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1 More experiments

1.1 Parameter selection

Here, we give a test to the parameter selection procedure. As described in Section 2.4
in the paper, the parameters are selected upon random sampling to divide the data
into a training set and a test set. Each time of sampling may select different α̂ and γ̂.
To test the stability of parameter selection, we run 100 times of random sampling for
a given data set and plot the distribution of selected parameters in Figure 1(a). As
we can see, there is only one centroid with a small variance. Since the formulation of
our method is continuous and convex, the small perturbation of parameters will not
cause large changes of final results. Hence, sampling once should be stable enough to
choose appropriate parameters.

Next, we illustrate the effectiveness of the proposed parameter tuning method.
We generate various data sets with different shared percentages and apply our al-
gorithm on them. Figure 1(b) shows the dependency between the selected α̂ and
the shared percentage. As the shared percentage increases, α̂ also gets larger, which
gives more emphasis to the nuclear norm penalty in Equation 5. This shows that the
automatically selected parameters are adaptive to the underlying structure of input
data. This flexibility is important in real applications, since it is difficult to know the
true property of data before processing it.

1.2 Missing value estimation

There usually exist missing values in real aCGH data, e.g. the data set from [1].
Our model can estimate missing values and we tested the estimation accuracy on the
data set of chromosome 17 from [1]. We randomly picked part of observed entries
for testing, labeled them as missing values and applied Algorithm 2. For comparison,
we also estimated the testing entries by the nearest neighbor (NN) along each aCGH
sample. The root-mean-squared error (RMSE) of the estimated values compared with
their original values are given in Table 1. The RMSE of our method is consistently
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Figure 1: (a) The distribution of selected parameters for a given data set, where the
shared percentage is 0.5 and SNR = 1. (b) The selected α vs. the shared percentage.
The result is averaged over 100 instances of synthesized data with SNR = 1.

Missing ratio RMSE (TV-Sp) RMSE (NN)

0.25 0.265 0.364
0.50 0.270 0.368
0.75 0.288 0.386
0.99 0.325 0.422

Table 1: Root-mean-squared error (RMSE) of missing value estimation. Two methods
are tested: the TV-Spectral regularization used in this paper and the nearest neighbor
(NN) method.

lower in Table 1 and it gets larger with the missing ratio increasing. When 99% of
entries are missing, the RMSE of our method approaches the standard deviation of
original data, which equals 0.324.

2 Proof of Theorem 1

In this document, we give a proof to Theorem 1 in the original paper. We follow the
procedure similar to the convergence analysis of the soft-impute algorithm[2]. We use
following definitions and notations.

Proximity operator Let r be a convex function. For each x ∈ R
n, the minimization

problem

min
y∈Rn

1

2
‖x− y‖22 + r(x) (1)

admits a unique solution denoted by proxr(x). The mapping proxr(x) : Rn → R
n

thus defined is the proximity operator associated with function r [3].
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Define the following function with variable X ∈ R
m×n

r0(X) = α ‖X‖
∗
+ γ

n
∑

j=1

‖Xj‖TV
, (2)

where α and γ are constants. Then, Equation (3) reads

min
B

1

2
‖D −B‖2F + r0(B). (3)

Since r0(·) is convex in R
m×n, the problem in Equation (3) admits a unique solution.

We denote the solution by proxr0(D) by extending the definition of the proximity
operator to R

m×n.
Define f(B) to be the energy function of the extended model in Equation 4:

f(B) =
1

2
‖PΩ(D)− PΩ(B)‖2F + r0(B). (4)

Then, Theorem 1 can be rephrased as:

Theorem 1 The sequence {Bk} generated by

Bk+1 = proxr0(PΩ(D) + PΩ⊥(Bk)) (5)

with any initial point B0 converges to a limit B∞ that minimizes f(B).

Before we prove Theorem 1, we give several lemmas:

Lemma 1 For any matrices B and B̃, define

F (B|B̃) =
1

2
‖PΩ(D) + PΩ⊥(B̃)−B‖2F + r0(B). (6)

The sequence {Bk} defined in Equation (5) satisfies

f(Bk+1) ≤ F (Bk+1|Bk) ≤ f(Bk). (7)
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Proof Note that f(B) = F (B|B) for any B. Then we have

f(Bk) = F (Bk|Bk)

=
1

2
‖PΩ(D) + PΩ⊥(Bk)−Bk‖2F + r0(B

k)

≥ inf
B

1

2
‖PΩ(D) + PΩ⊥(Bk)−B‖2F + r0(B)

= F (Bk+1|Bk) (by definition Bk+1 = argmin
B

F (B|Bk))

=
1

2
‖PΩ(D) + PΩ⊥(Bk)−Bk+1‖2F + r0(B

k+1)

=
1

2
‖PΩ(D −Bk+1) + PΩ⊥(Bk −Bk+1)‖2F + r0(B

k+1)

=
1

2
‖PΩ(D −Bk+1)‖2F +

1

2
‖PΩ⊥(Bk −Bk+1)‖2F + r0(B

k+1)

≥
1

2
‖PΩ(D −Bk+1)‖2F + r0(B

k+1)

= f(Bk+1) (8)

Lemma 2 The proximity operator proxr0(·) satisfies the following property for any
X1 and X2:

∥

∥proxr0(X1)− proxr0(X2)
∥

∥

2

F
≤ ‖X1 −X2‖

2

F . (9)

Proof It has been proved that the proximity operator proxr(·) of a convex and con-
tinuous function r(·) has the following nonexpansive property for any x1 and x2 [3, 4]:

‖proxr(x1)− proxr(x1)‖
2
2 ≤ ‖x1 − x1‖

2
2. (10)

Since r0(·) is convex and continuous, Equation (9) holds.

Lemma 3 The sequence {Bk} defined in Equation (5) satisfies:

Bk+1 −Bk → 0 as k → ∞. (11)

Proof By definition we have

‖Bk+1 −Bk‖2F = ‖proxr0(PΩ(D) + PΩ⊥(Bk))− proxr0(PΩ(D) + PΩ⊥(Bk−1))‖2F

(by Lemma 2) ≤ ‖
(

PΩ(D) + PΩ⊥(Bk)
)

−
(

PΩ(D) + PΩ⊥(Bk−1)
)

‖2F

= ‖PΩ⊥(Bk −Bk−1)‖2F

≤ ‖Bk −Bk−1‖2F , (12)

which means that

‖Bk+1 −Bk‖2F ≤ ‖PΩ⊥(Bk −Bk−1)‖2F ≤ ‖Bk −Bk−1‖2F . (13)
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Since the sequence ‖Bk+1 −Bk‖2F is nonincreasing and lower-bounded,

‖Bk+1 −Bk‖2F − ‖Bk −Bk−1‖2F → 0, (14)

‖PΩ⊥(Bk+1 −Bk)‖2F − ‖Bk −Bk−1‖2F → 0, as k → ∞. (15)

Comparing Equation (14) with Equation (15), we have

‖PΩ(B
k+1 −Bk)‖2F → 0 as k → ∞. (16)

Moreover, from Lemma 1 we have

F (Bk+1|Bk)− F (Bk+1|Bk+1) → 0 as k → ∞, (17)

which means that

‖PΩ⊥(Bk+1 −Bk)‖2F → 0, as k → ∞. (18)

Combining Equation (16) and Equation (18), we have

Bk+1 −Bk → 0 as k → ∞. (19)

Lemma 4 The sequence {Bk} defined in Equation (5) is bounded and every limit
point B∗ of the sequence satisfies:

B∗ = proxr0(PΩ(D) + PΩ⊥(B∗)), (20)

f(B∗) = min
B

f(B). (21)

Proof Since f(B) is convex and the sequence {f(Bk)} is bounded (by Lemma 1),
the sequence {Bk} is also bounded.

By the Bolzano-Weierstrass theorem, there exists a subsequence {nk} ∈ {1, 2, · · · }
such that

Bnk → B∗ as k → ∞, (22)

where B∗ is a limit point.
By definition, we have

Bnk = proxr0(PΩ(D) + PΩ⊥(Bnk−1)). (23)

Passing over to the limits on both sides of Equation (23), for the left side we have
Equation (22), and for the right side we will show

proxr0(PΩ(D) + PΩ⊥(Bnk−1)) → proxr0(PΩ(D) + PΩ⊥(B∗)) as k → ∞. (24)

To prove this, by Lemma 3 we have

‖Bnk −Bnk−1‖2F → 0 as k → ∞. (25)

5



Since Bnk → B∗ as k → ∞, we have

‖B∗ −Bnk−1‖2F → 0 as k → ∞. (26)

From Lemma 2 and Equation (26), we have

‖proxr0(PΩ(D) + PΩ⊥(B∗))− proxr0(PΩ(D) + PΩ⊥(Bnk−1))‖2F → 0, (27)

which is equivalent to Equation (24).
Thus, passing over to the limits on both sides of Equation (23) we have

B∗ = proxr0(PΩ(D) + PΩ⊥(B∗))

= argmin
B

1

2
‖PΩ(D) + PΩ⊥(B∗)−B‖2F + r0(B) (28)

Due to the optimality condition of convex optimization [5],

0 ∈ −(PΩ(D) + PΩ⊥(B∗)−B∗) + ∂r0(B
∗), (29)

where ∂ denotes the subdifferential. That is,

0 ∈ −(PΩ(D)− PΩ(B
∗)) + ∂r0(B

∗). (30)

Note that

∂f(B∗) = −(PΩ(D)− PΩ(B
∗)) + ∂r0(B

∗). (31)

Hence, B∗ minimizes f(B) which is convex.

Proof of Theorem 1 Following Lemma 4, there exists a subsequence {nk} ∈ {1, 2, · · · }
such that Bnk → B∗ as k → ∞, where B∗ is a limit point. Since B∗ satisfies Equa-
tion (20), we have

‖Bk −B∗‖2F = ‖proxr0(PΩ(D) + PΩ⊥(Bk−1))− proxr0(PΩ(D) + PΩ⊥(B∗))‖2F

≤ ‖(PΩ(D) + PΩ⊥(Bk−1))− (PΩ(D) + PΩ⊥(B∗))‖2F

= ‖PΩ⊥(Bk−1)− PΩ⊥(B∗)‖2F

≤ ‖Bk−1 −B∗‖2F , (32)

which means that the sequence {‖Bk −B∗‖2F } converges.
Since Bnk → B∗, for every positive real number ǫ there exists a natural number N0

such that ‖Bnk −B∗‖2F < ǫ when nk > N0. Suppose nk = N1 is the smallest nk that
makes ‖Bnk −B∗‖2F < ǫ. By Equation (32) we have ‖Bk −B∗‖2F ≤ ‖BN1 −B∗‖2F < ǫ

when k > N1. It means that, for every ǫ, we can also find a natural number N1 such
that ‖Bk − B∗‖2F < ǫ when k > N1. Thus, the sequence {Bk} converges to a limit
point B∞ = B∗. By Lemma 4, B∞ minimizes f(B).
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