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Methods 
Unless otherwise indicated, all crystallographic structure and post simulation analysis was performed with the 
Bio3D package (1) available from < http://thegrantlab.org/bio3d/ >. Atomic coordinates for all 
crystallographic structures homologues to the α-subunit of transducin (Gαt) were obtained from the RCSB 
Protein Data Bank (2). Structures with unresolved residues in the switch regions were excluded from analysis 
leading to a dataset containing 53 structural species (See Table S2 for full details). Prior to assessing the 
variability of the structures, iterated rounds of structural superposition were performed to identify the most 
structurally invariant region. During the procedure, residues with the largest positional differences (measured as 
the volume of an ellipsoid determined from the Cartesian coordinates of the Cα atoms) were removed, before 
each round of superposition, until only invariant core residues remained (3). The identified “core” structure, 
which consisted of residues 32-52 (β1-Ploop-α1), 195 (β3), 216-226 (β4), 239 and 242-247 (α3), 260-274 (β5-
αG), 279 and 282-283 (the loop between αG and α4), 295-304 (α4), and 317-336(β6-α5), was used as the 
reference frame for the superposition of both crystal structures and conformations from MD simulations. 

     Atomic coordinates for the Gs protein α subunit (Gαs) from the β2AR-Gs complex structure (PDB ID: 3SN6; 
(4)) were also used to evaluate simulation results. Structural information for missing residues in Gαs was 
generated with MODELLER 9.11 (5), using the average structure of the Gαt dataset as a template.  
 
Molecular dynamics 

All simulations were performed with the AMBER12 package (6) and the all-atom force field ff99SB (7). 
Additional parameters for guanine nucleotides were taken from Meagher et al. (8). The Mg2+·GDP-bound 
transducin crystal structure (PDB ID: 1TAG; (9)) was employed as the starting point for both GDP bound and 
nucleotide free simulations. In addition, the Mg2+·GSP (PDB ID: 1TND; (10)) structure was used as the start for 
GTP bound simulations, where the sulfur atom (S1γ) in the GTP analog, GSP (5'-guanosine-diphosphate-
monothiophosphate), was replaced with the corresponding oxygen (O1γ) of GTP. In our model, basic residues 
like Arg and Lys were protonated, while acidic residues like Asp and Glu were deprotonated. The protonation 
states for His residues were determined based on an inspection of residues local environment and their pKa 
values calculated with PDB2PQR (11). To examine the sensitively of our results to altered His protonation, we 
performed an additional set of simulations using different initial protonation state assignments. These results, 
detailed in Fig S8, indicate an overall robustness to our initial protonation state assignments. 

     Simulation structures were solvated in a truncated cubic box of pre-equilibrated TIP3P water molecules, 
which extended 12 Å in each dimension from the surface of protein atoms. Sodium counterions (Na+) were 
added to neutralize the systems. Energy minimization was performed in four stages, with each stage employing 
500 steps of steepest decent followed by 1500 steps of conjugate gradient using constant-volume periodic 
boundary conditions. First, solvent only minimization with fixed protein and ligand solute atoms. Second, fixed 
backbone with free side-chain and ligand atoms. Third, fixed solvent with free solute atoms. Finally, all atoms 
were relaxed without restraints. Following minimization, 10ps of molecular dynamics (MD) simulation was 
performed to heat the system from 0K to 300K in a NVT ensemble. To bring systems to the correct density, a 
further 1ns of equilibration simulation was then performed using an NPT ensemble (T=300K, P=1bar). 
Production phase 40-ns conventional MD (cMD) and 100-ns accelerated MD (aMD) simulations were then 
performed at constant temperature (300K) and constant pressure (1bar). For both energy minimization and MD 
simulations, the particle-mesh Ewald (PME) summation method was adopted to treat long-range electrostatic 
interactions. In addition, an 8Å cutoff was used to truncate the short-range nonbonded VDW interactions. 
Additional operational parameters for molecular dynamics included a 2fs time step, removal of the center-of-
mass motion at every 1000 steps, and update of the nonbonded neighbor list every 25 steps. The SHAKE 
algorithm was also used to constrain all covalent bonds involving hydrogen atoms. 
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Accelerated molecular dynamics 

Accelerated molecular dynamics (aMD) is an enhanced sampling method that aims to capture the long-time 
dynamics of solvated biomolecules. aMD has been shown to increase conformational sampling over 
conventional MD (cMD) and has been successfully applied to a wide range of applications and biological 
systems (12-18). This method adds a non-negative boost potential, ΔV(r), to the original potential energy V(r) 
every time V(r) is below an energy threshold E (Equation 1). This has the effect of easing the crossing of energy 
barriers and increase the rate of escape from energy basins (19),  
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where α modulates the depth and the local roughness of the energy basins in the modified potential. In this work, 
to enhance the sampling of both torsional degree of freedom and diffusive motions, we employed the dual-
boosting version of aMD, which is based on applying boost potentials separately to torsional and total potential 
energy terms (20), 

V (r) =V0 (r)+Vt (r)
V *(r) = V0 (r)+ Vt (r)+ΔVt (r)[ ]{ }+VT (r)

                                            (2) 

where Vt(r) is the total potential of the torsional terms, ΔVt(r) and ΔVT(r) are the boost potentials for the torsional 
terms, Vt(r), and the total potential VT(r), respectively. Here VT(r)=V0(r)+Vt(r)+ΔVt(r). The parameters E and α of 
both torsional and total boost potentials were set empirically. Specifically, for total potential, we set αT=0.2Natomε 
and ET=<VT(r)>+αT, where Natom is the number of atoms in the system and ε=1.0kcal·mol-1. For torsional terms, 
we set αt=0.7Nresε and Et=3.5Nresε +<Vt(r)>+αt, where Nres is the number of protein residues. The average 
potential energy used in above equations was derived from the 1ns equilibration cMD simulations (See above).  

  

Principal components analysis 

Principal component analysis (PCA) was performed for both crystallographic structures and MD trajectory 
snapshots to capture and characterize inter-conformer relationship. The application of PCA to both distributions 
of experimental structures and MD trajectories, along with its ability to provide considerable insight into the 
nature of conformational differences in a range of protein families has been previously discussed (21-24). 
Briefly, PCA is based on the diagonalization of the covariance matrix, COV, with elements COVij calculated 
from the Cartesian coordinates of Cα atoms, r, after the superposition of all structures under analysis: 

COVij = ri − ri( ) ⋅ rj − rj( )                                                      (3) 

where i and j enumerate all possible pairs of 3N Cartesian coordinates (N is the number of atoms being 
analyzed). The eigenvectors of COV, referred to principal components (PCs), form a linear basis set matching 
the distribution of structures. The variance of the distribution along each eigenvector or PC is given by the 
corresponding eigenvalue. Projection of the distribution onto the subspace defined by the largest PCs (along 
which the structural variance is the largest) provides a low-dimensional representation of structures facilitating 
inter-conformer analysis. The residues used to calculate the covariance matrix and subsequent PCs are dependent 
on cases: For the analysis of entire protein, we chose the residues where there is no gap at the same position in 
the alignment of available experimental structures; On the other hand, for analyzing the variance in one specific 
domain, we used a subset of the residues defined above that belong to that domain. We defined the Ras-like 
domain (RasD) as residues 27-56 and 174-340 and the α-helical domain (HD) by residues 57-173.  
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Conformer clustering 

PCA for the HD of conformers predicted by all the nucleotide free aMD and cMD simulations was performed. 
For each trajectory, snapshots of protein structure were taken every 25 frames (i.e. a time-interval of 50ps). After 
superposition of all selected conformers based on the “core structure” (See above), Cα atoms of HD were chosen 
to perform the PCA. The results showed consistent “out-of-plane shifting” and “in-plane rotation” motions to 
those revealed by PCA of each individual trajectory (Fig. S3 and Fig. S5). We then clustered the conformers 
with the k-means method, with structural dissimilarity defined by Euclidean distance based on the first 10 PCs. 
Note that the first 10 PCs account for almost 99% structural variation of the HD. We obtained six clusters 
representing six metastable states visited by Gαt during the domain opening: One close form, two open forms 
along the two dominant modes of the HD motion, and three intermediate half-open forms (Fig. S5). 
Representatives of clusters were selected as the conformers that were closest (by root-mean square deviation, 
RMSD) to the centers of clusters, and they were considered for further dynamical network analysis (See below).  

 

Contact activity analysis 

Analysis of rare contact formation and breaking events associated with conformational changes was performed 
with TimeScapes (version 1.2.2) (25). TimeScapes employs a contact matrix built from distances between 
residues along with a median filter and Gaussian kernel to monitor the fraction of significant contact formation 
and breaking events per trajectory segment. For the current analysis, we used the same residue subset used for 
the PCA on crystal substructures (i.e. equivalent positions found in all crystal structures). In addition, only the 
residue pairings from different domains were considered (inter-domain contacts). Side chains were considered in 
contact if their distance was between 6Å and 7Å. The half width median filter was set to a value of 6ns.  

 

Cross-correlation and dynamical network analysis 

To identify protein segments with correlated atomic motions the cross-correlation coefficient, Cij, for the 
displacement of all residue pairs, i and j, was calculated. In addition to analysis of aMD trajectories, we 
performed three 40ns cMD simulations, with initial conformations taken from GTP bound crystallographic 
structure (PDB ID: 1TND), GDP bound crystallographic structure (PDB ID: 1TAG), and the open conformer 
predicted by nucleotide free simulations. To further verify the robustness of results, two additional independent 
40ns cMD simulations for GTP and GDP states were also performed. From these simulations we calculated the 
maximum cross-correlation between heavy atoms belonging to each residue pair i and j:  

Cij =max Cmn
a = Δrm ⋅ Δrn / Δrm

2 Δrn
2( )

1/2
m ∈ A(i),n ∈ A( j){ }                            (4) 

where Δrm is the displacement from the mean position of the mth atom of residue i determined over the length of 
the simulation and A(i) the set of all heavy atoms belonging to residue i. The nucleotide and Mg2+ were also 
included in the calculation; For the nucleotide, all heavy atoms were split into two parts, treated as two residues, 
which represented the base and the phosphate regions, respectively. 

     A network of residue-residue and residue-ligand coupling was built, with nodes defined by the Cα atoms for 
each amino acid, Mg2+, PA atom for the phosphate and N9 atom for the base region of the nucleotide. Using 
these data dynamical networks were constructed following the method of Luthey-Schulten and colleagues (26). 
In this approach a weighted graph is constructed where each residue represents a node. Two nodes are connected 
in the network if they are in contact during the trajectory segment under analysis; i.e., their closest heavy atoms 
are within 6.0 Å for 75% of simulation frames. Edges between nodes i and j are weighted (wij) by their 
respective correlation value (Cij): 
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                                        Wij = − log Cij( )                                                                         (5) 

Hierarchical clustering was used to generate aggregate nodal clusters, or communities, that are highly correlated 
and within close physical proximity. Network analysis concepts (i.e., shortest path, centrality, and suboptimal 
path analysis) were used to identify prominent nodes and paths in the network using the VMD dynamical 
network analysis plugin (27). In addition, network topology graphs were generated with Cytoscape 2.8.3 (28), in 
which circles represented communities and lines the connections between communities. The circle radius 
indicated the number of residues in the community and the lines width was scaled by the maximal betweenness 
of the edges that connected the two communities.  
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Figure S1. Results of principal component analysis on Gαt's crystallographic structures. (A) 
Superposition of the crystallographic structures, with switch regions colored by nucleotide state (red for 
GTP, green for GDP). (B) Mapping of the crystallographic structures onto the PC1-PC2 planes.  Inset 
is the mapping of the structures onto the PC1-PC2 plane constructed on the RasD regions alone (i.e. 
with the exclusion of the α-helical domain). (C) Proportion of variance for the top eigenvalues (left) 
and the dominant modes of motion (arrows) revealed by PCA (right). 
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Figure S2. Comparison of sampling among simulations. Conformers from each 100ns simulation 
trajectory (blue points) are mapped onto the first two principal components (PCs) obtained from 
analysis of the crystallographic structures. Yellow and magenta points depict the first and last frames of 
each trajectory. Inset, mapping based on the PCA with excluding the α-helical domain.  
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Figure S3. Principal component analysis of a single nucleotide-free aMD simulation. (A) The 
proportion of variance for the top 20 eigenvalues. (B) Superimposition of the initial (green) and open 
form (pink) conformers from the simulation onto the open Gαs from the β2AR-Gs complex structure 
(orange). The Ras-like domain is relatively stable and is only shown for the initial MD conformer for 
clarity. (C) Dominant modes of motion (arrows) from PCA. Protein is represented as tubes with color 
indicating the mobility: Blue (low) to red (high). 
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Figure S4. Comparison of dominant motions among simulations. The absolute value of the inner-
product between the principal components (PCs) derived from PCA of different simulation trajectories 
are shown (gray bars). Red lines are the geometric accumulation of the product along the x-axis. 
Simulations are performed under nucleotide-free conditions except for those explicitly indicated on the 
x-axis. Besides that with the default parameters, multiple nucleotide free aMD simulations were 
performed, with boost potential for torsional angle either reduced or completely removed. 
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Figure S5. Clustering of conformers from nucleotide-free simulations. Centers of clusters are 
indicated as circles with representative structures depicted as cartoon and colored by residue index. The 
proportion of variance for top eigenvalues and the dominant modes of motion of the trajectory principal 
components (arrows mapped onto the protein structures) are also shown. 
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Figure S6. Dynamics of nucleotide-free aMD 
simulations characterized by the breaking 
and formation of inter-domain amino acid 
side-chain contacts. The red and green areas 
show the rate of contact breaking and formation 
respectively, while the gray area depict the rate 
of contact change as a whole (contact forming 
and breaking). The green and red lines in the 
molecular structure snapshots indicate the 
location of contact forming and breaking events 
as determined by the TimeScapes package (See 
Methods for further details). The color bar 
displayed on the bottom shows the transitions of 
the protein among distinct structural clusters, 
with color code the same as used in Fig. S5. 
Besides that with the default parameters, 
multiple nucleotide free aMD simulations were 
performed, with boost potential for torsional 
angle either reduced or completely removed. 
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Figure S7. Nucleotide associated differences in dynamic coupling calculated from 40-ns cMD 
simulations independent of those discussed in the main text (Fig. 1B-C). 

 

 
Figure S8. Nucleotide associated differences in dynamic coupling calculated from 40-ns cMD 
simulations with protonation states of histidine residues different from those discussed in the 
main text (Fig. 1B-C). 
 

Movies are available from <https://vimeo.com/user17469580/videos> 
Movie S1. The opening of HD predicted by nucleotide free aMD simulation. 

Movies S2-S4. Dynamic views of the dynamical coupling and community networks for the GTP, 
GDP, and APO states, respectively. 

 



 

14 

 Table S1. Key residues identified from the dynamical network analysis 

 Location Nucleotide state References 

Nucleotide-residue coupling 

A37 P-loop GTP - 

G38-I45  P-loop Both - 

D146 N-terminus of αE GDP - 

R172, S173 αF GDP - 

R174  Switch I Both  Zielinski, et al., 2009(29) 

V175 Switch I Both - 

K176, T177 Switch I GTP - 

D196 C-terminus of β3 Both - 

V197 C-terminus of β3 GTP - 

N265-D268 Lβ5-αG Both - 

C321 Lβ6-α5 Both - 

A322 Lβ6-α5 Both Zielinski, et al., 2009(29) 

Inter-domain residue-residue coupling 

T44::L171, Q48::L171 α1::αF GDP - 

K47::F65, K50::Y57, K50::E61, 
G56::E61 

α1::αA GDP - 

K47::V170, K47::L171 α1::αF Both - 

K47::S173 α1::αF GTP - 

D55::Y57, G56::S58 α1::αA Both - 

I68::R174, I68::V175, N72::R174 αA::Switch I GDP - 

A139::M228, S140::D227, 
Q143::M228, Q143::V229, 
L144:M228 

αD::Switch III GDP - 

S140::M228 αD::Switch III GDP Remmers, et al., 1999(30) 

D146::K266  αE::Lβ5-αG GDP - 

Y151::R174 αE::Switch I GTP - 

R172::R174, S173::V175 αF::Switch I Both - 
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