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Supporting Material: Methods 

Field Potential for Mass Transport 

 The field potential is used to create a forcing function that drives platelets away 

from a high hematocrit, represented by: 

Equation S1 

( ) ( )
plateletplateletRBCRBC cc φψψ ∇=∇∇=∇ ,  

RBCs use a typical field potential, corresponding to Fick’s law. However, the platelet 

field potential is defined as a function of hematocrit. Platelets are assumed to respond 

passively to RBCs without influence on the RBC motion. Platelets are assumed to move 

down a RBC gradient, but as a function of the platelet number, providing the first half of:  

Equation S2 

( ) ( )
plateletplateletplatelet cc ∇+∇=∇ φφψ

 

Platelets also move down their own concentration gradient, defined as the second half of 

Eq. S2. The potential in the second half is a function of hematocrit due to the likelihood 

for a collision with another cell. These terms are distinct from enhanced diffusivity 

because enhanced diffusivity defines the rate at which transport occurs, as opposed to the 

direction. However, the field potential drives the platelets in a specific direction that 

should be a function of the colloidal components in the flow. As both gradients reach 

equilibrium or as one particle concentration becomes 0, the transport across streamlines 

goes toward 0. In this regard, when hematocrit is 0, platelets are dependent on thermal 

diffusivity, which is negligible in comparison to situations where RBCs are present. 

Therefore, Eq. 1 was chosen as the simplest form of a field potential that incorporates 

platelets and RBCs into the model based on the requirements for platelet motion in a 
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directed path. The sensitivity for this choice can be determined by comparing case ii and 

case iii in Figure 3.  
 

Concentration Profiles Applied at Inlet and Drift Term for Platelets and RBCs 

A concentration profile for red blood cells (RBCs) is required for the drift term 

used in the model and is also used as an inlet profile condition for RBCs. We assumed a 

blunt RBC concentration profile to best match the profile shown in Aarts et al. (26).  The 

profile was created by assuming that the profile followed a hyperbolic tangent, which is 

the same form as a profile presented by Hund and Antaki (35): 

Equation S3 

( )[ ]( )δβλ −+= RrcRBC /tanh11  

where while β and δ  are used to shape the profile. Values for these constants are 

determined by a curve fit to Aarts et al. (26).  These constants are sufficient for the drift 

function.  However, the constant, λ1, is also required to define the concentration profile 

supplied as an inlet boundary condition for RBCs. The value for λ1 can be estimated by 

equating the average hematocrit with the area-average of Eq. S1 across a straight vessel 

with the radius, R.  Upon integration, λ1 is substituted into Eq. S1, resulting in: 

Equation S4 
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where RBCc  is the area-averaged RBC concentration across the vessel at the inlet.   

 For the initial concentration profile of platelets, the profile was determined under 

the assumption that the flux across the vessel radius is equal to zero.  The profile of 
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platelets is controlled by the field potential, Eq. 4, resulting in an inverse relationship 

between the RBC and platelet profile, which is related by a constant, λ2:   

Equation S5 

RBC

platelet
C

C 2λ
=

 

The constant for the platelet concentration profile can then be estimated based on the 

known inlet average concentration of platelets and a known RBC concentration profile:   

Equation S6 
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 where plateletC  is the area-averaged platelet concentration at the inlet. 

Deriving the Leveque Model for a Cylindrical Vessel 

 The convection-diffusion equation is simplified to develop an expression for 

platelet deposition rates based on transport for estimating the rate of thrombus growth.  

The model consists of flow through an axisymmetric straight cylindrical vessel.  We 

simplify the convection-diffusion mass transport equation by eliminating the unsteady 

term, since thrombus grows at a maximum of approximately 2 platelets/µm
2
-min and 

platelets enter a coronary artery at a rate that is an order of magnitude higher, 64 

platelet/µm
2
-min (Jin=Q plateletC /A).  The calculation assumes the flow rate, Q, is 2 ml/s, 

the bulk concentration of platelets, plateletC , is 225,000 platelets/µl, and a vessel diameter 

of 3 mm.  Flow is assumed to be fully developed.  Axial convection is assumed to 
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dominate over axial diffusion.  Additionally, the field potential is assumed to be equal to 

the platelet concentration.  Therefore, the convective-diffusion equation simplifies to:   

Equation S7 
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where vx is the axial velocity, r is the radial coordinate, and x is the axial coordinate.  

Near the wall, we approximate the velocity as 
w

γ& y, where y is the normal distance from 

the wall and 
w

γ&  is the wall shear rate, commonly known as the Lévêque approximation.  

This near-wall approximation assumes a linear velocity gradient.   Coordinates are 

converted to a distance from the wall, y, which is assumed to be much smaller than the 

radius.  To solve for the new equation we can use a similarity variable (1): 

Equation S8 
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We solve for concentration with respect to the similarity variable: 

Equation S9 

BdeAcplatelet += ∫
−η η

η
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where A and B are integration constants.  We now require boundary conditions for mass 

transport.  We use Dirichlet and Neumann boundary conditions to solve Eq. S7: 

Equation S10 
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where kt is the kinetic binding rate constant of a platelet to the thrombus site.  The 

resulting flux of platelets predicted to arrive at the surface is:     

Equation S11 

3/1
2

86.11














+

=

x

Dk

c
J

platelet
t

platelet

platelet

γ&

   

The axial dimension, x, is set at 3R, corresponding to the stenosis apex.  The chosen axial 

dimension also assumes that thrombus only forms over the stenosis region.  3R was 

chosen because the stenosis apex is where most thrombus occurred experimentally. 

 

Computational Implementation 

 Computations were performed on a Dell 64 bit precision T7400 with two quad-

core Intel Xeon x5472@3.00 GHz processors with 2.99 GHz, 16.0 GB of RAM.  

Simulations were performed in series, despite the multi-core processors.  Simulations 

were typically run at 0.1 s per iteration with 60 spatial iterations per time step.  It took 

approximately 2 days to run a simulation that results in thrombus growth to occlusion.       

 

Peclet Number at Stenosis Apex 

 The Peclet number is defined by a ratio of advection to diffusion.  It is of interest 

for evaluating the importance of margination in transport phenomena in the vicinity of a 

stenosis.  A high Peclet number means that diffusion is much slower than advection, 

which affects the platelet distribution after a flow disturbance.  The Peclet number is 

calculated by: 
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Equation S12 

D

LU
Pe =

 

where L is the characteristic length, U is the average velocity, and D is the diffusivity 

coefficient.  We use the characteristic length of the vessel radius at the stenosis apex.  

Also, the diffusivity coefficient is estimated by enhanced diffusivity:    

Equation S13 

( ) th

n

RBCRBC DcckaD +−= γ&12

 

where k is a constant at 0.15, a is a scale for particle collisions and is taken as the 

approximate radius of a RBC, 4 µm, φ is the local hematocrit, n is a constant at 0.8 ± 0.3, 

and γ&  is the local shear rate (24). Thermal motion is neglected since it is much slower 

than shear dependent enhanced diffusivity.  Furthermore, if we assume a parabolic 

velocity profile, we can relate the shear rate to the average velocity: 

Equation S14 

RU /4=γ&
 

Therefore, the Peclet number (cRBC= 45%) can be represented as as: 

( ) 26-

2

2 mm 10 × 2.7/41
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n
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=
−

=   

Vessels ranging from a radius of 0.075 mm for a severely stenotic vessel to 3 mm for an 

open coronary artery result in a Peclet number ranging from 10
4
 to 10

6
.  The high Peclet 

number illustrates that diffusion is relatively slow compared to advection and therefore, 

the flow disturbances from a stenosis should disturb margination.   
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Results 

Equilibrium Concentration Profiles  

RBCs localize to the center of cylindrical vessels, while platelets marginate to the 

outer edge of vessels. To verify that the model exhibits this behavior, we compared the 

model to experimental data of Aarts et al. (26), who evaluated platelet and RBC 

concentration profiles in a 3 mm vessel.  Profiles predicted by the model matched well 

with that of Aarts et al. for 20% hematocrit, Figure S1.  While, the RBC profile was 

determined by a curve fit, Eq. 7/S2, the platelet concentration profile is based on our field 

potential term, Eq. 4, which did not involve a curve fit.  Values were further determined 

for a 40% hematocrit.  The RBC profile was determined based on a curve fit of Eq. 7/S2 

to the data of Aarts et al.  The platelet profiles for a hematocrit of 40% matched well with 

the literature (26, 36, 46), as depicted in Figure S2.  Note that these results are extended 

to a hematocrit of 45% in the manuscript because an average of 45% was found over 

multiple samples in porcine blood used in the experiments (38).  Computed profiles scale 

with the vessel radius.   
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Figure S1:  A plot of computed platelet volume fractions from the model based on a hematocrit 

profile that was determined from a curve fit to the data in Aarts et al. (26) for an overall hematocrit 

of 0.2.  The computed platelet volume fraction is plotted relative to measured platelet volume 

fractions by Aarts et al.     

 

Figure S2: Distribution of RBCs and platelets with margination.  The graph shows our modeled 

platelet volume fraction and hematocrit as a function of radial position in comparison with three 

references. The equilibrium profile was set to match an example RBC profile from the Aarts et al. 

(26). The resulting peak of the platelet concentration profile matches well with the literature (26, 36, 

46)  
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