline has been established,

resulting in fewer germlinemutations. Our use of RNA rather than

DNA also removes any possibility of integration of the injected

DNA into the genome, especially given that the Cas9 endonu-

clease can induce double-strand breaks, which may result in

the insertion of exogenous DNA fragments.

Given the high efficiency of mutant generation, our new

system will allow clonal analysis of mutations within a few days

of injection, so long as an antibody is available to the targeted

protein for detection of the mutant tissue. The observation of

mosaic yellow and white females suggests that this can be

achieved for genes on all chromosomes, but it is especially

straightforward for X-linked genes. It will also be possible to
Figure 3. Germline Transmission of

Mutations

(A) Efficiency of germline transmission of muta-

tions induced at each target site. Number of em-

bryos injected, hatched L1 larvae, and total and

visibly mosaic G0 adults produced are noted. Each

G0 adult was crossed to flies with yellow andwhite

gene mutations (y1w1), and the number of flies

producing offspring was noted (fertile), along with

the number of crosses that produced at least one

mutant offspring (germline mutants). This is also

expressed as a percentage of the total G0 adults

(brackets). The percentage of mutant progeny

shows the total number of mutant offspring

compared to the total number of offspring from all

crosses. The range shown in brackets shows the

percentage of mutant flies produced from each

individual positive cross. The bottom row of the

table shows the equivalent numbers from Gratz

et al. (2013) for comparison.

(B) Percentage of mutant offspring from each

injected G0 fly. Offspring of each injected G0 fly

were backcrossed to flies with mutations in

yellow andwhite genes (y1w1) and analyzed for the

percentage of yellow or white mutant female

offspring. Each individual cross is represented by

a single point. Distributions for each target site are

shown, and they ranged from 0% to 88.5%.



Figure 4. High-Resolution Melt Analysis

(A) High resolution melt analysis (HRMA) of G0 mosaic yellowmutant flies. Mosaic mutant flies (red) can be easily differentiated from wild-type Oregon R (green)

and nonmosaic (gray) flies by a change in the shape of the melt curve due to heteroduplex formation.

(B) Change in fluorescence relative to control Oregon R and nonmosaic flies highlight the changes in curve shape shown in (A).

(C) HRMA performed as in (A) but for white mosaic flies.

(D) Change in fluorescence as in (B) but for white mosaic flies.

(E) Sequencing of the y1a mutant shows a single point deletion compared to wild-type Oregon R flies at the y1 cleavage site. Target sites are indicated in orange,

the protospacer adjacent motif (PAM) in red, and the cleavage site by a black triangle.

(F) HRMA shows a reproducible shift in the melting curve in a heterozygous point deletion in the yellow gene (y1a, red) in comparison to wild-type Oregon

R flies (gray).

(G) Change in fluorescence highlights the difference in curve shape shown in (F).
perform semitargeted genetic screening, whereby modifier

screens are performed with a library of sgRNAs targeting a

desired subset of genes rather than with random mutagens, or

with RNAi knockdowns of the genes of interest. Although the

system described is able to mutate protein-coding genes

through the generation of frameshifts, the deletions generated

could also be used to remove small functional sites in the
genome, such as transcription factor binding sites, in order to

investigate their role in the regulation of gene expression. This

may be particularly useful for delineation of the functional conse-

quences of changes observed during evolution or disease,

because the system is not limited to Drosophila melanogaster

and can be applied to nonmodel Drosophilids and indeed to

other animals (Hwang et al., 2013; Wang et al., 2013).
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The double-strand breaks generated are predominantly

repaired by NHEJ but can also be repaired by homologous

recombination (HR) (Chapman et al., 2012). Double-strand

breaks have been shown to enhance the rate of homologous

gene targeting at a particular locus (Gloor et al., 1991), increasing

efficiency as compared to current methods (Maggert et al., 2008;

Rong and Golic, 2000). This enables precisely defined

changes to be achieved by coinjection with a homologous

template (Bibikova et al., 2003; Porteus and Baltimore, 2003).

Recent studies have shown that ssDNA oligos can induce small

insertions or deletions when combined with CRISPR-induced

double-strand breaks (Gratz et al., 2013; Wang et al., 2013)

and that homology constructs with larger arms can be used to

integrate longer selection cassettes in Drosophila (Beumer

et al., 2013). When combined with mutations in the DNA ligase

4 (lig4) gene, this was shown to result in high efficiency of gene

targeting inDrosophila (Beumer et al., 2008; Beumer et al., 2013).

The simplicity, efficiency, and power of the CRISPR-based

genome engineering system described here will allow novel

mutations in a chosen gene to be generated within a few weeks

and will undoubtedly facilitate and provide new opportunities for

the study of gene function in Drosophila.

EXPERIMENTAL PROCEDURES

sgRNA Design

We designed sgRNA target sites by seeking sequences corresponding to

GGN18NGG on the sense or antisense strand of the DNA. Off-target effects

were checked through the use of the basic local alignment search tool (BLAST)

applied to the Drosophila genome and visual analysis of the results.

Sequences that perfectly matched the final 12 nt of the target sequence and

NGG PAM sequence were discarded (Cong et al., 2013).

sgRNA Production

PCR was performed with Phusion polymerase (New England Biolabs) in HF

buffer with no template; a unique oligonucleotide encoding the T7 polymerase

binding site and the sgRNA target sequence, GGN18 (CRISPRF =

GAAATTAATACGACTCACTATAGGN18GTTTTA GAGCTAGAAATAGC); and a

common oligonucleotide encoding the remainder of the sgRNA sequence

(sgRNAR = AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTG ATAACGGA

CTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC) in 100 ml reaction

volumes. Reactions were cycled on a GStorm thermal cycler (98�C 30 s,

35 cycles of [98�C 10 s, 60�C 30 s, 72�C 15 s], 72�C 10 min, 10�C N) and

then purified with a PCR purification kit (QIAGEN).

In vitro transcription was performed with the Megascript T7 Kit (Ambion),

with the use of 300 ng purified DNA template for 4 hr at 37�C, and sgRNA

was purified by phenol chloroform extraction and isopropanol precipitation.

sgRNAs were diluted to 1 mg/ml in water and stored in aliquots at �80�C.

Cas9 mRNA Production

Plasmid MLM3613 (Addgene plasmid 42251; Dahlem et al., 2012) was linear-

ized with Pme I (New England Biolabs) and purified by ethanol precipitation.

Cas9 mRNA was produced by in vitro transcription of 1 mg linearized template

DNAwith the use of the mMESSAGEmMACHINE T7 kit (Ambion) and polyade-
Figure 5. Analysis of Off-Target Effects by High-Resolution Melt Analy

(A) High-resolution melt analysis (HRMA) of the putative off-target site in the C

alignment of the off-target site with the y1 sgRNA sequence, indicating the target s

be required for target recognition (Cong et al., 2013) with a black box. The lower pa

wild-type Oregon R flies (gray) and mosaic yellow mutant flies (colored).

(B) HRMA performed as in (A) but for y2 sgRNA off-target sites in CG43672 and

(C) HRMA performed as in (A) but for w1 sgRNA off-target sites in CG13397 and

(D) HRMA performed as in (A) but for w2 sgRNA off-target sites in CG34422 and
nylatedwith the Poly(A) Tailing Kit (Ambion) before purification with the RNeasy

Mini Kit (QIAGEN).

Embryo Injection

We mixed 0.5 mg of sgRNA and 10 mg Cas9 mRNA (approximately 2:1 molar

ratio) in a 30 ml volume with 3 ml 3 M sodium acetate (pH 5.2) and precipitated

it with 3 volumes of absolute ethanol for purification and concentration. After

centrifugation, the pellet was washed twice in 70% ethanol and resuspended

in 11 ml of water prior to injection. Oregon-R embryos were collected for

30 min at 25�C, washed in water, lined up on coverslips, and left to dry and

adhere to the surface. They were injected under a 1:1 mix of halocarbon

700 and 27 oils (Sigma) through the chorion in the posterior end, off center

for avoidance of the thickest part of the chorion. A Femtojet Express

(Eppendorf) was used at an injection pressure of 1,100 hPa with an InjectMan

NI 2 micromanipulator and Femtotip II needles (Eppendorf). Excess oil was

drained off, and embryos were incubated at 25�C in food vials for the

remainder of development.

Genomic DNA Extraction

Genomic DNA was extracted from single flies by homogenization in 50 ml of

squishing buffer (10 mM Tris-HCl [pH 8.2], 1 mM EDTA, 25 mM NaCl,

200 mg/ml proteinase K; Invitrogen), and heating to 37�C for 30 min, followed

by inactivation at 95�C for 2 min.

HRMA

Oligonucleotides were designed to give 100–200 nt products spanning the

presumed CRISPR cleavage site with the use of Vector NTI (Invitrogen).

PCR was performed with Hotshot Diamond PCR MasterMix (Clent

Lifescience) in 10 ml reactions with 1 ml gDNA, 5 ml Hotshot diamond

mastermix, 200 nM each oligonucleotide, and 1 ml LC Green Plus dye (Idaho

Technology). Reactions were cycled on a GStorm thermal cycler (95�C 5 min,

45 cycles of [95�C 20 s, 60�C 30 s, 72�C 30 s], 95�C 30 s, 25�C 30 s,

10�C N). Thermal melt profiles were collected on a LightScanner (Idaho

Technology) (70�C–98�C, hold 67�C) and analyzed with the LightScanner

Call-IT software.
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Supplemental Information

Figure S1. sgRNA Template PCR, Related to Figure 1

Representative gel image of sgRNA template PCR. 5% of the reaction from each sgRNA template PCRwas analyzed on a 1.5% agarose gel. A single band of the

expected size is observed. M – 1 kb ladder (New England Biolabs).
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