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The rate-equation model. The basis of the rate-equation approach is determination of the 

distribution function, Z(n, t), representing the density of crystal clusters of the size n 

(monomers) at the time t. Changes in the crystal cluster sizes occur when monomers are 

attached to or detached from existing clusters. In all the simulations presented here a discrete 

version of the rate-equation has been used for which the temporal evolution of the cluster 

density Z is given by[S1]   
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where f(n, t) and d(n, t) are, respectively, the rates of attachment to and detachment from a 

crystal cluster of size n units (monomers) and depend strongly on temperature (primarily via 

(i) Boltzmann factors defined in terms of Gibbs free energy differences between cluster sizes 

n and n+1 and (ii) a jump frequency at the crystal/amorphous interface). As an example of the 

output of the evolution of cluster size distribution as predicted via the rate-equation model we 

show in Fig. S1 the population density of clusters (of sizes n=1 to n=40) at the end of the 1st, 

2nd, 5th and 10th temperature pulses for the 10 ns, 700 K case of Fig. 1 in the  main paper. 

Note that the crystal fraction at any time t is found by integrating the cluster population 

distribution function Z(n,t) for all cluster sizes above the critical cluster size. This approach 
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yielded the simulated crystal fraction and, via the effective medium approximation, the  

associated optical reflectivity and electrical conductivity values for the results of Fig. 1b and 

Fig. 2b and 2c of the main paper. Key parameters used in such simulations are the enthalpy H 

(here taken to be 1121 Jcm-3 and taken from[S2]), the interfacial surface energy (0.1 Jm-2, 

from[S1]), activation energy (2 eV from[S1] and the viscosity (1.95 x 10-14 Pa.s, also from[S1]. 

For the results of Fig. 1b and Fig. 2b and 2c we assumed heterogeneous nucleation (simulated 

via the spherical cap model[S3] with θ=850 ), since it is well known[S2,S4] that in optical storage 

media nucleation occurs preferentially at interfaces. 

 

 

 

 

 

 

 

 

 

Figure S1  Population density of crystal cluster sizes after 1, 2, 5 and 10 temperature pulses 

for the 10 ns, 700 K pulse case of Fig 1b in main paper 

 

Effective medium approximation. Optical and electrical properties of a two component 

mixture of amorphous and crystalline phases were calculated using effective medium theory.  

For our case of spherical crystallites growing in an amorphous matrix, the dielectric function 

is given by[S5] 
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where f is the crystal fraction, 
aε and 

cε are the dielectric constant of the (fully) amorphous and 

crystalline phases and cap ff εεε +−= )1( and 
acp ff εεε +−= )1(* . To calculate optical 

reflectivity in Fig. 1b, Fig. 2b, Fig. 2c  and Fig. 4 of the main paper we used refractive indices 

(at 632 nm, the wavelength of the probe beam) for (fully) amorphous and crystalline phases of  

na = 4.068−i2.060 for the amorphous state and nc =3.871−i4.266, taken from[S5], and assumed, 

for simplicity, an air/Ge2Sb2Te5 interface and normal incidence. As shown previously[S5], the 

relationship between crystal fraction and optical reflectivity is essentially linear. To calculate 

electrical conductivity we simply replace the dielectric function in the above equations by the 

appropriate electrical conductivity σ, here using values[S6] for  σa and σc of 0.4 Ω-1m-1 and 

3250 Ω-1m-1. 

 

Temperature calculations. The one-dimensional (consistent with the large diameter of the 

laser spot compared to the sample thickness), parabolic, heat conduction equation: 
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was solved for the temperature T in two layer structure that models the experimental sample 

and consisted of a phase-change layer on top of a semi-infinite underlayer.  k and α in (3) are 

the thermal conductivity and diffusivity of the layers respectively, and g is the laser heating 

source power density active only in the phase-change layer.  Integration of the heat equation 

subject to thermal insulating boundary at the top of the phase-change layer, and room 

temperature To at the bottom of the semi-infinite underlayer yields the solution: 

        (4) 

 

for the temperature in the phase-change layer in terms of the Green function Gp solution of the 

equivalent homogenous boundary value problem, where the integration is through the 
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thickness (xp = 20 nm) of the phase-change layer. The laser absorption through the thickness 

(x dimension) of the phase-change layer was modelled as an exponential internal energy 

density distribution described by: 

)()exp()1(),( tpAxRAqtxg o −−=       (5) 

where qo is the peak power density of the laser source, A = 4πκ/λ is the absorption depth, κ is 

the extinction coefficient of the amorphous starting phase (taken here to be 1.5 from[S7]) at 

wavelength λ = 800 nm for the pump laser beam, R is the reflectivity of the amorphous phase 

(37% as measured experimentally in this work) and p(t) is the temporal profile of the laser 

source.  Other key parameters used were: thermal conductivity kp = 0.23 W/(mK) and αp = 

179x10-9 m2/s for the amorphous starting phase. The effects of the thermal anisotropies and 

release of latent heat during the phase transition were assumed negligible for the class of 

phase-change material considered in this work, a reasonable approximation as found 

previously[S8,S9].  

 

For the femto-second laser heating simulations, a Dirac delta temporal profile for the heat 

source was used in (3) with p(t) = toδ(t) where to is the pulse width and set to 85 fs to match 

the experimental laser pulse duration.  The repetition rate of the laser pulses was 100 kHz, in 

line with experiment, and ensures that the steady-state room temperature is reached before the 

next pulse is applied without any heat energy accumulation from consecutive laser pulses.  

Equation (4) was integrated exactly and the leading terms of the solution were taken as they 

dominate at short time scales.  Figure S2 shows the calculated temperatures at the top and 

middle points of the phase-change layer from the analytical solution using the experimental 

peak laser energy density or fluence (=qoto) of 3.61 mJ/cm2.  We compared the predicted 

temperature distribution according to this solution to a full finite-element numerical solution 

that takes into account the influences of a capping layer and the finite thickness underlayer; 
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the analytical solution was found to be a good match (particularly at short time-scales, i.e. < 1 

ns, where the numerical solution tends to the Green function solution) and so was used 

directly in the rate-equation simulation to estimate the fraction of crystallised material for Fig. 

2 of the main paper.  We note that the equilibrium, parabolic heat conduction model 

(considered here for simplicity) does not account for the transfer of energy between electrons 

and phonons during the transient heating process at short time scales, which will be 

considered in a future publication.   

 

Figure S2 Simulated temperature at the top (solid line) and middle (dashed line) of the 20 nm 

thick phase-change layer as a function of time for a single 85 fs, 3.61 mJ/cm2 pulse. Also 

shown (inset) is the same result on a log time scale. This temperature profile was used to 

calculate the theoretical results shown in the main paper in Fig. 2b and Fig. 2c.  

 

For the memflector simulations, the heat distribution in the phase-change layer was 

determined analytically from (4) using a triangular up/down ramp of laser power with 

temporal profile: 
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where tp is the peak time of the triangular pulse which was taken to be 10 ns and using a peak 

laser power density qo = 13 mW/µm2 (13 GW/m2) that is sufficient to crystallise the 

amorphous phase-change layer after several cycles.  Equation (4) was integrated using the 

laser pulse profile in (6) yielding an exact solution for the transient temperature distribution at 

the top of the phase-change layer, as shown in Fig S3.   The crystalline fraction was then 

calculated from the amorphous starting phase using the rate equation model and the 

corresponding change in refractive index and hence reflectivity for each applied pulse was 

calculated using the crystalline fraction and complex dielectric constant from (2). 
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Figure S3  Calculated temperature distribution at the top of the phase-change layer for 

triangular up-down incident laser power ramp of 20 ns duration (10 ns up and 10 ns down) 

and 13 mW/µm2 peak intensity. 
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