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†Department of Engineering Sciences, Uppsala University, Uppsala, Sweden; ‡Division of CBRN Defense and Security, Swedish Defense
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ABSTRACT It is a challenging task to characterize the biodistribution of nanoparticles in cells and tissue on a subcellular level.
Conventional methods to study the interaction of nanoparticles with living cells rely on labeling techniques that either selectively
stain the particles or selectively tag them with tracer molecules. In this work, Raman imaging, a label-free technique that requires
no extensive sample preparation, was combined with multivariate classification to quantify the spatial distribution of oxide nano-
particles inside living lung epithelial cells (A549). Cells were exposed to TiO2 (titania) and/or a-FeO(OH) (goethite) nanoparticles
at various incubation times (4 or 48 h). Using multivariate classification of hyperspectral Raman data with partial least-squares
discriminant analysis, we show that a surprisingly large fraction of spectra, classified as belonging to the cell nucleus, show
Raman bands associated with nanoparticles. Up to 40% of spectra from the cell nucleus show Raman bands associated with
nanoparticles. Complementary transmission electron microscopy data for thin cell sections qualitatively support the conclusions.
INTRODUCTION
The innovative and economic potential of engineered nano-
materials is threatened by a limited understanding of their
impact on the environment and health (1,2). Due to their
small size, small nanoparticles from pulmonary exposure
may deposit deep within the lung and penetrate lung epithe-
lial cells. Iron oxide nanoparticles have been reported to
transfer from the epithelium to blood and tissues, including
liver, kidneys, and spleen (3). In general, the migration from
the lung can take several routes, such as direct transfer into
blood over tissue barriers (alveolar/blood vessel interface),
or via immune cell uptake (e.g., macrophage phagocytosis)
and the lymphatic circulation (4). Exposure to nanoparticles
can affect both the acquired (adaptive) and innate immune
systems (5). It has been shown that one intratracheal instil-
lation of TiO2 nanoparticles exacerbates airway inflamma-
tion in a rat strain that represents susceptible individuals
with immune-mediated inflammatory diseases, which indi-
cates that inhalation of TiO2 nanoparticles may cause a
long-lasting immune response in sensitive individuals (6).
Inhaled nanoparticles can also cause cardiovascular effects,
such as increased coagulation, either directly in the blood
after transfer or indirectly via pulmonary inflammation,
leading to increased systemic levels of cytokines and pro-
thrombotic factors (7). Nanotoxicology has appeared as a
new research discipline in the wake of these developments
to deal with health issues associated with nanomaterials
(4). However, studies have shown that the special character-
istics associated with nanoparticles, such as their size,
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shape, and surface properties, can lead to new risks, which
need to be addressed (8–11).

To understand the toxicity of nanoparticles, we need to
accurately measure how they are distributed in the body after
exposure, and how they interact with pertinent organs and
cells (12). Ideally, biodistribution studies should be per-
formed in vivo, but in vitro models are often needed for
ethical and practical reasons (12). An important issue is to
determine whether nanoparticles cross biological barriers
(12,13), whichmay entail genotoxic effects throughmechan-
ical interference with cellular components such as nucleo-
somes (14). Biodistribution studies are also important in
drug-delivery and diagnostic research, where great efforts
are beingmade to guide drugs to the right location in the body.

The most common method for studying biodistribution in
cells exposed to particles at high magnification is transmis-
sion electron microscopy (TEM). TEM analysis is intrusive
and requires extensive sample preparation, and manual
inspection to distinguish nanoparticles from naturally occur-
ring cell structures. Fluorescence microscopy and confocal
light microscopy are powerful techniques for studying bio-
distribution, but they require intrinsically fluorescent nano-
particles or fluorescence-labeled nanoparticles, and the
cells are usually stained (12). These methods often require
extensive sample preparation, and labeling is intrusive in
the sense that it intrinsically modifies the surface properties
of the nanoparticles, which may lead to biased results. There
is a growing awareness that particles can interact with the
dyes used in conventional cell assays (12,15–17). Similarly,
attaching labeling molecules to the surfaces of nanoparticles
may alter their surface chemical properties, agglomeration
state, etc., and hence alter their intrinsic bio-response
(12). It is therefore necessary to develop new, label-free
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TABLE 1 Physicochemical properties of the nanoparticles

used in this study

Nanoparticle

Specific

surface

area (m2g�1) dXRD (nm) dTEM (nm) DPCCS (nm)f pHIEP

TiO2 50 21a 20–80 110, 2200

(28, 290)

6.3

a-FeO(OH) 100 8.1b, 31.8c 11d, 62e 110, 1800

(18, 190)

9.4

a
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techniques that complement these well-established methods.
Raman spectroscopy is a label-free technique that has the
potential to be used for nanoparticle-uptake studies (18,19).

Various types of Raman spectroscopy techniques have
been used to analyze the spatial distribution of chemicals
in fields such as cancer diagnostics (20), plant science
(21), and archeology (22). Much of the interest in these tech-
niques lies in the possibility to develop methods for auto-
mated and label-free analysis of complex samples, such as
cells (23–25) or tissues (26). In Raman microspectroscopy,
commonly called Raman imaging, a lateral resolution down
to 1 mm can be obtained, and although the depth resolution
is generally lower (typically at least a factor of 2 worse than
in the focal plane), it can be reduced by the use of appro-
priate lenses and laser beam focusing assembly (27). The
Raman spectra give a chemical fingerprint of the chemical
composition in the measurement point, and provide infor-
mation about both biomolecules (the fundamental molecu-
lar vibrations due to proteins, lipids and nucleic acid in
the finger print region) (28) and solid particles (the lattice
vibrations in the far- to mid-infrared region) simultaneously
(19). In contrast to conventional staining techniques, one
can analyze the Raman fingerprint spectra using multivar-
iate classification methods to obtain information about the
spatial location of organelles within the cell (25). The simul-
taneous information about the presence of nanoparticles
makes Raman imaging a label-free method, which poten-
tially can be used for automated and unbiased studies of
the biodistribution of nanoparticles in cells and tissues.

Here, we used hyperspectral Raman imaging in combina-
tion with multivariate classification to quantify the dis-
tribution of nanoparticles in living cells by collecting
hyperspectral images of cells (19). Cells were exposed to
a 80:20 mixture of anatase-phase and rutile-phase TiO2

(titania) nanoparticles and a-FeO(OH) (goethite) nanorods.
In contrast to the rutile-phase TiO2, the anatase phase was
associated with oxidative stress and inflammatory response
in several recent studies (6,19,29). Similarly, a-FeO(OH),
which is a common mineral found in the earth’s crust, was
shown to induce cytotoxic effects in human glioma cells
(30). We found that both types of nanoparticles were present
in the nuclei of living cells after exposure to modest nano-
particle concentrations in cell media (10 mg ml�1), which
is pertinent to many exposure situations (4,31). In contrast
to many previous studies (32–34), we employed a wide
range of exposure times (4–48 h).
Primary grain size determined from Scherrer analysis of the <101>

diffraction peak in XRD.
bAverage primary size determined from the <110> reflection in XRD.
cAverage primary size determined from the <002> reflection in XRD.
dAverage height and width and width of the rod-shaped primary particles

determined from TEM.
eAverage length of the long axis determined from TEM.
fDPCCS denotes agglomerate particle size measured with photon cross-cor-

relation spectroscopy. Multiple numbers indicate multimodal distributions.

Boldface numbers indicate the most abundant mode. Agglomerate size after

sonication is indicated in parentheses.
MATERIALS AND METHODS

Nanoparticles

Powder of titanium dioxide (TiO2) nanoparticles was obtained fromDegussa

AG (Germany). Goethite (a-FeO(OH)) nanoparticles were prepared and

characterized as previously described by Boily et al. (35). The anatase titania

nanoparticles have a truncated tetragonal bipyramidal morphology, whereas

the goethite nanoparticles exhibit a rod-shaped morphology. The physical
properties of the TiO2 and a-FeO(OH) nanoparticles have been reported

in detail in previous publications (19,36,37). In addition, the agglomerate

size in suspensions with 10 mg ml�1 nanoparticles in cell medium supple-

mented with serum was determined by photon cross-correlation spectros-

copy (PCCS) using a Nanophox PCCS instrument (Sympatec, Germany),

and analyzed with the built-in auto-nonnegative least-squares algorithm.

Measurements were performed immediately after preparation, as well as

after 3min of sonication. The presented values are themeanvalues of at least

three measurements. A compilation of these results is shown in Table 1. We

found that in cell media, the TiO2 nanoparticles form agglomerates with a

bimodal size distribution with peaks centered at ~110 nm and 2.2 mm, where

the dominant contribution is from the larger size fraction. A similar bimodal

distribution was found for a-FeO(OH). Sonication breaks the agglomerates

apart, and the size-distribution plots exhibit peaks centered at 18 nm and

190 nm for a-FeO(OH), whereas the peaks for TiO2 are centered at 28 nm

and 290 nm. The small size distributions correspond well with the primary

particle sizes of TiO2 and a-FeO(OH) (19,36). However, the dominant con-

tributions are again from the larger-sized fractions.
Cell preparations

A549 lung epithelial cells (ATCC CCL-185; American Type Culture

Collection) were cultured in RPMI-1640 supplemented with 10% fetal

calf serum and 50 mg ml�1 gentamicin at 37�C in a humidified atmosphere

with 5% CO2. The cells were seeded at a density of 5� 104 cells/ml�1 onto

CaF2 substrates in 12-well culture plates, and allowed to attach overnight

before they were exposed to nanoparticles. Stock solutions of 1 mg ml�1

nanoparticles in phosphate-buffered saline (PBS) pH 7.2 were prepared

and sonicated using an ultrasonic processor operating at 4 W for 3 min,

and then further diluted to 10 mg ml�1 in cell medium. After 4 h or 48 h

incubation with nanoparticle solutions, cell cultures were washed five times

with 1 ml PBS to remove detachable nanoparticles. Thereafter, the CaF2
substrates with cell layers were transferred to glass Petri dishes containing

PBS before Raman spectroscopy was performed. For TEM, cells were fixed

with 2.5% glutaraldehyde in sodium cacodylate buffer (0.1 M), washed

with buffer, postfixed in 1% osmium tetroxide, and embedded in Spurr resin

before sectioning, according to standard procedures.
Raman spectroscopy and TEM

Raman spectra of particle-exposed cells were collected in the 100–

1800 cm�1 spectral region with a Horiba JobinYvon HR 800 UV confocal
Biophysical Journal 105(2) 310–319
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Raman microspectroscope using a continuous Ar ion excitation laser (l ¼
514 nm). A 600 grooves mm�1 grating and a thermoelectric air-cooled

CCD detector were used in all measurements. A 60� (NA¼ 0.9) water im-

mersion objective, immersed in the PBS solutions, was used to focus the

laser light onto the sample and collect the 180� backscattered light. The

laser irradiation power was kept as high as possible without causing damage

to cells (z12 mW). Normal cells, adherent to the substrate, were selected

randomly for analysis. Each cell, exposed for particles for 48 h, was

mapped at 16 spots in 4 � 4 measurement grids evenly spread in fixed

mapping planes (Fig. 1). Raman spectra were acquired for 3 � 90 s in

each of the 16 grid points. The confocal hole was set to 150 mm, which

theoretically yields a 4.5 mm lateral resolution. By using a relatively large

measurement volume (higher than what is possible with our experimental

setup), one can detect Raman signal from a larger number of nanoparticles

distributed with the voxel with a good signal/noise ratio. The separation of

the 4 � 4 measurement grid points was chosen to be 3.5 mm. Raman

mapping was performed on 15 cells exposed to a-FeO(OH), 11 cells

exposed to TiO2, 11 cells exposed to a mixture of a-FeO(OH) and TiO2,

and 10 control cells that were not exposed to nanoparticles.

Single-point measurements were made inside the cell nuclei of cells

exposed to TiO2 nanoparticles for 4 h. These measurements were done

with a smaller confocal hole (100 mm, which corresponds to a lateral

resolution of ~3.4 mm) and longer scan time (10�1 min) to enhance the

signal. The much longer measurement time prohibited us from using a

grid approach similar to that discussed above. In total, 26 cells were

measured in this way.

The positioning of the laser beam was guided by analysis of the C-H

deformation mode at 1450 cm�1 due to proteins and lipids, which typically

exhibits a strong signal inside cells. All spectra with Raman intensity higher

than 100 cps at 1450 cm�1 were considered to originate from the cell and

included in the data set for further analysis.

For TEM experiments, 80 nm sections of cells were contrasted with

uranyl acetate and lead citrate, and analyzed with a Jeol 1230 transmission

electron microscope as described elsewhere (19). Digital images were

captured using a Gatan MSC 600CW camera and analyzed with ImageJ

software (38).
Multivariate classification

Partial least-squares discriminant analysis (PLS-DA) of Raman spectra was

used to determine whether the Raman spectra originated from the cell

nucleus or outside the cell nucleus (39). The analysis was performed in

the 760–1750 cm�1 fingerprint region, where spectral signatures from the

TiO2 and a-FeO(OH) nanoparticles do not interfere. PLS-DA was

performed on mean centered spectra using SIMCA-Pþ (40) after a
FIGURE 1 Example of an optical micrograph of an A549 cell, with the

measurement grid overlaid. Spots marked by O (outside cell nucleus) or

N (nucleus) are included in the PLS-DA model.
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background correction algorithm (41) was employed in the R software

(42). All spectra were frequency shifted so that the well-defined peak

around 1005 cm�1 due to phenylalanine (Phe) ring breathing had its

maximum exactly at 1005 cm�1. The PLS-DA model was trained with

spectra with known spatial location, as determined from corresponding

micrographs. Examples of measurement points that were considered to

be measurements from the cell nucleus and outside the cell nucleus, respec-

tively, are shown in Fig. 1. The PLS-DA model was trained with 80 spectra

(42 from inside the cell nucleus and 38 from outside the cell nucleus).

PLS-DA is a multivariate method whereby the dimensions in data are

reduced by projecting data onto a new variable space (43). The data are

arranged in a X matrix, which contains the independent variables (in this

case, spectra) and a Y matrix, which contains the dependent variables (in

this case, binary information of class membership) and decomposed to

X ¼ TPT þ E and Y ¼ UCT þ G (where E and G are residuals, T and

U are new variables (i.e., scores), P is a loading matrix, and C is weights)

(43). The decomposition is made so that TPTwill be a good predictor for X,

and TCTwill be a good predictor of Y (43). In this way, a linear regression

model is constructed that can be used for prediction of class membership

(39). In this case, all measurements with a predicted value of 0.65–1.35

for either group were classified as measurements from cell nucleus or

outside cell nucleus, respectively. Applying PLS-DA, the information

from the original variables (574 spectral data points) is summarized by

new, much fewer variables. The model dimensions (i.e., the number of com-

ponents) must be selected carefully. We calculated four PLS components,

since the other components mainly contained noise, as determined from

weight plots. The PLS-DA model was evaluated by cross-validation and

thereafter used to classify all measurements by prediction of class

membership.
RESULTS AND DISCUSSION

Multivariate classification

The hyperspectral Raman images consist of voxels defined
by the pixel resolution in xy-space (imaging plane) and
the z-resolution (depth) of the confocal imaging plane, and
the Raman spectra in each of these voxels (19,23). Here,
we used a supervised PLS-DA (19) based on the fingerprint
region of spectra from the hyperspectral images to automat-
ically and unbiasedly determine which voxels originated
from the cell nucleus and outside the cell nucleus (cyto-
plasmic region), respectively. The cell nucleus is the largest
organelle within the cell, and because the spatial resolution
is set relatively low in the experiments (to improve the
signal/noise ratio in Raman spectra within a sufficiently
short acquisition time), we cannot expect to find spectral
signatures that can help discern smaller organelles.

In addition to hyperspectral images, spatial information is
also available from optical micrographs. However, it is
problematic to compare optical micrographs directly with
the corresponding hyperspectral images because micro-
graphs only provide a two-dimensional image, whereas
each voxel in the hyperspectral images represents a sample
volume. This also means that it is not straightforward to pick
out the training set for a multivariate analysis, because we
cannot directly translate micrographs to sample volumes
in the hyperspectral images. In addition, some voxels can
be expected to originate from volumes with overlapping in-
formation from the nucleus, the nuclear membrane region,
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and the cytoplasmic region. However, by examining the
micrographs and comparing them with the superimposed
measurement grids, we can unambiguously identify mea-
surements that originate only from the nucleus or the area
outside the nucleus, respectively (see example in Fig. 1).
These measurements constitute our training set.

The score plot in Fig. 2 a shows the training set plotted on
the first two score vectors. As visualized in Fig. 2 a, there is
a trend that most of the spectra from the cell nucleus group
have negative values on the first score vector. By inter-
preting the weights in Fig. 2 b, we can identify spectral
patterns that are associated with the groups in the score
plot. Comprehensive data and mode assignments of the
molecular vibrations in the spectral region are well docu-
mented in the literature, and it is possible to make accurate
assignments of the major bands (28). As visualized in
Fig. 2 b, Raman bands at 782–788 cm�1 (the n(O-P-O)
mode in DNA/RNA), 1005 cm�1 (the symmetric ring
breathing mode due to Phe), 1095 cm�1 (DNA/RNA, C-C
stretches in lipids and carbohydrates), and 1680 cm�1

contribute to negative values in the first score vector,
whereas bands at 1297 cm�1, 1312 cm�1, 1361 cm�1,
1438 cm�1, and 1589 cm�1 contribute to positive values.
Spectral differences can also be visualized in difference
plots. The mean spectra and standard deviations (SDs) for
the predicted groups are shown in Fig. 3, along with a plot
that illustrates the 95% confidence interval (CI) for the
FIGURE 2 (a) Score plot for the first two PLS components in the PLS-

DA model. Grey dots: observations from the cell nucleus. Black dots:

observations from outside the cell nucleus. (b) PLS weights for the first

PLS component. The positions of Raman bands assigned to DNA are

marked by dots.

FIGURE 3 (a) Mean spectrum and SD (upper and lower curves) for all

measurements predicted to belong to the cell nucleus. (b) Mean spectrum

and SD (upper and lower curves) for all measurements predicted to belong

to the membrane and cytoplasmic regions. (c) 95% CI, as calculated from

Student’s t-test, for the mean difference of the plots in a and b. The positions

of Raman bands assigned to DNA are indicated by dots.
difference in means. Both the cell nucleus and the area
outside the cell nucleus exhibit Raman signatures from a
broad class of proteins. Therefore, most of the spectral in-
formation contained in the fingerprint region associated
with proteins is not specific to the cell nucleus. In contrast,
DNA is present only in the nucleus. The difference plot
shows that spectra assigned to the cell nucleus group have
pronounced Raman bands located at 788 cm�1 (the n(O-
P-O) mode in DNA/RNA), 1005 cm�1 (the symmetric
ring breathing mode due to Phe), 1099 cm�1, 1345 cm�1,
1492 cm�1, and 1682 cm�1 (carboxylic-acid-derived bands)
as compared with spectra assigned to the cytoplasmic (and/
or lipid membrane) region. On the other hand, the group
belonging to the region outside the cell nucleus has stronger
Raman signal in the region between 1290–1314 cm�1 (CH2

twisting in lipids), 1438 cm�1 (CH deformations in lipds)
and 1594 cm�1. The PLS weights (Fig. 2 b) and the differ-
ence plot (Fig. 3 c) show that the cell nucleus and cytoplasm
have spectral patterns that can be used for classification.
Biophysical Journal 105(2) 310–319
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Some Raman bands have a significant difference between
the two groups. However, it is difficult to set a reliable
threshold level for only one Raman band. In contrast,
PLS-DA uses the whole spectral range in the fingerprint
area to unbiasedly and automatically predict the class
membership of unknown spectra.

To evaluate our model, we had (by the same reasoning
discussed for the training set) no test set that could provide
an exact calibration of the spatial location of the voxels.
Therefore, we evaluated the PLS-DA model using cross-
validation. The cross-validation resulted in a Q2-value of
0.64. We also classified all collected voxels in our data set
(624 spectra) and compared them against their apparent
spatial location in the corresponding optical micrographs.
Examples of micrographs and false-color maps, showing
the predicted spatial location, are shown in Fig. 4. Despite
the limitation of not being able to quantify the number of
correctly classified and misclassified spectra with calibrated
training sets, we can see that the classification appears to be
consistent with the micrographs. Spectra near the border
between the nucleus and cytoplasm are often unclassified,
which is not unexpected since they contain spectral signa-
tures for the lipid membrane. A total of 218 spectra were
classified as spectra from the nucleus, 289 spectra were
classified as spectra from the area outside the nucleus, and
117 spectra were not classified (denoted unknown). It
should be noted that even though the Q2-value is relatively
low, it does not reflect how many of the observations were
FIGURE 4 (a) Optical micrograph of A459 cell exposed to a-FeO(OH). (b) P

map showing the Raman intensity of the band at 388 cm�1 corresponding to the E

of A459 cell exposed to TiO2. (e) Pseudo-color map of the classification of eac

638 cm�1 corresponding to the Eg mode in anatase TiO2 for each pixel indicate

the laser beam was focused.
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correctly classified. Of the 80 observations in the training
set, four were classified as having unknown class member-
ship and 76 were correctly classified. When this information
is combined with spectral data from the region containing
the nanoparticle lattice vibrations (100–800 cm�1) to prove
whether the voxels contain nanoparticles or not, reliable
classification of the spatial location of the nanoparticles is
obtained. Fig. 4 shows examples of intensity maps that indi-
cate where nanoparticles are located inside cells.

PLS-DA is a supervised classification method, i.e., it
requires prior knowledge of class membership. A limitation
of applying PLS-DA to our data is that it is difficult to deter-
mine the true class membership from optical micrographs.
One option is to use unsupervised classification methods,
such as clustering methods (e.g., k-means cluster analysis)
(44). In such methods, however, the main variance in the
data must be related to differences between the groups. In
this case, the differences between spectra from the cell
nucleus and the area outside the nucleus are small, and
therefore it is not obvious that an unsupervised method
would be advantageous. Here, we have shown that PLS-
DA is useful for classifying spectra from the cell nucleus
and the area outside the cell nucleus.
Biodistribution of nanoparticles

Raman spectroscopy is a new, promising technique for
studying biodistribution. Meister et al. (45) used Raman
seudo-color map of the classification of each pixel in panel a. (c) Intensity

g mode in a-FeO(OH) for each voxel indicated in a. (d) Optical micrograph

h pixel in d. (f) Intensity map showing the Raman intensity of the band at

d in d. The crosses depicted in a and d show the measurement spots where
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imaging to study the distribution of manganese-based parti-
cles with photo-induced cytotoxic effect. By integrating the
Raman band at 2800–3050 cm�1 (CH stretching), they
could visualize the cell membrane and nucleus membrane
(45). Using the spectral information from nanoparticles,
they concluded, without quantifying the results, that nano-
particles enter the nucleus (45). Shah et al. (46) used
confocal Raman spectroscopy to visualize polyethylene-
coated gold nanoparticles in cells. They studied two to three
cells exposed to nanoparticles for 2 h, 12 h, and 24 h (46).
The cell nucleus as well as the nucleoli could be resolved
in the images, which were constructed by integrating the
CH stretching band at 2800–3050 cm�1 (46). They found
that nanoparticles reached the perinuclear region after
24 h of exposure (46). TEM showed nanoparticles in vesi-
cles near the nucleus after 24 h of exposure time (46).
Lamprecht et al. (47) used the CH stretching mode to iden-
tify organelles in cells. Using Raman spectroscopy, they
were able to localize functionalized carbon nanotubes inside
cells, primarily accumulated around the nucleus but not
inside the nucleus (47).

Raman spectroscopy is a method that can be applied in
studies of photosensitive samples, such as living cells
(25–27). However, it is important to be aware of possible
photo-damaging effects of the laser. Puppels et al. (48) re-
ported reduced cell viabilities in a limited number of cells
after 5 min exposure to a 514 nm laser wavelength with
0.5 mW power and a laser spot size of ~1 mm. In contrast,
Kang et al. (49) used a 514 nm laser with 1 mW output
power and short measurement time (1 s), and could not
notice any damage to cells. Knief et al. (23) used the
same laser wavelength with 23 mW laser power for studies
of live cells, but employed much longer exposure times
(each spectrum was collected for 90 s and each cell was
mapped with 75 spots) (23). Unfortunately, possible photo-
damage effects were not discussed in that study. We chose to
measure only normal cells adherent to the substrate, and
after obtaining the measurements, we used microscopy to
study possible photodamage by counting blebs. We did
not observe any photodamage, which we attribute to the
larger laser spot size employed here (>3 mm) compared
with that used in, e.g., the study by Puppels et al. (48).

In most biodistribution studies, TEM or confocal micro-
scopy is used. In general, because the types of nanoparticles,
cell lines, doses, exposure times, and analytical methods
vary among the reported studies, it is difficult to compare
the results. Moreover, there is also a large spread in the num-
ber of cells investigated in each study. Panté and Kann (50)
studied the biodistribution of gold nanoparticles, which they
intentionally prepared to be taken up in the cell nucleus by
coating them with a-importin and b-importin, to investigate
the maximum size of particles that can be transported via
nuclear pores. The nanoparticles were 22, 26, or 36 nm in
diameter, and for each size they studied both coated and
uncoated particles (50). Four cells were analyzed in each
group and the number of analyzed particles was 100–300
(50). They found that none of the largest particles entered
the nucleus, whereas 35–36% of the smallest nanoparticles
entered the nucleus and ~28% of the 26 nm particles entered
the nucleus (50). Other biodistribution studies focused on
the distribution of particles that were not intentionally pre-
pared to be taken up by cells. Singh et al. (51) exposed cells
to fine (40–300 nm) TiO2 and ultrafine (20–80 nm) TiO2 for
4 h. Using TEM, they found nanoparticles mainly in the
vacuoles inside the cells. In one case, nanoparticles were
also observed in the cell nucleus (51). Hackenberg et al.
(33) studied cells exposed to TiO2 for 24 h, and an analysis
of >100 cells revealed that only five cells had nanoparticles
in the cytoplasmic region and only one had nanoparticles in
the nucleus. Dam et al. (52) studied the interaction of cells
and gold nanoparticles coated with an anticancer drug, using
TEM and confocal fluorescence microscopy. Confocal fluo-
rescence microscopy indicated that nanoparticles were
localized near the nucleus, and an analysis of >100 TEM
sections revealed deformation of the nuclear envelope in
60% of the cells (52). Nanoparticles were found near the
nuclei, but nanoparticles inside the nuclei were not reported
(52). Yehia et al. (53) used confocal Raman microspectro-
scopy and TEM to study the uptake of single-walled carbon
nanotubes in HeLa cells. Using TEM, they compared eight
control cells with 10 cells exposed to carbon nanotubes and
found that the cells exposed to nanoparticles contained
nanotubes in the vacuoles in the cytoplasmic region, but
did not find any evidence of particles in the cell nucleus
(53). They used Raman spectroscopy to confirm that carbon
nanotubes were internalized in the cells, and presented the
Raman spectra of carbon nanotubes in both the cytoplasmic
and nuclear region (53). However, the authors stressed that
the nanoparticles may have been located in the perinuclear
region, and not inside the cell nucleus, because the measure-
ment volumes (voxels) were relatively large (53).

Here, we quantified the distribution of nanoparticles
inside cells by the measured intensity distribution of the
Eg mode at 638 cm�1 in anatase TiO2, and the Eg mode at
388 cm�1 in a-FeO(OH), as shown in Fig. 5. The threshold
level to determine whether a nanoparticle could be identified
in a voxel was set to 50 cps, which is a modest threshold, and
gives an estimate of the lower bound of the particle concen-
trations. We chose not to use the more intense TiO2 Egmode
at 145 cm�1 because we found that it showed large varia-
tions between different measurements due to the holograph-
ic notch filter used to prevent the laser light from reaching
the detector, which partly attenuated the signal in this
region. In contrast to other studies in which Raman spectros-
copy was used for biodistribution studies, we used multi-
variate classification to determine which voxels originated
from the cell nucleus or the area outside cell nucleus.
With the PLS-DA model at hand, the occurrence of specific
Raman bands due to nanoparticles can now be associated
with their spatial location in the cell determined by their
Biophysical Journal 105(2) 310–319



FIGURE 5 Raman spectra of TiO2 and a-FeO(OH) nanoparticles. The

intense band at 322 cm�1 is from the CaF2 substrate.
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class membership. In Fig. 4, results from this analysis are
shown in the form of pseudo-colored images, which depict
the results from the spatial classification along with intensity
maps of the TiO2 band at 638 cm�1 and the a-FeO(OH)
band at 388 cm�1, respectively. Fig. 6 shows the percentage
of measurements from different spatial locations that exhibit
Raman signatures due to either TiO2 or a-FeO(OH), or
mixtures of TiO2 and a-FeO(OH). A remarkably high
fraction of the voxels that are classified as belonging to
the cell nucleus also contain nanoparticles (37%, or 21 out
of 57 observations, for TiO2; 32%, or 23 out of 73 observa-
tions, for a-FeO(OH); and 23%, or 11 out of 47 observations
for the TiO2/a-FeO(OH) mixture). Despite their different
shape, isoelectric point (pHIEP), and primary particle size,
the difference in nanoparticle uptake is small. Interestingly,
Fig. 6 also illustrates that approximately the same number
of nanoparticles are located inside the cell nucleus after
4 h of exposure (42%, or 11 out of 26) as compared with
48 h of exposure.

TEM images were also obtained from sections of nano-
particle-exposed cells. Although there is a question as to
whether the TEM images represent the pristine three-dimen-
sional location of the particles, without the influence of
sample preparation, it is clear that agglomerates of nanopar-
ticles in the size range of 30 nm to 3.2 mm can be seen inside
Biophysical Journal 105(2) 310–319
cells. The TEM images shown in Fig. 7 are examples of
images in which well-resolved nanoparticles are seen in
the cells. More TEM images of cells exposed to nanopar-
ticles can be found in the Supporting Material. Large parti-
cle agglomerates are visible inside vacuoles (Fig. 7, a–c)
and close to lamellar bodies (Fig. 7, a and c). However,
nanoparticle agglomerates can also discerned inside the
cell nuclei (Fig. 7, a–c), in qualitative agreement with the
hyperspectral Raman image analysis. Fig. 7 a shows a cell
exposed to a-FeO(OH) for 48 h. A smaller dark dot in the
cell nucleus indicates that nanoparticles also may have
entered the cell nucleus. The cell in Fig. 7 b is one of a
few examples of cells exposed to TiO2 for 48 h that also
exhibit dots, which can be unambiguously identified as
small nanoparticle agglomerates located in the cell nucleus.
In a few images, nanoparticles are also observed on either
side of the nucleus membrane (Fig. 7 c), which gives indi-
rect support for a mechanism that involves transport of
nanoparticles across the membrane. We note that the
discrepancy is apparently large between TEM and Raman
mapping regarding the number of cells with nanoparticles
in the cell nucleus. In all cells studied in TEM (30 images
in total), nanoparticles were visible in the cytoplasmic re-
gion, but only in two images of cells exposed to TiO2, nano-
particles seemed to have entered the cell nucleus. This is
consistent with the results of Hackenberg et al. (33) and
Sing et al. (51), which showed that only a limited number
of cells had nanoparticles internalized in the cell nucleus.
Four of the cells in our TEM images of cells exposed to
a-FeO(OH) and four of the cells in our TEM images of cells
exposed to the nanoparticle mixture had suspected nanopar-
ticles in the cell nucleus. The apparent difference between
the TEM and Raman mapping results concerning the abso-
lute number of nanoparticles detected inside the nucleus
may be due to several reasons. First, the granular nature of
the cell structure makes it difficult to discern small nanopar-
ticles (down to primary particle size) in bright-field TEM
(only particles with a Feret diameter > 28 nm can be
resolved in our data set). Second, during preparation, the
FIGURE 6 Bar charts showing the percentage of

measurements from outside the nucleus, inside

the nucleus, and unknown locations, as deduced

from the PLS-DA model, which shows characteristic

Raman bands due to (a) anatase TiO2, (b)

a-FeO(OH), or (c) mixtures of a-FeO(OH) and

TiO2. The asterisk (*) in panel a shows the result

from single-point measurements after 4 h of

exposure.



FIGURE 7 TEM images of sections of A549 cells exposed to (a) 10 mg

ml�1 a-FeO(OH) nanoparticles, (b) 10 mg ml�1 TiO2 nanoparticles, or (c)

10 mg ml�1 of a-FeO(OH) and 10 mg ml�1 TiO2 nanoparticles.
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knife may damage sections containing larger particles
during microtome sectioning (typically the sections are
80 nm, although many aggregates are larger), thus further
biasing the selection of cell sections used in the TEM anal-
ysis (we discarded several sections due to damaged cell
structure; a few with not as severe damage can be found
in the Supporting Material). On the other hand, the Raman
mapping collects spectral contributions from all nanopar-
ticles, even the smallest, located inside the measurement
volume in a randomized set of cells (see Materials and
Methods). As discussed above, we can exclude significant
off-focal plane contributions, and therefore assume that
the Raman signal originates mainly from inside the nucleus
in the examples shown in Fig. 4. However, one can over-
come the difficulty of distinguishing nanoparticles from
cell structures in bright-field TEM by using energy-disper-
sive x-ray (EDX). This approach was recently used by Mu
et al. (54) to study the uptake of 14 nm silica particles in
A549 cells, and Wang et al. (55) to study the uptake of
40 nm CuO nanoparticles in A549 cells. Further TEM
studies combined with chemical identification (such as
EDX) should be performed to firmly resolve the apparent
discrepancy between quantitative TEM and Raman map-
ping of the biodistribution of nanoparticles in cells.

The mechanisms underlying nuclear internalization of
nanoparticles are to a large extent unknown. Smaller mole-
cules are transported to the cell nucleus through nuclear
pores by means of passive diffusion, whereas larger mole-
cules (and proteins) must interact with transport receptors
to enter the cell nucleus (50,56). The nuclear pore transport
mechanism may seem to exclude nanoparticles in the size
ranges employed here, simply because they are too large.
In addition, it is expected that proteins are adsorbed on these
nanoparticles (57), which makes them even larger. Never-
theless, nanoparticles have been reported to be localized
inside cell nuclei in several studies (33,50,51,58,59), and
these findings remain to be explained. Panté and Kann
(50) studied the transport of gold nanoparticles of different
sizes and suggested that nanoparticles up to 39 nm can enter
the cell nucleus through a receptor-regulated nuclear pore
transport mechanism. Kim et al. (60) discussed the role of
the cell cycle in cellular uptake and concluded that internal-
ized nanoparticles are split between daughter cells after cell
division. The epithelial cells in our cultures divide once per
19 h and are in different cell-cycle phases during the particle
exposure. Nanoparticles may thus enter the cell nucleus dur-
ing cell division, particularly after 48 h of incubation time.
However, the data from cells exposed to TiO2 nanoparticles
for 4 h (Fig. 6 a) show that approximately the same fraction
of nanoparticles are also found inside the cell nucleus after
very short incubation times, much shorter than the cell-cycle
time. This strongly indicates that cell division is not the
main route for nanoparticle entry into the cell nucleus.
Thus, it appears that despite their size, nanoparticles can
cross the nuclear membrane as small, possibly protein-
covered primary particles. To reconcile this notion with
the fairly large agglomerates observed in TEM, we propose
that nanoparticles reagglomerate as a function of time inside
the nucleus after an extended incubation time (up to 48 h in
our case). In support of this mechanism is the more-acidic
environment in the vicinity of lipid membranes, which in
principle would promote particle deagglomeration (and
Biophysical Journal 105(2) 310–319
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even dissolution of ions, although this is unlikely for the
nanoparticles studied here). The TEM data, which unambig-
uously show that there is a higher propensity for nanopar-
ticles to be close to the lipid membranes in cells, clearly
demonstrate the possibility of such a mechanism. We thus
propose a mechanism whereby agglomeration-deagglomer-
ation of nanoparticles below a critical primary particle size
determines the nuclear uptake.
CONCLUSIONS

This study shows that multivariate data analysis of hyper-
spectral Raman images can be used to determine the
biodistribution of nanoparticles inside living cells quantita-
tively without the need for staining protocols. In particular,
we have quantitatively shown that a surprisingly large
fraction (up to ~40%) of the investigated voxels associated
with the cell nucleus contain nanoparticles, irrespective of
short (4 h) or long (48 h) exposure times. A deagglomeration
mechanism, enhanced by the acidic environment close to
the lipid nuclear membrane, is proposed to explain the find-
ings. Upon internalization in the nucleus, the nanoparticles
reagglomerate and are observed as larger agglomerates in
microscopy. These findings are important for understanding
the toxicity of nanoparticles, and provide evidence of direct
(or short-distance) interactions between nanoparticles and
DNA as a cause of genotoxicity.

More generally, we conclude that generic methods of
classifying hyperspectral images can be used in numerous
biomedical applications to make spatiochemical maps of
complicated matrices. By the same token, it may even be
possible to differentiate possible biochemical modifications
inside cells induced by nanomaterials or chemicals (23).
Combined with the recent technological developments in
Raman imaging (e.g., improved signal/noise ratio, higher
spatial resolution, tenable laser excitation wavelengths,
and reduced acquisition time) (61,62), this promises further
progress in this area.
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Transmission electron micrographs of A549 cells exposed to TiO2 
nanoparticles for 48 h 

 



 

 

 



 

 

  



Transmission electron micrographs of A549 cells exposed to α-FeO(OH) 
nanoparticles for 48 h 
 

 

 



 

  



Transmission electron micrographs of A549 cells exposed to TiO2 and α-
FeO(OH) nanoparticles for 48 h 
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