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Starting point is Eq. 11 in the publication
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where the first two non-vanishing terms of the sum are explicitely given and higher order terms are indicated by

the ellipsis.

The difference term (c+a − c−a ) is computed accordingly:
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where again all terms with even powers of ∆t
2τn

vanish (i.e. when n is even). Inserting (2) and (3) in (1) and

neglecting fourth and higher order terms leads to Eq. 12 in the publication:
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