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Charles Bonnet Syndrome: Evidence for a Generative Model in
the Cortex?

Supplementary text S1: Learning

By interpreting a BM as defining a probabilistic model, learning can be formalised and derived as like-
lihood optimisation of the model parameters, given some observed data {vn}N1 . The iterative weight
update rule for general BMs is obtained by implementing (stochastic) gradient descent on the negative
likelihood function. It turns out that the resulting algorithm involves a simple form of Hebbian (and
anti-Hebbian) learning, changing the connections between any pair of units according to whether they
are jointly active or not. Concretely, the incremental weight change is calculated as (the states of visible
and hidden units are denoted by v and h, respectively, and all states by x, i.e. x = (v,h)):

∆wij ∝
N∑

n=1

{
〈xixj〉 P (h|v=vn) − 〈xixj〉 P (h,v)

}
(1)

Eq. 1 entails two expectation terms under the model distribution, given the parameters at that point
in learning. The first is computed over the conditional distribution given the observed data, the second
over the full joint distribution. Both terms are in general intractable for general BMs, thus approximation
schemes are necessary, such as MCMC sampling as mentioned in the main text. In practice, the resulting
algorithm then is as follows. In the ‘positive phase’, the first expectation is computed. The hidden units
are activated by the input in the visible layer, sampling from the posterior during perceptual inference.
In the ‘negative phase’, the second expectation is computed by sampling both hidden and visible units
freely according to the internal model learnt by the machine so far. Both phases contribute the Hebbian
weight changes that together realise learning.

The effect of the positive phase is that the model puts more probability mass on the observed sensory
input. The effect of the negative phase is to reduce probability mass overall across the model distribution.
In particular, this has the net effect of removing probability mass from regions in the input space which
are not supported by the observed data. The offline generation of model ‘fantasies’ in the negative phase
data suggests the metaphor of dreams. Perhaps the metaphor can be taken more seriously, leading to
the hypothesis that the role of dreaming could be the removal of spurious modes learned by the brain’s
internal model [1].

The basic BM learning algorithm usually requires infeasibly long sampling to produce useful gradient
estimates. Three key points allowed for BM-based models to be increasingly used in machine learning over
recent years. First, research has focused on BMs with simplified connectivity, primarily the Restricted BM
(RBM), which has no connections between visible nor between hidden units (a 2-layer DBM is a RBM). In
the RBM, hidden units are conditionally independent given the visible units (meaning they do not interact
if the visible units are fixed e.g. to input data). This renders inference and with it the positive phase
of the weight update straightforward, though the negative phase can still be problematic. The second
key was thus the development of more effective approximations to the standard learning algorithm, most
prominently the Contrastive Divergence (CD) algorithm [2]. In a rather crude [3] approximation to the
original negative phase, CD replaces a set of samples representative of the full model distribution with a
single sample close to the data point currently utilised in the positive phase. Recently it has been argued
that CD could be understood as a form of reconstruction error driven learning [4], which would at least
in spirit relate it to models of cortical inference and learning such as predictive coding [5–7]. Another
relevant approximate training algorithm is Persistent Contrastive Divergence (PCD) [8,9], which like CD
only uses few samples and sampling steps in the negative phase, but unlike CD decouples the negative
phase from the positive phase. Elsewhere we have shown how an extension of PCD can be interpreted
as a biological sampling algorithm that utilises neuronal adaptation [10].



2

A third key development was then to return to more powerful architectures such as the DBM, still
making use of the simpler RBM in the process [11, 12]. Similarly to several other Deep Learning models
[13], the DBM is initially trained one layer at a time such that each layer learns to generative the activity
patterns in the layer below [14]. To this end, each adjacent pair of layers is treated as RBM. This iterative
learning along the hierarchy might be reminiscent of the sequential maturation of areas in the cortical
hierarchy, especially for the ventral visual stream [15]. Once the full DBM is composed, further learning
can take place, e.g. using additional techniques such a mean-field inference.

Importantly, in all theses cases, whether it is the original BM learning algorithm, approximations such
as CD, or the training of DBMs, the involved computations again turn out to have ‘neural’ interpretations
(see [16] for an extended discussion). Hence, the general learning principles the DBM and similar models
are based on–such as unsupervised learning employing a generative model, iterative learning of a hierarchy,
perhaps unlearning of spurious modes–could make for interesting hypotheses about the cortex. At the
same time, the concrete implementation details, while necessarily deviating from any more biologically
realistic implementation in the cortex, are all based on simple mechanisms such as Hebbian learning, at
least posing no implausible challenges for biological analogues or substitute mechanisms in the brain.

Finally, it should be noted that DBMs and similar models can learn receptive fields reminiscent of
those of V1 neurons, and possibly of V2 neurons [17]. This is a property common to several learning
algorithms [18], especially if they enforce some notion of sparsity on the activation levels, as with the
original sparse coding algorithm of Olshausen and Field [19].
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