

Non-communicable diseases and infection in an Indigenous Australian population: increased risk during a rapid epidemiological transition

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003070
Article Type:	Research
Date Submitted by the Author:	17-Apr-2013
Complete List of Authors:	Einsiedel, Lloyd; Flinders University, Northern Territory Rural Clinical School Fernandes, Liselle; Flinders University, NTRCS Joseph, Sheela; Flinders University, NTRCS Brown, Alex; Baker IDI Heart and Diabetes Institute, Centre for Indigenous Vascular and Diabetes Research Woodman, Richard; Flinders University, General Practice
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Public health, Global health
Keywords:	INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, MICROBIOLOGY, Diabetes & endocrinology < INTERNAL MEDICINE, Nephrology < INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	Non-communicable diseases and infection in an Indigenous Australian
3	population: increased risk during a rapid epidemiological transition
4	
5	Lloyd Einsiedel ¹ , Liselle Fernandes ¹ , Sheela Joseph ¹ , Alex Brown ² and
6	Richard J Woodman ¹
7	
8	
9	(1) Flinders University/Northern Territory Rural Clinical School, Alice Springs Hospital, 0870,
10	Northern Territory, Australia
11	(2) Head, Centre for Indigenous Vascular Research, Baker IDI Heart and Diabetes
12	Institute, Alice Springs Hospital, 0870, Northern Territory, Australia.
13	
14	[§] <u>Corresponding author</u> :
15	Lloyd Einsiedel. Alice Springs Hospital, Department of Medicine, Darwin, Northern
16	Territory, Australia. Tel: + 61 08 89519607, Fax: + 61 08 89538385, E-mail:
17	lloyd.einsiedel@health.sa.gov.au
18	
19	Running title: Infection risk in Indigenous Australians
20	Keywords: Epidemiologic transition, Infection, Indigenous Health, Australia
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 2 <u>Word count</u>:
- 3 Abstract: 293
- 4 Text: 3489
- 5 References: 40
- 6 <u>Conflict-of-interest</u>: None reported
- 7 <u>Funding statement</u>:
- 8 This study received funding from the Northern Territory Rural Clinical School, which is
- 9 an initiative of the Australian Department of Health and Ageing.
- 10 <u>Contributorship</u>: LE designed the study, collected the data, assisted with statistical
- 11 analysis and prepared the manuscript, LF and SJ collected the data, AB assisted in
- 12 manuscript preparation and RW was responsible for statistical analysis and assisted in
- 13 manuscript preparation.
- 14 <u>Data sharing</u>: Data relate to Indigenous Australians and cannot be shared without specific
- 15 approval from the relevant Indigenous communities and the responsible HREC.
- 16 Obtaining such approval will require detail of all individuals seeking access and each
- 17 research project for which the inclusion of this data is proposed.

BMJ Open

2	Abstract
3	Objectives: We hypothesize that rising prevalence rates of non-communicable diseases
4	(NCDs) increases infection risk and worsens outcomes among socially disadvantaged
5	Indigenous Australians undergoing a rapid epidemiological transition.
6	Design: Pathology, imaging and discharge morbidity codes were retrospectively reviewed
7	for a period of 5 years prior to admission with a blood stream infection (BSI), 1st January
8	2003 to 30th June 2007.
9	Participants: 558 Indigenous and 55 non-Indigenous community residents of central
10	Australia.
11	Outcome measures: The effects of NCDs on risk of infection and death were determined
12	after stratifying by ethnicity.
13	Results: Mean annual BSI incidence rates were far higher among Indigenous residents
14	(Indigenous, 970 per 100,000; non-Indigenous, 48 per 100,000 person-years; IRR=20.33;
15	95% CI=20.31-20.35, p<0.001). Indigenous patients were also more likely to have
16	previous bacterial infections (68.7% versus 34.6%; respectively, p<0.001), diabetes
17	(44.3% versus 20.0%; p<0.001), harmful alcohol consumption (37.0% versus 12.7%;
18	p<0.001) and other communicable diseases (HTLV-1, 45.2%; strongyloidiasis, 36.1%;
19	HBV, 12.9%). Among Indigenous patients, diabetes increased odds of current
20	Staphylococcus aureus BSI (OR=1.6, 95% CI=1.0-2.5) and prior skin infections (adjusted
21	OR=2.1, 95% CI=1.4-3.3). Harmful alcohol consumption increased odds of current
22	Streptococcus pneumoniae BSI (OR=1.57, 95% CI=1.02-2.40) and of previous BSI
23	(OR=1.7, 95% CI=1.1-2.5), skin infection (OR=1.7, 95% CI=1.1-2.6) or pneumonia
24	(OR=4.3, 95% CI=2.8-6.7). Twenty-six percent of Indigenous patients died at a mean

1
Ξ.
ch
note
cł

Page 5 of 45	BMJ Open
1	5
2 3 4 5 3	Article Summary
6 4 7 5 8 6	Article FocusRemote dwelling, Indigenous Australians are undergoing a rapid epidemiological
9 10 11 7	transition, which is accompanied by a rapidly rising burden of non-communicable
12 13 8 14	diseases (NCDs).
15 9 16	• In this setting of social disadvantage and frequent pathogen exposure, NCDs may
17 18 10 19	increase risk of infection and infection-related death.
20 11 21 12 22 12	 Key Messages We reveal substantial racial disparities in rates of infection and of NCDs,
23 24 13 25	reflecting the dual burden of disease that affects this Indigenous population.
25 26 14 27	• NCDs increased risk of blood stream infections with some pathogens, previous
28 29 15	infections that provide portals of entry for life-threatening invasive disease and
30 31 16 32	infection-related mortality.
33 34 17	Complex interactions between communicable diseases and NCDs demand an
35 36 18 37	integrated approach to management, which must include the empowerment of
38 19 39	affected populations to promote behavioural change.
40 41 42 21	Strengths and limitations of this study
43 44 22 45	• This hospital-based study only includes patients who were admitted with a
46 47 23	blood stream infection. We are therefore unable to determine the actual risk of
48 49 24 50	blood stream infections that is attributable to NCDs or to comment on background
50 51 25 52	rates of other infections, which might be treated in the community.
53 54 26	• The major strength of our study lies in the demography of the study population,
55 56 27 57 58 59 60	which is served by a single hospital, and the extensive nature of the clinical
	For near review only http://bmienen.hmi.com/site/shout/guidelines.yhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 Introduction

Prevalence rates of non-communicable diseases (NCDs), such as diabetes, are rising rapidly in developing countries, adding to a pre-existing burden of infectious diseases in populations that are undergoing rapid demographic changes^{1,2}. A similar burden of communicable diseases and NCDs affects marginalized Indigenous people living in poverty within developed countries ^{3,4}. Among Indigenous Australians, for example, NCDs are the major contributors to racial disparities in mortality and to a life expectancy that remains 17 years less than that of their non-Indigenous peers³. In central Australia, rising prevalence rates of NCDs affect an Indigenous population in which a high burden of infectious diseases persists. Incidence rates of sepsis⁵, blood stream infections⁶ and childhood pneumonia, and prevalence rates of bronchiectiasis⁷ are the highest reported worldwide. Strongyloidiasis and chronic viral infections, such as with hepatitis B virus (HBV) and the Human T-Lymphotropic Virus 1 (HTLV-1), are also common ⁶. Population-based infection-related mortality rates for Indigenous adults in central Australia therefore remain higher than those of some African countries prior to the current HIV pandemic and the median age of in-hospital death is only 48 years⁸.

19 Interactions between communicable diseases and NCDs have been little studied; 20 however, an appreciable effect of NCDs on infection rates is likely where pathogen 21 exposure is frequent. Diabetes, for example, contributes to the risk of serious bacterial 22 infections including *Streptococcus pneumoniae*⁹ and *Staphylococcus aureus*¹⁰, which are 23 common pathogens in overcrowded Indigenous Australian communities ⁶. The NCD 24 burden may therefore have a substantial impact on infection rates and outcomes where

these two epidemics coincide. Such an interaction could reverse health gains in populations undergoing a rapid epidemiologic transition and exacerbate health inequalities among disadvantaged subgroups within developed countries. The recent description in New Zealand of an increasing divergence in infection-related hospitalization rates according to social status is consistent with this possibility and challenges health transition theory ¹¹.

Central Australia is well placed to study interactions between poverty, NCDs and infectious diseases. Most Indigenous residents live in remote communities in conditions of considerable socio-economic disadvantage, leaving only a minority within the major regional township of Alice Springs. The latter have ready access to a well-resourced medical facility, Alice Springs Hospital (ASH), which has sophisticated diagnostic capabilities and provides specialist medical care to a region of 1,000,000 km². Indigenous residents of Alice Springs dwell in either overcrowded 'town camps', which have poor amenities and limited refuse disposal, or are integrated with the majority of the non-Indigenous population within the township's suburbs. The Indigenous population of this region also has among the highest blood stream infection incidence rates reported ⁶. Living conditions that increase the risk of pathogen exposure and high background rates of focal infections, which provide portals of entry for bacterial invasion, are likely to precede these life-threatening infections. Blood stream infection incidence rates therefore provide measurable end-points to which environmental and host factors contribute.

Page 9 of 45

5

1

BMJ Open

2	
3	
4	
5	
5 6 7	
7	
8	
9	
10	
11	
12	
13	
9 10 11 12 13 14 15 16 17 18 19 20	
15	
16	
17	
18	
19	
20	
21	
21 22 23 24	
23	
24	
25	
25 26	
27 28	
28	
29	
30	
30 31 32 33 34 35 36 37 38	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
41	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

Here we report the infectious and non-communicable disease burden among community
residents of central Australia who presented with a blood stream infection and determine
risk factors for infection and death after stratifying by ethnicity.

2 Methods

We conducted a retrospective review of all positive blood cultures collected from adult patients (age \geq 15 years) admitted to ASH between 1st January 2001 and 31st June 2007. In July 2007 the Australian Federal Government suspended racial discrimination legislation and implemented an 'Emergency Response' that resulted in considerable uncertainty among Indigenous residents¹². This raised concerns that the central Australian resident population could change as people moved interstate to escape these restrictions and no data was collected after this date. Data collected included organism, ethnicity, dates of birth, dates of death, indigenous status and place of residence. For patients who presented between 1st January 2003 and 31st June 2007 we also obtained ICD 10 morbidity codes and the results of microbiological and radiological investigations for each admission for 5 years prior to the final BSI presentation. NCDs were derived from ICD-10 morbidity codes for diabetes, harmful alcohol consumption, >stage 2 chronic kidney disease, ischaemic heart disease, chronic liver disease and malignancy. Bronchiectasis was diagnosed radiologically using American College of Chest Physician criteria. Heart failure and valvular heart disease, including rheumatic heart disease (RHD), were diagnosed by trans-thoracic echocardiography. Ischaemic heart disease and cardiac failure were combined ('non-rheumatic heart disease') for statistical analysis.

21 Definitions

22 Residence

Place of residence was categorized as i) remote (>100 km from Alice Springs), ii) Alice
Springs town camp and iii) urban (resident in Alice Springs, but not in a town camp).

BMJ Open

Nursing home residents were included in calculations of BSI incidence rates, but
excluded from further analysis because the primary study objective was to determine risk
factors for infection and death among community residents.

6 Infections

A blood culture from which a pathogen was isolated was defined as a 'BSI episode'. Repeated culture of the same organism from blood culture was regarded as a separate 'episode' only if blood samples were drawn more than one month apart. Blood stream infections were defined as community-acquired if a pathogen was isolated from blood cultures drawn within 48 hours of admission and nosocomial if isolated from blood cultures drawn after this time. Foci of infection were determined where possible from ICD-10 morbidity codes in association with pathology and imaging results for each admission for five years prior to the final BSI during the study period. A diagnosis of pneumonia was made if there was radiological evidence of consolidation and this was attributed to the pathogen isolated from blood cultures if the same organism was also isolated from sputum or the blood culture isolate was an organism typically associated with pneumonia, such as Streptococcus pneumoniae. Blood stream infections excluded infections with potential contaminants including coagulase negative staphylococci, bacillus spp., corvneforms and viridans streptococci unless grown from more than one BC in a 24 hour period, as were *Acinetobacter sp* in the absence of an identifiable focus.

23 The study was approved by the Central Australian Human Research Ethics Committee.

Statistics.

All associations were assessed using data obtained for the final BSI admission within the study period. Univariate analysis for categorical data was performed using Chi-squared statistics and Fishers Exact where appropriate. Multivariate analysis was performed using binary logistic regression. Short (28-day) and long-term survival analysis following the final BSI episode in the study period was performed using the log-rank statistic for univariate analysis and Cox regression for multivariate analysis. We calculated the annual population-based incidence rates for 2001-2006 for the combined Alice Springs and Anangu Pitjantjatjara Yankunyatjara (APY) land areas using the total number of BSI presentations each year as the numerator. The denominator used was the estimated Adult resident population obtained from Australian Bureau of Statistics 2006 census data for the Alice Springs region combined with that of the neighbouring APY land areas. To enable analysis according to place of residence this population was further divided into that of i) the Alice Springs urban area excluding town camps (Indigenous 2898, non-Indigenous 18471), ii) Alice Springs town camps, including that of a closely affiliated neighbouring community (Indigenous, 1482), and iii) the Alice Springs rural area (Indigenous, 8925; non-Indigenous, 2775), which included that for the APY land areas (Indigenous=1302, non-Indigenous=294).

2	
3	Results
4	Patient demographics
5	558 Indigenous and 55 non-indigenous adult community residents presented to ASH with
6	a BSI between January 2003 and July 2007. Detailed demographic, clinical and
7	microbiological data are described in Table 1. Indigenous patients were younger
8	(Indigenous, 44.7±15.2; non-Indigenous, 57.5±21.1; p<0.001), more likely to be female
9	(Indigenous, 58.1%; non-Indigenous, 41.8%; p<0.03) and to live in a town camp or
10	remote community (Indigenous, 84.0%; non-Indigenous, 0; p<0.001). Non-
11	communicable diseases including diabetes (Indigenous, 44.3%; non-Indigenous, 20.0%;
12	p<0.001) and harmful alcohol consumption (Indigenous, 37.0%; non-Indigenous, 12.7%;
13	p<0.001) were more common among Indigenous patients, while non-Indigenous patients
14	were more likely to have ischaemic heart disease (Indigenous, 3.4%; non-Indigenous,
15	31.6%; p<0.001), malignancy (Indigenous, 2.3%; non-Indigenous, 20.0%; p<0.001), to
16	be receiving palliative care (Indigenous, 1.8%; non-Indigenous, 9.1%; p=0.001) and to
17	have a history of intravenous drug use (Indigenous, 0; non-Indigenous, 5.5%; p=0.001).
18	Forty-seven (8.4%) Indigenous and 5 (9.3%) non-indigenous BSI episodes were
19	nosocomial (Table 1).
20	
21	Population-based incidence rates 2001-2006
22	The overall population-based BSI incidence rate for the Alice Springs area between 2001
23	and 2006 was more than 20 times higher for Indigenous adults (970 per 100,000 person-

24 years) than for non-Indigenous adults (48 per 100,000 person-years) (IRR=20.33; 95%

CI, 20.31-20.35; p<0.001). Incidence rates for Indigenous town camp residents
(4,042/100,000 person-years) were nearly 70 times higher than amongst non-Indigenous
urban residents (60/100,000 person years) (IRR=67.9, 95% CI=67.8-67.9, p<0.001) and
greater than 3 times that of either urban dwelling Indigenous adults (IRR=3.87, 95%
CI=3.86-3.87, p<0.001) or those from remote communities (IRR=3.42, 95% CI=3.42-
3.42, p<0.001) (Fig 1).

9 Microbial Aetiology

Escherichia coli and *S.aureus* were the most common pathogens causing BSI in both
ethnic groups. Methicillin-resistant *S.aureus* (Indigenous, 53 (5.2%); non-Indigenous, 1
(0.9%); p<0.001) and *S.pneumoniae* (Indigenous, 136 (13.2%); non-Indigenous, 8
(5.9%); p<0.001) were more common among Indigenous patients (Table 1).

Risk factors for BSI were determined for pathogens contributing more than 5% of all BSI episodes (Table 2). Diabetes was more common among Indigenous patients with a S.aureus BSI during their final BSI admission (20.2% versus 13.5%; OR=1.6 (1.04, 2.53; p=0.03) (Table 2). In contrast, increased risk of *Streptococcus pneumoniae* BSI was associated with harmful alcohol consumption, while risk was reduced among patients with diabetes or those receiving haemodialysis (Table 2). Risk of BSI with other major pathogens (E.coli, Klebsiella pneumoniae or Streptococcus pyogenes) was not increased by any NCD (Table 2).

24 Concurrent infections

During their final BSI admission, Indigenous patients more often had an additional focus
of bacterial infection unrelated to the presenting BSI (Indigenous, n=69 (12.4%); nonIndigenous, n=2 (3.6%); p=0.05) (Table 1). Infections with HTLV-1 (45.2%), *S.stercoralis* (36.1%) and hepatitis B virus (anti-HBc, 62.5%; HBsAg, 12.9%) were also
more common among Indigenous patients (Table 1). *Sarcoptes scabiei* infestations were
only found in Indigenous patients (n=20; 4.0%) (Table 1).

Previous infections

Excluding Indigenous patients who were at increased risk of recurrent infection (haemodialysis, 83; bronchiectasis, 27) and those residing outside the Alice Springs region who could not be followed-up (17), 296 of 431 (68.7%) Indigenous adults were admitted with an acute infection during the five years prior to the final BSI admission (Table 3). Significantly more common among Indigenous patients were pneumonia, previous BSI, skin abscesses and wound infections (Table 3). Predisposing factors for previous infection-related admissions included diabetes (previous skin infections), harmful alcohol consumption (previous skin infections, pneumonia and BSI) and stage 3-4 chronic kidney disease (any previous infection) (Table 4).

- 20 Mortality
- *28 day mortality*

Overall 28-day mortality rates following a BSI were 11.7% and 11.4% for Indigenous and non-Indigenous adults, respectively. Mortality rates among Indigenous patients were highest for town camp residents (Fig 2) and varied according to pathogen. Among the

major pathogens causing BSI, most often fatal within the first 28 days was K.pneumoniae infection (40.0%) followed by S.pneumoniae (9.6%) S.aureus (8.0%), and E.coli (5.0%) $(\chi^2=39.1, 4df; p<0.001)$. Case fatality rates according to focus of infection were pneumonia (21.5%), pyelonephritis (8.9%) and skin infections (7.2%) (χ^2 =14.5, 3df; p=0.002). 1. Community-acquired BSI amongst Indigenous patients Non-communicable diseases including chronic liver disease, non-rheumatic heart disease and chronic kidney disease were independent predictors of death (Table 5). Relative to

11 patients with *E.coli* BSI, both *S.aureus* (HR=2.7, 95% CI=1.0-7.3; p=0.05) and

12 S.pneumoniae (HR=13.4, 95% CI=4.6-39.2; p<0.001) were independently associated

13 with an increased risk of death (Table 5).

15 2. Nosocomial BSI amongst Indigenous patients

In univariate analysis, place of residence (p=0.04) was a predictor of short-term mortality. Within the first 28 days of admission, town camp residents were more likely to die (7 of 11=64%) relative to other township (0 of 6=0.0%) or remote residents (14 of 30=46.7%) (p=0.039). In multivariate analysis, place of residence remained an independent predictor (p<0.001) and there was also an increased risk in those with non-rheumatic heart disease (HR=4.6, 95% CI=1.2,17.6; p=0.03), a primary focus of pneumonia (HR=6.0, 95% CI=1.5, 24.5) and those with a previous BSI (HR=3.8, 95% CI=1.4, 10.3; p-0.008).

24 3. Nosocomial and Community acquired BSI amongst non-Indigenous patients

BMJ Open

In multivariate analysis, only non-rheumatic heart disease was an independent predictor of short-term mortality amongst non-indigenous patients with a community-acquired BSI (HR=12.5, 95% CI=1.0, 150.3; p<0.05). There were 3 deaths within 28 days amongst 12 non-indigenous patients with non-rheumatic heart disease and 3 deaths amongst 56 patients without non-rheumatic heart disease. Numbers of nosocomial BSI amongst nonindigenous patients were too few (n=5) to attempt survival analysis.

- 9 Long-term mortality

10 One-hundred and forty-five (26.0%) Indigenous and 15 (27.3%) non-Indigenous patients 11 died during the 2,056 years of follow-up at a mean \pm SD age of 47 \pm 15 and 68 \pm 21 years 12 (p<0.001), respectively. Amongst Indigenous patients, mortality rates were again highest 13 amongst those from town camps (Log-rank χ^2 =5.05, p=0.08) (Fig 2).

Among Indigenous patients, NCDs (non-rheumatic heart disease, chronic kidney disease, chronic liver disease and malignancy) and BSI with *S.aureus* and *S.pneumoniae* were independent predictors of long-term mortality following community-acquired BSI (Table 5). Residence in a town camp (town camp, 7 of 11; local residence, 0 of 6; remote areas, 14 of 30; χ^2 =6.5, 2df; p=0.04) and BSI with *K.pneumoniae* BSI (HR=4.0, 95% CI=1.5, 11.2; p=0.007) were the only univariate predictors of long-term mortality for nosocomial BSI's amongst Indigenous patients.

2 There were no independent predictors of long-term mortality for non-Indigenous patients
3 with community acquired infections and too few non-indigenous patients with
4 nosocomial BSI's (n=5) to perform long-term survival analysis.

3

1

19

2	
3	
3 4 5 6	
5	
0 7	
7 8	
9	
10	
11	
12	
14	
15	
16	
18	
19	
20	
21	
22	
23	
25	
26	
27	
20 29	
9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 20 31 23 33 34	
31	
32	
33 34 35 36 37	
35	
36	
37	
38 39	
40	
41	
42	
43 44	
45	
46	
47	
48 49	
50	
51	
52	
53 54	
53 54 55	
56	
57	
58 59	
59 60	

4 The Indigenous adult population of central Australia has among the highest BSI 5 incidence rates worldwide. Relative to their non-Indigenous peers, rates for Indigenous 6 adults were 20-fold higher overall and 70-fold higher among Indigenous town camp 7 residents. A high burden of other infections, particularly repeated respiratory and skin 8 infections, provide portals of entry for life-threatening invasive bacterial disease. Nearly 9 70% of Indigenous patients required admission for an acute infection in the preceding 10 five years, 24.4% experienced a prior BSI and a second unrelated bacterial infection was 11 found in 12.4% of patients. Chronic viral and parasitic infections were also common. 12 Among Indigenous adults who were tested, more than 60% had been infected with Hepatitis B virus, 13% remained HBsAg positive, nearly half were HTLV-1 seropositive 13 14 and 36% were S.stercoralis seropositive. A similar burden of infection is experienced by Indigenous children amongst whom frequent co-infection with bacterial pathogens and 15 parasites ¹³ contributes to 'failure-to-thrive' ¹⁴. In our adult cohort, 26.0% of Indigenous 16 patients died during the study period at a mean age of only 47 years. Although we were 17 18 unable to attribute cause of death in the present study, 60% of Indigenous deaths at ASH are infection-related⁸. 19

20

High prevalence rates of non-communicable diseases were also found in our Indigenous
cohort. These included diabetes, harmful alcohol consumption, chronic lung disease and
end-stage kidney disease, all of which increase the risk of bacterial infection ^{10,15, 9, 16}.
Invasive pneumococcal disease (IPD), for example, is three, 5.6 and 7-11 times more

common among patients with diabetes⁹, chronic lung disease⁹ and alcohol dependence ^{9,17}, respectively. Alcohol dependence and diabetes also increase risk of a BSI requiring intensive care nearly six-fold and haemodialysis increases risk several hundred fold ¹⁶. largely due to prolonged central venous access ¹⁸. In the present study, rates of diabetes among Indigenous adults were nearly three times reported background rates ¹⁹. Diabetes was associated with S.aureus BSI and with previous skin infections, but not with S. pneumoniae BSI. Stage 3-4 chronic kidney disease, which is most often a complication of diabetes in our patient population²⁰, increased risk of previous infections. Harmful alcohol consumption was associated with *S.pneumoniae* BSI and with previous infections. Non-communicable diseases, including non-rheumatic heart disease, chronic kidney disease and chronic liver disease, were also major predictors of mortality after a BSI. However, once invasive infections were established, S.aureus and S.pneumoniae predicted death independently of any underlying medical condition.

The present study has compared risk of non-communicable diseases among patients presenting with a BSI and cannot determine the population-based risks attributable to these conditions. Nevertheless, racial disparities in NCD prevalence are unlikely to fully account for the BSI incidence rate ratios reported here, nor do regional differences in their prevalence ¹⁹ explain IPD incidence rates that are twice as high among Indigenous residents of central Australia relative to those of the tropical north ²¹. In the USA, higher IPD incidence rates among Black Americans 9,22 are more robustly associated with poverty than race ²². An increased risk of S.aureus infection has also been reported among those of lower socio-economic position ²³⁻²⁵ and infection-related hospital

Page 21 of 45

BMJ Open

admissions in New Zealand are associated with social deprivation ¹¹. The socioeconomic circumstances of Indigenous Australians are therefore likely to further increase the infection risks associated with non-communicable diseases.

Social disadvantage predisposes to non-communicable diseases ^{26, 27} while increasing pathogen exposure and limiting opportunities to implement behavioural strategies that ameliorate risk ²⁸. In some Indigenous Australian communities the average number of people living per house is 17²⁹ and non-functioning health hardware leads to environmental conditions that are detrimental to householders ³⁰. Overcrowded housing ³¹ and an inability to maintain adequate skin hygiene ³⁰ contribute to high rates of pyoderma. More than 40% of Indigenous patients in the present study were previously admitted with skin infections, which are the most common primary focus for *S. aureus* bacteraemia in this population³². Scabies, a recognized cause of *S. aureus* and Streptococcal pyoderma^{31,33}, affected 4% of our cohort. Streptococcal pyoderma underlies most cases of RHD in the Northern Territory ²⁹ and this was confirmed echocardiographically in 2% of our Indigenous cohort. Similarly, the transmission of respiratory pathogens is promoted by household crowding ³⁴ and nearly 40% of Indigenous adults were admitted previously with pneumonia. Environmental contamination¹⁴, inadequate sanitation and unhygienic food preparation areas³⁰ contribute to infection with enteric pathogens and S.stercoralis. The risks of complicated strongyloidiasis, crusted scabies ³⁵ and bronchiectasis ⁷ are further increased by HTLV-1 infection; however, no attempt has been made to control transmission of this virus among Indigenous Australians. Previously we have shown that Indigenous adults are less likely

to engage with a conventional medical paradigm ³⁶ and delays in seeking care for
uncomplicated urinary tract infections may contribute to the very high rates of *E.coli* BSI
reported here.

The retrospective design of this study results in a number of limitations. Firstly, residents of remote communities frequently stay in town camps and this is not recorded by ASH. The effect of town camp residence may therefore be underestimated if large numbers of remote residents acquire infection during these visits. Although foci of infection were determined by reviewing the results of microbiology and imaging for each presentation, these varied between patients according to the practice of the treating physician. The number of patients with concurrent bacterial infections and medical conditions, such as RHD, may therefore be underestimated. Similarly, seropositivity rates for infections, such as HBV and HTLV-1, could only be determined for a subset of patients. A further limitation is the identification of NCDs and previous infections using ICD-10 codes; however, coding errors are unlikely to vary systematically according to ethnicity or place of residence. Finally, the present study has demonstrated an increased risk of infection and death associated with town camp residence. This occurred despite better access to health care relative to remote residents and little difference in crude measures of socioeconomic deprivation³. For community-acquired BSIs, risk of death was strongly associated with NCDs; however, these conditions did not fully account for the increased risk following a nosocomial BSI. Unmeasured socioeconomic factors might contribute to increased mortality among town camp residents; however, recent research linking health outcomes to perceived racism³⁷ may also be relevant to this marginalized population.

BMJ Open

3	The disease burden among the Indigenous population of central Australia is similar to
4	that of many developing countries where NCD prevalence rates are rising rapidly in a
5	setting of persistently high infection rates ^{1,38} . Recently, the validity of conventional
6	health transition theory has been challenged by findings that infection-related
7	hospitalization rates are increasing among the most socially disadvantaged community
8	members in a developed country ¹¹ . The present study provides a possible explanation for
9	this observation and further suggests that, in contrast to the orderly epidemiological
10	transition envisaged by Omran (1971) ³⁹ , life expectancy may fall where social
11	deprivation persists in the face of a rising prevalence of non-communicable diseases.
12	High BSI incidence rates among Indigenous Australians were associated with a heavy
13	burden of other infections that provide portals of entry for invasive bacterial disease.
14	Improving life expectancy in this setting will require public health initiatives to reduce
15	pathogen exposure in addition to controlling the burgeoning non-communicable disease
16	burden. Diabetes, harmful alcohol consumption and organ damage resulting from these
17	conditions increased both the likelihood of infection and the subsequent risk of death.
18	Both conditions are included in proposed international management strategies to control
19	the non-communicable disease crisis ²⁷ . However, our findings also illustrate the
20	complexity of interactions between communicable and non-communicable diseases and
21	support calls for an integrated approach to management, which must include the
22	empowerment of affected populations to promote behavioural change 40 .

Contributions:

3 LE designed the study, collected the data, assisted with statistical analysis and prepared 4 the manuscript, LF and SJ collected the data, AB assisted in manuscript preparation and

- 5 RW was responsible for statistical analysis and assisted in manuscript preparation.

BMJ Open

	Indigenous	Non-	p-value for
	(n=558)	indigenous	difference
		(n=55)	
Age, yrs (±SD)	44.7±15.2	57.5±21.1	< 0.001
Gender (M/F)	234/324	31/23	0.03
(%)	(42/58)	(57/43)	
Residence			
Urban	89 (16.0)	55 (100.0)	
Town Camp	136 (24.4)	0 (0.0)	
Remote Community	333 (59.7)	0 (0.0)	< 0.001
Co-morbidities ^a			
Diabetes	247 (44.3)	11 (20.0)	< 0.001
Harmful Alcohol Consumption	205 (37.0)	7 (12.7)	< 0.001
Chronic Kidney Disease			
Stage 3-4	34 (6.1)	5 (9.1)	0.39
Stage 5	83 (14.9)	3 (5.5)	0.06
Chronic liver disease ^b	53 (9.6)	6 (10.9)	0.74
Bronchiectasis	27 (4.8)	0	0.10
Congestive Cardiac failure	15 (2.7)	3 (5.5)	0.25
Ischaemic heart disease	9 (1.6)	7 (15.2)	< 0.001
Valvular Heart Disease	27 (4.8)	3 (5.5)	0.84

Rheumatic heart disease	12 (2.0)	0 (0.0)	0.27
Palliative care	10 (1.8)	5 (9.1)	0.001
Malignancy	13 (2.3)	11 (20.0)	< 0.001
IVDU	0 (0.0)	3 (5.5)	0.001
Community Acquired	510 (91.6)	49 (90.7)	0.84
Primary focus of infection			
No focus	250 (44.8)	20 (36.4)	0.37
Pneumonia ^c	110 (19.7)	6 (10.9)	0.08
Skin abscess	66 (11.8)	5 (9.1)	0.65
Pyelonephritis ^d	63 (11.3)	5 (9.1)	0.56
Other	53 (9.5)	18 (32.7)	< 0.001
Enteritis	15 (2.7)	1 (1.8)	0.71
Bone/joint	1 (0.2)	0.0 (0.0)	0.61
Additional Infections ^e			
Acute bacterial infections	69 (12.4)	2 (3.6)	0.05
Pneumonia	18 (3.2)	0 (0.0)	0.39
Urinary tract	20 (3.6)	1 (1.8)	0.49
Skin	27 (4.8)	1 (1.8)	0.31
Enteritis	4 (0.7)	0	0.53
Chronic Viral infections			
HTLV-1 ^f	137 (45.2)	0 (0.0)	< 0.001
Hepatitis B virus ^f			
HBsAg	49 (12.9)	1 (6.7)	0.70

BMJ Open

Anti-HBc	193 (62.5)	3 (27.3)	<0.001
Parasites			
Strongyloidiasis ^f	78 (36.1)	0 (0.0)	0.001
Scabies	20 (4.0)	0 (0.0)	0.24
Mortality			
28 days	62 (11.1)	7 (12.7)	0.72
All deaths	145 (26.0)	15 (27.3)	0.84
Age of death (years)	47±15	68±21	< 0.001
Major BSI Pathogens ^g	1029	110	
Enterobacteriaceae	370 (36.0)	38 (34.5)	0.56
Escherichia coli	246 (23.9)	28 (25.5)	0.37
Klebsiella pneumoniae	57 (5.54)	2 (1.82)	0.09
Staphylococcus aureus	191 (18.6)	20 (18.2)	0.83
MRSA	53 (5.15)	1 (0.91)	< 0.001
Streptococcus pneumoniae	136 (13.2)	8 (5.88)	< 0.001
Streptococcus pyogenes	68 (6.61)	8 (7.27)	0.42
Haemophilus influenzae	22 (2.14)	0	0.14
Enteric pathogens ^h	29 (2.81)	1 (0.91)	0.27
a. comorbidities determined from	IC-10 discharge mo	rbidity codes	
b. Chronic liver disease attributed	to alcohol (Indigend	ous, 43; non-Indig	genous, 5),
hepatitis B (Indigenous, 10; non-Ir	ndigenous, 0) and ch	nronic hepatitis C	(Indigenou

5 non-Indigenous, 3).

6 c. Chest X-rays performed for 457 Indigenous patients.

- 2 d. Respiratory cultures performed for 150 Indigenous patients.
- 3 e. Urine cultures performed for 310 Indigenous patients.
- 4 e. Alternative bacterial pathogen isolated.
- 5 f. Indigenous patients tested: HTLV-1, 309; HBsAg, 388; HBcAb, 309; Strongyloides
- 6 stercoralis serology, 235. Denominators exclude 6 Indigenous patients with indeterminate
- 7 HTLV-1 Western blot results and 19 Indigenous patients with borderline Strongyloides
- 8 serology whose infective status could not be determined.
- 9 f. Major BSI pathogens responsible for all recorded episodes 2001-2007.
- 10 g. Includes Salmonella spp., Shigella spp., Campylobacter spp.
- 11 Abbreviations: CHB, chronic hepatitis B virus; HCV, hepatitis C virus; IVDU,
- 12 intravenous drug use.

29

1 2 3 4 5 6 7 8 9	Table 2. Demo
10 11	
12 13	
14 15	
16	
17 18	Residence
19 20	Urban
21 22	Town Camp
23	rown cump
24 25	Remote 2
26 27	Diabetes
28	N
29 30	No
31 32	Yes
33	CRF
34 35	
36 37	No
38	Yes
39 40	
41	
42 43	
44	
45 46	
40 47	
48 49	
<u>4</u> 9	

ographic and non-communicable disease associations for the major BSI pathogens among Indigenous adults.

		S.aureus		S	S.pneumonia			K.Pneumonia			E.Coli		
		No	Yes	p-value ¹	No	Yes	p-value ¹	No	Yes	p-value ¹	No	Yes	p-value ¹
		(%)	(%)		(%)	(%)		(%)	(%)		(%)	(%)	
	n												
Residence													
Urban	89	86.5	13.5		89.9	10.1		96.6	3.4		76.4	23.6	
Town Camp	136	88.2	11.8		83.1	16.9		91.9	8.1		73.5	26.5	
Remote	333	80.5	19.5	0.08	89.2	10.8	0.15	94.6	5.4	0.30	73.0	27.0	0.81
Diabetes													
No	310	86.5	13.6		83.9	16.1		93.9	6.1		74.1	25.8	
Yes	247	79.8	20.2	0.035	92.7	7.3	0.002	94.7	5.3	0.66	72.9	27.1	0.73
CRF													
No	524	83.4	16.6		87.6	12.4		94.3	5.7		73.7	26.3	
Yes	34	82.4	17.7	0.87	91.2	8.8	0.54	94.1	5.9	0.97	73.5	26.5	0.99

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

													30
HD													
No	475	84.2	15.8		86.3	13.7		94.1	5.9		70.5	29.5	
Yes	83	78.3	21.7	0.18	96.4	3.6	0.01	95.2	4.8	0.70	92.6	8.4	<0
CLD													
No	505	82.4	17.6		87.7	12.3		93.9	6.1		73.5	26.5	
Yes	53	92.5	7.6	0.06	88.7	11.3	0.84	98.1	1.9	0.20	75.6	24.5	0
Alcohol													
No	349	82.2	17.8		92.0	8.0		95.1	4.9		75.1	24.9	
Yes	205	84.9	15.1	0.42	80.5	19.5	<0.001	93.1	6.8	0.33	71.7	28.3	0.

Major BSI pathogens recorded during the 5 years period prior to the final BSI admission. Abbreviations: Alcohol, harmful alcohol

consumption; CRF, stage 3 or 4 chronic renal disease; HD, stage 5 renal disease; CLD, chronic liver disease.

Table 3. Infections recorded for Indigenous and non-Indigenous adults during the 5 years prior to the final BSI presentation^a

	Indigenous	Non-Indigenous	p-value
	n=431 (%)	(n=52)	
Any	296 (68.7)	18 (34.6)	< 0.001
BSI	105 (24.4)	4 (7.7)	0.007
Respiratory Tract	179 (41.5)	3 (5.8)	< 0.001
Pneumonia	164 (38.1)	4 (7.7)	< 0.001
>3 episodes	32 (7.4)	0 (0.0)	0.04
Exacerbation BE	13 (6.0)	0 (0.0)	0.20
Skin/Soft Tissue	154 (35.7)	7 (13.5)	0.001
Infections			
Abscess	88 (20.5)	0 (0.0)	< 0.001
Cellulitis	47 (10.9)	7 (13.7)	0.55
Wound infection	42 (9.7)	0 (0.0)	0.02
Pyelonephritis	77 (17.9)	4 (7.7)	0.06
Bone/joint	11 (2.6)	0 (0.0)	0.24
Enteritis	21 (4.9)	1 (1.9)	0.33
Scabies	14 (3.3)	0 (0.0)	0.19
Other	6 (1.4)	0 (0.0)	0.39

a. Excluding haemodialysis patients (n=83 indigenous, 3 non-indigenous), patients with bronchiectasis (n=27) and those residing outside the Alice Springs urban and rural districts for whom data were not available (Indigenous, 18; non-Indigenous, 0).
Abbreviations: BSI, blood stream infections; BE, bronchiectasis.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 4: Multivariate	adjusted	odds	ratios	for	previous	infections	among	Indigenous
patients ^a								

	Any infection	BSI	Skin ^b	Pneumonia ^c
	(n=470) ^b	(n=553)	(n=470)	(n=443)
	Odds ratio	Odds ratio	Odds ratio	Odds ratio
C	(95% CI)	(95% CI)	(95% CI)	(95% CI)
Residence				
Urban	1.00	1.00	1.00	1.00
Town camp	1.2 (0.6-2.4)	1.8 (0.9-3.4)	1.3 (0.7-2.5)	1.3 (0.7-2.6)
Remote	0.8 (0.5-1.4)	1.3 (0.7-2.3)	1.2 (0.7-2.2)	0.8 (0.4-1.4)
Age (10 yrs)	0.9 (0.8-1.0)	1.1 (0.9-1.2)	0.9 (0.8-1.0)	1.0 (0.9-1.2)
Gender (0=F,	1.0 (0.7-1.5)	1.3 (0.9-1.9)	1.0 (0.7-1.6)	1.0 (0.7-1.6)
1=M)				
Diabetes	1.4 (0.9-2.2)	1.1 (0.7-1.7)	2.1 (1.4-3.3)	1.1 (0.7-1.7)
CRF	3.0 (1.1-8.2)	1.7 (0.8-3.8)	1.5 (0.7-3.2)	1.6 (0.7-3.7)
Alcohol	2.8 (1.8-4.4)	1.7 (1.1-2.5)	1.7 (1.1-2.6)	4.3 (2.8-6.7)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

a. Previous infections during 5 years prior to the final BSI in the study period. Adjusted for other risk factors in table.

b. Excluding patients receiving haemodialysis.

c. Excluding patients receiving haemodialysis and those with bronchiectasis

Abbreviations: BSI, blood stream infections; CRF, chronic renal failure excluding

patients receiving haemodialysis.

Table 5: Multivariate analysis of factors associated with 28 day and long-term survival for 510 Indigenous patients following a Community-acquired Blood Stream Infection^a.

				28 day surviva	28 day survival		urvival
	n	Deaths	Deaths	HR (95% CI)	p-value	HR (95% CI)	p-value
		(28	(all)				
		days)					
Residence							
Urban	63	7	20	1.00		1.0	
Town Camp	125	20	37	1.7 (0.7-4.1)		1.2 (0.7-2.2)	
Remote	302	22	67	0.9 (0.4-2.0)	0.12	0.9 (0.5-1.5)	0.28
Age (10yrs)				1.04 (0.8-1.3)	0.70	1.0 (0.9-1.1)	0.99
Gender (0=F,1=M)	298F/212M	23/26	65/59	1.5 (0.8-2.7)	0.17	1.3 (0.9-2.0)	0.13
CLD (0=No, 1=Yes)	41	11	20	3.3 (1.6-6.7)	0.001	2.5 (1.5-4.2)	<0.001
Non-RHD	37	9	16	2.9 (1.4-6.2)	0.005	2.1 (1.2-3.6)	0.01
CRF	28	6	11	2.6 (1.0-6.5)	0.04	2.3 (1.2-4.3)	0.01

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Malignancy	11	3	10	2.9 (0.9-9.9)	0.09	6.0 (3.0-12.4)	<0.001
Organism ^b							
E.coli	143	5	22	1.0		1.0	
S.aureus	83	7	18	2.7 (1.0-7.3)	0.05	1.8 (1.1-3.0)	0.03
K.pneumoniae	29	12	15	2.3 (0.7-7.5)	0.17	1.4 (0.7-2.7)	0.17
S.pneumoniae	67	5	17	13.4 (4.6-39.2)	<0.001	4.8 (2.5-9.5)	<0.001
Other	188	20	52	1.8 (0.5-6.3)	0.37	1.5 (0.8-3.0)	0.22

a. Excluded from analysis: 48 Nosocomial infections.

b. Pathogens isolated from blood cultures

Abbreviations: BSI, blood stream infection; CCF; CLD, chronic liver disease; CRF, chronic renal failure; Non-RHD, ischaemic heart

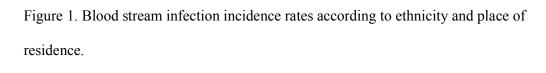
disease and cardiac failure.

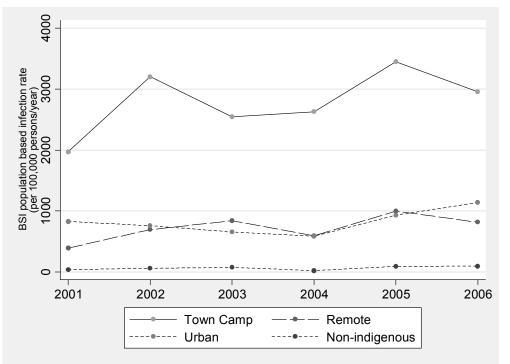
1	References		
2	1.	Maher D, Smeeth, L., Sekajugo, J. Health transition in Africa: practical policy	
3		proposals for primary care. Bull WHO. 2010;88:943-948.	
4	2.	Gracey M, King, M. Indigenous Health part 1: determinants and disease patterns.	
5		Lancet. 2009;374:65-75.	
6	3.	Australian Bureau of Statistics. The health and welfare of Australia's Aboriginal	
7		and Torres Strait Islander peoples. Canberra. 2005.	
8	4.	Zhao Y, Dempsey, K. Causes of inequality in life expectancy between indigenous	
9		and non-indigenous people in the Northern Territory, 1981-2000: a decomposition	
10		study. Med J Aust. 2006;184:490-494.	
11	5.	Davis J, Cheng, AC., McMillan, M., Humphrey, AB., Stephens, DP., Anstey,	
12		NM. Sepsis in the tropical Top End of Australia's Northern Territory: disease	
13		burden and impact on Indigenous Australians. Med J Aust. 2011;194:519-524.	
14	6.	Einsiedel L, Woodman, RJ. Two Nations: racial disparities in bloodstream	
15		infections recorded at Alice Springs Hospital, central Australia, 2001-2005. Med J	
16		Aust. 2010;192:567-571.	
17	7.	Einsiedel L, Fernandes, L., Spelman, T., Steinfort, D., Gotuzzo, E. Bronchiectasis	
18		is associated with Human T Lymphotropic Virus 1 infection in an Indigenous	
19		Australian population. <i>Clin Infect Dis.</i> 2012;54(1):43-50.	
20	8.	Einsiedel L, Fernandes, L., Woodman, R. Racial disparities in infection-related	
21		mortality at Alice Springs Hospital, central Australia, 2000-2005. Med J Aust.	
22		2008;188:568-571.	

BMJ Open

2			
3 4	1	9.	Kway M, Rose, CE., Fry, AM., Singleton, JA., Moore, Z., Zell, ER., Whitney,
5 6	2		CG. The influence of chronic illness on the incidence of invasive pneumococcal
7 8 9	3		disease in adults. Clin Infect Dis. 2005;192:377-386.
10 11	4	10.	Joshi N, Caputo, GM., Weitekamp, MR., Karchmer, AW. Infections in diabetic
12 13	5		patients. N. Engl. J. Med. 1999;341(25):1906-1912.
14 15 16	6	11.	Baker M, Barnard, LT., Kvalsvig, A., Verrall, A., Zhang, J., Keall, M., Wilson,
17 18	7		N., Wall, T., Howden-Chapman, P. Increasing incidence of serious infectious
19 20	8		diseases and inequalities in New Zealand: a national epidemiological study.
21 22 23	9		Lancet. 2012;379:1112-1119.
24 25	10	12.	Anaya J. Report of the Special Rapporteur on the situation of human rights and
26 27	11		fundamental freedoms of indigenous peoples, James Anaya, on the situation of
28 29 30	12		indigenous people in Australia: United Nations;2010.
31 32	13	13.	d'Espaignet E, Kennedy, K., Paterson, B., Measey, M. Health Status in the
33 34	14		Northern Territory 1998. Darwin: Epidemiology, Primary Care and Coordinated
35 36 37	15		Care Branch;1998.
38 39	16	14.	McDonald E, Bailie, R., Grace, J., Brewster, D. An ecological approach to health
40 41 42	17		promotion in remote Australian Aboriginal communities. Health Promotion
42 43 44	18		International. 2010;25(1):42-53.
45 46	19	15.	O'Brien J, Lu, B., Ali, NA., Martin, GS., Aberegg, SK., Marsh, CB., Lemeshow,
47 48 49	20		S., Douglas, IS. Alcohol dependence is independently associated with sepsis,
49 50 51	21		septic shock and hospital mortality among adult intensive care unit patients. Crit.
52 53	22		Care Med. 2007;35(2):345-350.
54 55			
56 57			
58 59			

	1 1	6.	Laupland K, Gregson, DB., Zygun, DA., Doig, CJ., Mortis, G., Church, DL.
1	2		Severe blood stream infections: a population-based assessment. Crit Care Med.
	3		2004;32:992-997.
	4 1	7.	Nuori J, Butler, JC., Farley, MM., Harrison, LH., McGeer, A., Kolczak, MS.,
:	5		Breiman, RF. Cigarette smoking and invasive pneumococcal disease. N Engl J
	6		Med. 2000;342:681-689.
,	71	8.	Dopirak M, Hill, C., Oleksiw, M., Dumigan, D., Arvai, J., English, E., Carusillo,
:	8		E., Malo-Schlegel, S., Richo, J., Traficanti, K., Welch, B., Cooper, B.
	9		Surveillance of hemodialysis-associated primary bloodstream infections: the
1	0		experience of ten hospital-based centers. Infect Control Hosp Epidemiol.
1	1		2002;23:721-724.
12	2 1	9.	Zhao Y, Connors, C., Wright, J., Guthridge, S. Estimating chronic disease
1.	3		prevalence among the remote Aboriginal population of the Northern Territory
14	4		using multiple data sources. Aust NZ J Public Health. 2008;32:307-313.
1:	5 2	0.	Hoy W, Davey, RL., Sharma, S., Hoy, PW., Smith, JM., Kondalsamy-
1	6		Chennakesavan, S. Chronic disease profiles in remote Aboriginal settings and
1	7		implications for health services planning. Aust NZ J Public Health. 2010;34:11-
1	8		18.
1	92	1.	Moberley S, Krause, V., Cook, H., Mulholland, K., Carapetis, J., Torzillo, P.,
20	0		Andrews, R. Failure to vaccinate of failure of vaccine? Effectiveness of the 23-
2	1		valent pneumococcal polysaccharide vaccine program iin Indigenous adults in the
22	2		Northern Territory of Australia. Vaccine. 2010;28:2296-2301.


BMJ Open


2			
3 4	1	22.	Flory J, Joffe, M., Fishman, NO., Edelstein, PH., Metlay, JP. Socioeconomic risk
5 6	2		factors for bacteraemic pneumococcal pneumonia in adults. Epidemiol Infect.
7 8 9	3		2009;137:717-726.
10 11	4	23.	Tong S, Bishop, E., Lilliebridge, R., Cheng, A., Spasova-Penkova, Z., Holt, D.,
12 13	5		Giffard, P., McDonald, M., Currie, B., Boutlis, C. Community Associated strains
14 15	6		of Methicillin-Resistant Staphylococcus aureus and Methicillin-Susceptible
16 17 18	7		S.aureus in Indigenous Northern Australia: Epidemiology and Outcomes. J Infect
19 20	8		Dis. 2009;199:1461-1470.
21 22	9	24.	Huggan P, Wells, JE., Browne, M., Richardson, A., Murdoch, DR., Chambers,
23 24 25	10		ST. Population-based epidemiology of Staphylococcus aureus bloodstream
26 27	11		infection in Canterbury, New Zealand. Int Med J. 2010;40:117-125.
28	11		
29 30	12	25.	Bagger J, Zindrou, D., Taylor, KM. Post-operative infection with Methicillin-
31 32	13		resistant Staphylococcus aureus and socioeconomic background. Lancet.
33 34 35	14		2004;363:706-708.
36 37	15	26.	Marmot M, Friel, S., Bell, R., Houweling, T., Taylor, S. Closing the gap in a
38 39	16		generation: health equity through action on the social determinants of health.
40 41 42	17		Lancet. 2008;372(November 8):1661-1669.
42 43 44	18	27.	Beaglehole R, Bonita, R., Horton, R., Adams, C., Alleyne, G., Asaria, P. et al for
45 46	19		the Lancet NCD action group and the NCD alliance. Priority actions for the non-
47 48	20		communicable disease crisis. Lancet. 2011;377:1438-1447.
49 50 51	21	28.	Bailie R, Stevens, MR., McDonald, E., Halpin, S., Brewster, D., Robinson, G.,
52			
53 54	22		Guthridge, S. Skin infection, housing and social circumstances in children liviing
55 56			
57 58			

1		in remote Indigenous communities: testing conceptual and methodological
2		approaches. BMC public health. 2005;5.
3	29.	McDonald M, Towers, RJ., Andrews, RM., Benger, N., Currie, BJ., Carapetis, JR.
4		Low rates of streptococcal pharyngitis and high rates of pyoderma in Australian
5		Aboriginal communities where acute rheumatic fever is hyperendemic. Clin Infect
6		Dis. 2006;43:683-689.
7	30.	Bailie R, Runcie, MJ. Household infrastructure in Aboriginal communities and
8		the implications fro health improvement. Med J Aust. 2001;175:363-366.
9	31.	Currie B, Carapetis, JR. Skin infections and infestations in Aboriginal
10		communites in northern Australia. Aust J Dermatol. 2000;41:139-145.
11	32.	Hewagama S, Spelman, T., Einsiedel, L. Staphylococcus aureus bacteraemia at
12		Alice Springs Hospital, central Australia, 2003-2006. Int Med J. 2012;42:505-
13		512.
14	33.	Carapetis J, Wolff, DR., Currie, BJ. Acute rheumatic fever and rheumatic heart
15		disease in the Top End of Australia's Northern Territory. Med J Aust. 1996;164(5
16		February):146-149.
17	34.	Jacoby P, Carvillo, K., Hall, S., Riley, T., Bowman, J., Leach, A., Lehamn, D.,
18		Kalgoorlie Otitis Media Resarch Project Team. Crowding and other strong
19		predictors of upper respiratory carriage of otitis media related bacteria in
20		Australian Aboriginal and non-Aboriginal children. Paed Inf Dis J.
21		2011;30(6):480-485.

BMJ Open

2			
3 4	1	35.	Verdonck K, Gonzalez, E., Van Dooren, S., Vandamme, A., Vanham, G.,
5 6	2		Gotuzzo, E. Human T-lymphotropic virus 1: recent knowledge about an ancient
7 8 9	3		infection. Lancet Infect Dis. 2007;7:266-281.
10 11	4	36.	Einsiedel L, van Iersel, E., Macnamara, R., Spelman, T., Heffernan, M., Bray, L,
12 13	5		Morris, H., Porter, B., Davis, A. Self-Discharge by adult Aboriginal patients at
14 15 16	6		Alice Springs Hospital, central Australia: insights from a prospective cohort
17 18	7		study. Aust Health Rev. 2012.
19 20	8	37.	Priest N, Paradies, Y., Stevens, M., Bailie, R. Exploring relationships between
21 22 23	9		racism, housing and child illness in remote iindigenous communities. J Epidemiol
24 25	10		Community Health 2012;66:440-447.
26 27	11	38.	Boutayeb A, Boutayeb, B. The burden of non-communicable diseases in
28 29 30	12		developing countries. Int J Equity in Health. 2005;4(1):2.
31 32	13	39.	Omran A. A theory of the epidemiology of population change. Milbank Mem
33 34 35	14		Fund Q. 1971;49:509-538.
36 37	15	40.	De Maeseneer J, Roberts RG, Demarzo M, et al. Tackling NCDs: a different
38 39	16		approach is needed. The Lancet. 2012;379(9829):1860-1861.
40 41 42	17		
43 44	18		
45 46			
47 48 40			
49 50			
51 52			
53 54			
55			
56 57			
58 59			
59 60			

Blood Stream infection incidence rates according to ethnicity and place of residence. Town Camp, Indigenous residents of Town Camp; Urban, Indigenous residents of township who do not reside in a town camp; Remote, Indigenous residents of remote Indigenous communities. Non-Indigenous residents of Alice Springs region.

BMJ Open

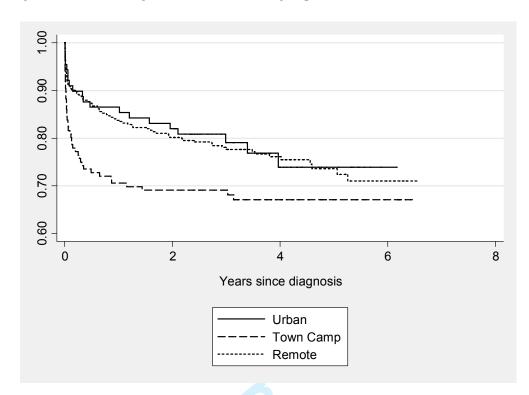


Fig 2 Survival of Indigenous adults according to place of residence

Survival following the final BSI recorded during the study period according to place of residence. Urban, residence within the township, but not in a town camp; Town Camp, residence in a town camp within the township; Remote, residence in a remote Indigenous community.

STROBE Statement—	-checklist of item	s that should	be included in	n reports of obse	rvational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
0		exposure, follow-up, and data collection
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
1		selection of participants. Describe methods of follow-up
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of
		selection of participants
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		Case-control study—For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		Case-control study—If applicable, explain how matching of cases and controls was
		addressed
		Cross-sectional study-If applicable, describe analytical methods taking account of
		sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
Continued on next page		

2
3 ⊿
5
6
7 8
9
10
12
13
14 15
16
17
18
20
21
23
24
25 26
27
28
29 30
31
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
34
35
30 37
38
39 40
41
42 43
44
45
46 47
48
49 50
F1
52 53
53 54
52 53 54 55 56
56 57
57 58 59
59 60
00

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure
		Cross-sectional study—Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful
		time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
		of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
1 unung		

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Non-communicable diseases, infection and survival in a retrospective cohort of Indigenous and non-Indigenous adults in central Australia.

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003070.R1
Article Type:	Research
Date Submitted by the Author:	02-Jun-2013
Complete List of Authors:	Einsiedel, Lloyd; Flinders University, Northern Territory Rural Clinical School Fernandes, Liselle; Flinders University, NTRCS Joseph, Sheela; Flinders University, NTRCS Brown, Alex; Baker IDI Heart and Diabetes Institute, Centre for Indigenous Vascular and Diabetes Research Woodman, Richard; Flinders University, General Practice
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Public health, Global health
Keywords:	INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, MICROBIOLOGY, Diabetes & endocrinology < INTERNAL MEDICINE, Nephrology < INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4	Non-communicable diseases, infection and survival in a retrospective cohort of Indigenous and non-Indigenous adults in central Australia.
5	Lloyd Einsiedel ¹ , Liselle Fernandes ¹ , Sheela Joseph ¹ , Alex Brown ² and
6	Richard J Woodman ¹
7	
8	
9	(1) Flinders University/Northern Territory Rural Clinical School, Alice Springs Hospital, 0870,
10	Northern Territory, Australia
11	(2) Head, Centre for Indigenous Vascular Research, Baker IDI Heart and Diabetes
12	Institute, Alice Springs Hospital, 0870, Northern Territory, Australia.
13	
14	§ Corresponding author:
15	Lloyd Einsiedel. Alice Springs Hospital, Department of Medicine, Darwin, Northern
16	Territory, Australia. Tel: + 61 08 89519607, Fax: + 61 08 89538385, E-mail:
17	lloyd.einsiedel@health.sa.gov.au
18	
19	Running title: Infection risk in Indigenous Australians
20	Keywords: Non-communicable diseases, diabetes, alcohol, infection, Indigenous health,
21	Australia

2 <u>Word count</u>:

- 3 Abstract: 293
- 4 Text: 3758
- to beer terier only References: 47

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	Abstract
3	Objectives: We hypothesize that rising prevalence rates of non-communicable diseases
4	(NCDs) increases infection risk and worsens outcomes among socially disadvantaged
5	Indigenous Australians undergoing a rapid epidemiological transition.
6	Design: Pathology, imaging and discharge morbidity codes were retrospectively reviewed
7	for a period of 5 years prior to admission with a blood stream infection (BSI), 1st January
8	2003 to 30th June 2007.
9	Participants: 558 Indigenous and 55 non-Indigenous community residents of central
10	Australia.
11	Outcome measures: The effects of NCDs on risk of infection and death were determined
12	after stratifying by ethnicity.
13	Results: Mean annual BSI incidence rates were far higher among Indigenous residents
14	(Indigenous, 937 per 100,000; non-Indigenous, 64 per 100,000 person-years; IRR=14.6;
15	95% CI=14.61-14.65, p<0.001). Indigenous patients were also more likely to have
16	previous bacterial infections (68.7% versus 34.6%; respectively, p<0.001), diabetes
17	(44.3% versus 20.0%; p<0.001), harmful alcohol consumption (37.0% versus 12.7%;
18	p<0.001) and other communicable diseases (HTLV-1, 45.2%; strongyloidiasis, 36.1%;
19	HBV, 12.9%). Among Indigenous patients, diabetes increased odds of current
20	Staphylococcus aureus BSI (OR=1.6, 95% CI=1.0-2.5) and prior skin infections (adjusted
21	OR=2.1, 95% CI=1.4-3.3). Harmful alcohol consumption increased odds of current
22	Streptococcus pneumoniae BSI (OR=1.57, 95% CI=1.02-2.40) and of previous BSI
23	(OR=1.7, 95% CI=1.1-2.5), skin infection (OR=1.7, 95% CI=1.1-2.6) or pneumonia
24	(OR=4.3, 95% CI=2.8-6.7). Twenty-six percent of Indigenous patients died at a mean

2	
3 4	2
5 6	3
7 8 9	3 4
10 11	5
12 13	5 6 7
14 15 16	7
17 18	8
19 20 21	9
22 23	10
24 25	11
26 27 28	
29	
30 31 32	
33 34 35	
36 37	
38 39	
40 41	
42 43 44	
44 45 46	
47 48	
49 50	
51 52	
53 54 55	
55 56 57	
58 59	
60	

1

(SD) age of 47±15 years. Complications of diabetes and harmful alcohol consumption predicted 28-day mortality (non-rheumatic heart disease, HR=2.9; 95% CI=1.4-6.2; chronic renal failure, HR=2.6, 95%CI=1.0-6.5; chronic liver disease, HR=3.3, 95% CI=1.6-6.7). Conclusion: In a socially disadvantaged population undergoing a rapid epidemiologic transition, NCDs are associated with an increased risk of infection and BSI related mortality. Complex interactions between communicable diseases and NCDs demand an integrated approach to management, which must include the empowerment of affected h. change. populations to promote behavioural change.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 85 BMJ Open		BMJ Open
1		5
2 3 4 5	2 3	Article Summary
6 7	4 5	Article Focus
8 9	6	• Remote dwelling, Indigenous Australians are undergoing a rapid epidemiological
10 11	7	transition, which is accompanied by a rising burden of non-communicable
12 13 14	8	diseases (NCDs).
15 16	9	• In this setting of social disadvantage and frequent pathogen exposure, NCDs may
17 18	10	increase risk of infection and infection-related death.
19 20	11	Key Messages
21 22	12	• We reveal substantial racial disparities in rates of infection and of NCDs,
23 24 25	13	reflecting the dual burden of disease that affects this Indigenous population.
25 26 27	14	• NCDs were associated with an increased risk of blood stream infections with
28 29	15	some pathogens, previous infections that provide portals of entry for life-
30 31 32	16	threatening invasive disease and infection-related mortality.
33 34	17	• Complex interactions between communicable diseases and NCDs demand an
35 36	18	integrated approach to management, which must include the empowerment of
37 38 39	19	affected populations to promote behavioural change.
40 41 42	20 21	Strengths and limitations of this study
43 44 45	22	• This hospital-based study only includes patients who were admitted with a
46 47	23	blood stream infection. We are therefore unable to determine the actual risk of
48 49	24	blood stream infections that is attributable to NCDs or to comment on background
50 51 52	25	rates of other infections that might be treated in the community.
53 54	26	• The major strength of our study lies in the demography of the study population,
55 56 57 58	27	which is served by a single hospital, and the extensive nature of the clinical
59 60		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

2 Introduction

Complex interactions between the demographic, economic and sociologic determinants of disease result in changing patterns of health and disease over time¹. The development of modern social and economic structures, for example, has been associated with a reduction in infectious diseases and nutritional deficiencies and a corresponding rise in non-communicable diseases (NCDs) that are associated with ageing and lifestyle factors¹. In many developing countries the rapidity of this 'epidemiologic transition' has resulted in a dramatic increase in NCD prevalence among populations that have a substantial preexisting infectious disease burden^{2,3}. This phenomenon proceeds at different rates according to the socioeconomic status of particular sub-groups within a given population and may reinforce established health inequalities 4,5 .

Among Indigenous people, forced displacement, the collapse of Indigenous economies and the destruction of socio-political structures have been the shared experience of colonization⁶. Indigenous people living within developed countries continue to live in poverty and experience a 'protracted' epidemiologic transition⁴ that is associated with a double burden of communicable and non-communicable diseases^{7,8} similar to that of many developing countries². In central Australia, for example, diabetes and other NCDs are the major contributors to racial disparities in mortality⁸ and to a life expectancy that remains 14 years less for Indigenous Australian men relative to their non-Indigenous peers⁹. A high burden of infectious diseases persists in this Indigenous population. Incidence rates of sepsis ¹⁰, blood stream infections ¹¹ and childhood pneumonia ¹², and prevalence rates of bronchiectiasis¹³ are the highest reported worldwide. Strongyloidiasis

and chronic viral infections, such as with hepatitis B virus (HBV) and the Human T-Lymphotropic Virus 1 (HTLV-1), are also common ¹¹. Population-based infection-related mortality rates for Indigenous adults in central Australia therefore remain higher than those of some African countries prior to the current HIV pandemic and the median age of in-hospital death is only 48 years ¹⁴.

Interactions between communicable diseases and NCDs have been little studied; however, an appreciable effect of NCDs on infection rates is likely where pathogen exposure is frequent. Diabetes, for example, contributes to the risk of serious bacterial infections including Streptococcus pneumoniae¹⁵ and Staphylococcus aureus¹⁶, which are common pathogens in overcrowded Indigenous Australian communities ¹¹. The NCD burden may therefore have a substantial impact on infection rates and outcomes where these two epidemics coincide. Such an interaction could reverse health gains in populations undergoing a rapid epidemiologic transition and exacerbate health inequalities among disadvantaged subgroups within developed countries. The recent description in New Zealand of an increasing divergence in infection-related hospitalization rates according to social status is consistent with this possibility and challenges health transition theory¹⁷.

21 Central Australia is well placed to study interactions between poverty, NCDs and 22 infectious diseases. Most Indigenous residents live in remote communities in conditions 23 of considerable socio-economic disadvantage, leaving a minority within the major 24 regional township of Alice Springs. The latter have ready access to a well-resourced

Page 9 of 85

BMJ Open

medical facility, Alice Springs Hospital (ASH), which has sophisticated diagnostic capabilities and provides specialist medical care to a region of 1,000,000 km². Indigenous residents of Alice Springs dwell in either overcrowded 'town camps', which have poor amenities and limited refuse disposal, or are integrated with the majority of the non-Indigenous population within the township's suburbs. Indigenous adults living in town camps and remote communities are often unemployed, have limited education and poor health literacy¹⁸. Among Indigenous adult residents of town camps, nearly half have 8 years or less schooling, labour participation rates are less than 20% and only 12% are employed ¹⁹. Despite an extremely complex regulatory framework and numerous Government attempts to minimize risk, harmful alcohol consumption in this setting remains common ²⁰.

The Indigenous population of central Australia also has among the highest blood stream infection incidence rates reported ¹¹. Living conditions that increase the risk of pathogen exposure ²¹ and high background rates of focal infections, which provide portals of entry for bacterial invasion, are likely to precede these life-threatening infections. Blood stream infection incidence rates therefore provide measurable end-points to which environmental and host factors contribute. Here we report the infectious and non-communicable disease burden among community residents of central Australia who presented with a blood stream infection and determine risk factors for infection and death after stratifying by ethnicity.

2 Methods

We conducted a retrospective review of all positive blood cultures collected from adult patients (age \geq 15 years) admitted to ASH between 1st January 2001 and 31st June 2007. In July 2007 the Australian Federal Government suspended racial discrimination legislation and implemented an 'Emergency Response' that resulted in considerable uncertainty among Indigenous residents²². This raised concerns that the central Australian resident population could change as people moved interstate to escape these restrictions and no data was collected after this date. Data collected included organism, ethnicity, dates of birth, dates of death, indigenous status and place of residence. For patients who presented between 1st January 2003 and 31st June 2007 we also obtained ICD 10 morbidity codes and the results of microbiological and radiological investigations for each admission for 5 years prior to the final BSI presentation. NCDs were derived from ICD-10 morbidity codes for diabetes, harmful alcohol consumption, >stage 2 chronic kidney disease, ischaemic heart disease, chronic liver disease and malignancy. Bronchiectasis was diagnosed radiologically using American College of Chest Physician criteria. Heart failure and valvular heart disease, including rheumatic heart disease (RHD), were diagnosed by trans-thoracic echocardiography. Ischaemic heart disease and cardiac failure were combined ('non-rheumatic heart disease') for statistical analysis.

21 Definitions

22 Residence

Place of residence was categorized as i) remote (>100 km from Alice Springs), ii) Alice
Springs town camp and iii) urban (resident in Alice Springs, but not in a town camp).

BMJ Open

Nursing home residents were included in calculations of BSI incidence rates, but
excluded from further analysis because the primary study objective was to determine risk
factors for infection and death among community residents.

6 Infections

A blood culture from which a pathogen was isolated was defined as a 'BSI episode'. Repeated culture of the same organism from blood culture was regarded as a separate 'episode' only if blood samples were drawn more than one month apart. Blood stream infections were defined as community-acquired if a pathogen was isolated from blood cultures drawn within 48 hours of admission and nosocomial if isolated from blood cultures drawn after this time. Foci of infection were determined where possible from ICD-10 morbidity codes in association with pathology and imaging results for each admission for five years prior to the final BSI during the study period. A diagnosis of pneumonia was made if there was radiological evidence of consolidation and this was attributed to the pathogen isolated from blood cultures if the same organism was also isolated from sputum or the blood culture isolate was an organism typically associated with pneumonia, such as Streptococcus pneumoniae. Blood stream infections excluded infections with potential contaminants including coagulase negative staphylococci, bacillus spp., corvneforms and viridans streptococci unless grown from more than one BC in a 24 hour period, as were *Acinetobacter sp* in the absence of an identifiable focus.

The study was approved by the Central Australian Human Research Ethics Committee
(www.health.nt.gov.au/Agency/Advisory_Groups_and_Taskforces/Human_Research_Et
hics Committee/index.aspx).

Statistics.

All associations were assessed using data obtained for the final BSI admission within the study period. Univariate analysis for categorical data was performed using Chi-squared statistics and Fishers Exact where appropriate. Multivariate analysis was performed using binary logistic regression. Short (28-day) and long term survival analysis following the final BSI episode in the study period was performed using the log-rank statistic for univariate analysis and Cox regression for multivariate analysis. We calculated the annual population-based incidence rates for 2001-2006 for the combined Alice Springs and Anangu Pitjantjatjara Yankunyatjara (APY) land areas using the total number of BSI presentations each year as the numerator. The denominator used was the estimated Adult resident population obtained from Australian Bureau of Statistics 2006 census data for the Alice Springs region combined with that of the neighbouring APY land areas. To enable analysis according to place of residence this population was further divided into that of i) the Alice Springs urban area excluding town camps (Indigenous 2898, non-Indigenous 18471), ii) Alice Springs town camps, including that of a closely affiliated neighbouring community (Indigenous, 1482), and iii) the Alice Springs rural area (Indigenous, 8925; non-Indigenous, 2775), which included that for the APY land areas (Indigenous=1302, non-Indigenous=294).

2		
3	Results	
4	Patient demographics	
5	558 Indigenous and 55 non-indigenous adult community residents presented to ASH with	
6	a BSI between January 2003 and July 2007. Detailed demographic, clinical and	
7	microbiological data are described in Table 1. Indigenous patients were younger	
8	(Indigenous, 44.7±15.2; non-Indigenous, 57.5±21.1; p<0.001), more likely to be female	
9	(Indigenous, 58.1%; non-Indigenous, 41.8%; p<0.03) and to live in a town camp or	
10	remote community (Indigenous, 84.0%; non-Indigenous, 0; p<0.001). Non-	
11	communicable diseases including diabetes (Indigenous, 44.3%; non-Indigenous, 20.0%;	
12	p<0.001) and harmful alcohol consumption (Indigenous, 37.0%; non-Indigenous, 12.7%;	
13	p<0.001) were more common among Indigenous patients, while non-Indigenous patients	
14	were more likely to have ischaemic heart disease (Indigenous, 3.4%; non-Indigenous,	
15	31.6%; p<0.001), malignancy (Indigenous, 2.3%; non-Indigenous, 20.0%; p<0.001), to	
16	be receiving palliative care (Indigenous, 1.8%; non-Indigenous, 9.1%; p=0.001) and to	
17	have a history of intravenous drug use (Indigenous, 0; non-Indigenous, 5.5%; p=0.001).	
18	Forty-seven (8.4%) Indigenous and 5 (9.3%) non-indigenous BSI episodes were	
19	nosocomial (Table 1).	
20		
21	Population-based incidence rates 2001-2006	
22	The overall population-based BSI incidence rate for the Alice Springs area between 2001	
23	and 2006 was nearly 15 higher for Indigenous adults (937 per 100,000 person-years) than	

24 for non-Indigenous adults (64 per 100,000 person-years) (IRR=14.6; 95% CI, 14.61,

14.65; p<0.001). Incidence rates for Indigenous town camp residents (2,794/100,000
person-years) were more than 40 times higher than those of non-Indigenous urban
residents (64/100,000 person years) (IRR=43.6, 95% CI=43.57-43.65, p<0.001) and at
least three times higher than those of urban dwelling Indigenous adults (IRR=3.421, 95%
CI=3.418-3.423, p<0.001) or those from remote communities (IRR=3.87, 95% CI=3.864-
3.868, p<0.001) (Fig 1).

9 Microbial Aetiology

Escherichia coli and *S.aureus* were the most common pathogens causing BSI in both
ethnic groups. Methicillin-resistant *S.aureus* (Indigenous, 53 (5.2%); non-Indigenous, 1
(0.9%); p<0.001) and *S.pneumoniae* (Indigenous, 136 (13.2%); non-Indigenous, 8
(5.9%); p<0.001) were more common among Indigenous patients (Table 1).

Risk factors for BSI were determined for pathogens contributing more than 5% of all BSI episodes (Table 2). Diabetes was more common among Indigenous patients with a S.aureus BSI during their final BSI admission (20.2% versus 13.5%; OR=1.6 (1.04, 2.53; p=0.03) (Table 2). In contrast, increased risk of *Streptococcus pneumoniae* BSI was associated with harmful alcohol consumption, while risk was reduced among patients with diabetes or those receiving haemodialysis (Table 2). Risk of BSI with other major pathogens (E.coli, Klebsiella pneumoniae or Streptococcus pyogenes) was not increased by any NCD (Table 2).

24 Concurrent infections

During their final BSI admission, Indigenous patients more often had an additional focus
of bacterial infection unrelated to the presenting BSI (Indigenous, n=69 (12.4%); nonIndigenous, n=2 (3.6%); p=0.05) (Table 1). Infections with HTLV-1 (45.2%), *S.stercoralis* (36.1%) and hepatitis B virus (anti-HBc, 62.5%; HBsAg, 12.9%) were also
more common among Indigenous patients (Table 1). *Sarcoptes scabiei* infestations were
only found in Indigenous patients (n=20; 4.0%) (Table 1).

Previous infections

Excluding Indigenous patients who were at increased risk of recurrent infection (haemodialysis, 83; bronchiectasis, 27) and those residing outside the Alice Springs region who could not be followed-up (17), 296 of 431 (68.7%) Indigenous adults were admitted with an acute infection during the five years prior to the final BSI admission (Table 3). Significantly more common among Indigenous patients were pneumonia, previous BSI, skin abscesses and wound infections (Table 3). Predisposing factors for previous infection-related admissions included diabetes (previous skin infections), harmful alcohol consumption (previous skin infections, pneumonia and BSI) and stage 3-4 chronic kidney disease (any previous infection) (Table 4).

- 20 Mortality
- *28 day mortality*

Overall 28-day mortality rates following a BSI were 11.7% and 11.4% for Indigenous and non-Indigenous adults, respectively. Mortality rates among Indigenous patients were highest for town camp residents (Fig 2) and varied according to pathogen. Among the

major pathogens causing BSI, most often fatal within the first 28 days was K.pneumoniae infection (40.0%) followed by S.pneumoniae (9.6%) S.aureus (8.0%), and E.coli (5.0%) $(\chi^2=39.1, 4df; p<0.001)$. Case fatality rates according to focus of infection were pneumonia (21.5%), pyelonephritis (8.9%) and skin infections (7.2%) (χ^2 =14.5, 3df; p=0.002). 1. Community-acquired BSI amongst Indigenous patients Non-communicable diseases including chronic liver disease, non-rheumatic heart disease and chronic kidney disease were independent predictors of death (Table 5). Relative to

11 patients with *E.coli* BSI, both *S.aureus* (HR=2.7, 95% CI=1.0-7.3; p=0.05) and

12 S.pneumoniae (HR=13.4, 95% CI=4.6-39.2; p<0.001) were independently associated

13 with an increased risk of death (Table 5).

15 2. Nosocomial BSI amongst Indigenous patients

In univariate analysis, place of residence (p=0.04) was a predictor of short-term mortality. Within the first 28 days of admission, town camp residents were more likely to die (7 of 11=64%) relative to other township (0 of 6=0.0%) or remote residents (14 of 30=46.7%) (p=0.039). In multivariate analysis, place of residence remained an independent predictor (p<0.001) and there was also an increased risk in those with non-rheumatic heart disease (HR=4.6, 95% CI=1.2,17.6; p=0.03), a primary focus of pneumonia (HR=6.0, 95% CI=1.5, 24.5) and those with a previous BSI (HR=3.8, 95% CI=1.4, 10.3; p-0.008).

24 3. Nosocomial and Community acquired BSI amongst non-Indigenous patients

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

In multivariate analysis, only non-rheumatic heart disease was an independent predictor of short-term mortality amongst non-indigenous patients with a community-acquired BSI (HR=12.5, 95% CI=1.0, 150.3; p<0.05). There were 3 deaths within 28 days amongst 12 non-indigenous patients with non-rheumatic heart disease and 3 deaths amongst 56 patients without non-rheumatic heart disease. Numbers of nosocomial BSI amongst nonindigenous patients were too few (n=5) to attempt survival analysis.

- 9 Long-term mortality

10 One-hundred and forty-five (26.0%) Indigenous and 15 (27.3%) non-Indigenous patients 11 died during the 2,056 years of follow-up at a mean \pm SD age of 47 \pm 15 and 68 \pm 21 years 12 (p<0.001), respectively. Amongst Indigenous patients, mortality rates were again highest 13 amongst those from town camps (Log-rank χ^2 =5.05, p=0.08) (Fig 2).

Among Indigenous patients, NCDs (non-rheumatic heart disease, chronic kidney disease, chronic liver disease and malignancy) and BSI with *S.aureus* and *S.pneumoniae* were independent predictors of long-term mortality following community-acquired BSI (Table 5). Residence in a town camp (town camp, 7 of 11; local residence, 0 of 6; remote areas, 14 of 30; χ^2 =6.5, 2df; p=0.04) and BSI with *K.pneumoniae* BSI (HR=4.0, 95% CI=1.5, 11.2; p=0.007) were the only univariate predictors of long-term mortality for nosocomial BSI's amongst Indigenous patients.

3

1

19

1 2			
2 3			
4			
5			
6			
7			
9			
9			
1	0		
1			
	2		
1			
1	4		
	5		
	6		
	7		
1 1	' 0		
1	8		
	901234567890123456789		
2	ŷ		
2	1		
2	2		
2	3		
2	4		
2	5		
2	6		
2	7		
2	8		
2	ğ		
2	ñ		
2	1		
2	י ר		
5 2	2		
с 0	د ا		
3	4		
3	5		
3	6		
3	7		
3	8		
3	9		
4	0		
4	1		
4	2		
	3		
	4		
	5		
	6		
4 4	-		
	8		
	9		
5	0		
5	1		
5	2 3		
5	3		
5	4		
	5		
5	6		
5	7		
5	7 8		
5	9		
	0		
0	0		

4 The Indigenous adult population of central Australia has among the highest BSI 5 incidence rates worldwide. Relative to their non-Indigenous peers, rates for Indigenous 6 adults were nearly 15-fold higher overall and 40-fold higher among Indigenous town 7 camp residents. A high burden of other infections, particularly repeated respiratory and 8 skin infections, provide portals of entry for life-threatening invasive bacterial disease. 9 Nearly 70% of Indigenous patients required admission for an acute infection in the 10 preceding five years, 24.4% experienced a prior BSI and a second unrelated bacterial 11 infection was found in 12.4% of patients. Chronic viral and parasitic infections were also 12 common. Among Indigenous adults who were tested, more than 60% had been infected 13 with Hepatitis B virus, 13% remained HBsAg positive, nearly half were HTLV-1 14 seropositive and 36% were S.stercoralis seropositive. A similar burden of infection is 15 experienced by Indigenous children amongst whom frequent co-infection with bacterial pathogens and parasites ²³ contributes to 'failure-to-thrive' ²⁴. In our adult cohort, 26.0% 16 17 of Indigenous patients died during the study period at a mean age of only 47 years. 18 Although we were unable to attribute cause of death in the present study, 60% of Indigenous deaths at ASH are infection-related ¹⁴. 19

20

High prevalence rates of non-communicable diseases were also found in our Indigenous
cohort. These included diabetes, harmful alcohol consumption, chronic lung disease and
end-stage kidney disease, all of which increase the risk of bacterial infection ^{16,25, 15, 26}.
Invasive pneumococcal disease (IPD), for example, is three, 5.6 and 7-11 times more

common among patients with diabetes¹⁵, chronic lung disease¹⁵ and alcohol dependence ^{15,27}, respectively. Alcohol dependence and diabetes also increase risk of a BSI requiring intensive care nearly six-fold and haemodialysis increases risk several hundred fold ²⁶, largely due to prolonged central venous access ²⁸. In the present study, rates of diabetes among Indigenous adults were nearly three times reported background rates ²⁹. Diabetes was associated with *S.aureus* BSI and with previous skin infections, but not with *S.pneumoniae* BSI. Stage 3-4 chronic kidney disease, which is most often a complication of diabetes in our patient population³⁰, was associated with any previous infection. Harmful alcohol consumption was associated with *S.pneumoniae* BSI and with previous disease, including non-rheumatic heart disease, chronic kidney disease and chronic liver disease, were also major predictors of mortality after a BSI. However, once invasive infections were established, *S.aureus* and *S.pneumoniae* predicted death independently of any underlying medical condition.

The present study has compared risk of non-communicable diseases among patients presenting with a BSI and cannot determine the population-based risks attributable to these conditions. Nevertheless, racial disparities in NCD prevalence are unlikely to fully account for the BSI incidence rate ratios reported here, nor do regional differences in their prevalence ²⁹ explain IPD incidence rates that are twice as high among Indigenous residents of central Australia relative to those of the tropical north ³¹. In the USA, higher IPD incidence rates among Black Americans^{15,32} are more robustly associated with poverty than race ³². An increased risk of S.aureus infection has also been reported among those of lower socio-economic position ³³⁻³⁵ and infection-related hospital

admissions in New Zealand are associated with social deprivation ¹⁷. The socioeconomic circumstances of Indigenous Australians are therefore likely to further increase the infection risks associated with non-communicable diseases.

Social disadvantage predisposes to non-communicable diseases ^{36, 37} while increasing pathogen exposure and limiting opportunities to implement behavioural strategies that ameliorate risk ³⁸. In some Indigenous Australian communities the average number of people living per house is 17³⁹ and non-functioning health hardware leads to environmental conditions that are detrimental to householders²¹. Overcrowded housing⁴⁰ and an inability to maintain adequate skin hygiene²¹ contribute to high rates of pyoderma. More than 40% of Indigenous patients in the present study were previously admitted with skin infections, which are the most common primary focus for *S. aureus* bacteraemia in this population⁴¹. Scabies, a recognized cause of *S. aureus* and Streptococcal pyoderma ^{40,42}, affected 4% of our cohort. Streptococcal pyoderma underlies most cases of RHD in the Northern Territory ³⁹ and this was confirmed echocardiographically in 2% of our Indigenous cohort. Similarly, the transmission of respiratory pathogens is promoted by household crowding 43 and nearly 40% of Indigenous adults were admitted previously with pneumonia. Environmental contamination²⁴, inadequate sanitation and unhygienic food preparation areas²¹ contribute to infection with enteric pathogens and S.stercoralis. The risks of complicated strongyloidiasis, crusted scabies ⁴⁴ and bronchiectasis ¹³ are further increased by HTLV-1 infection; however, no attempt has been made to control transmission of this virus among Indigenous Australians. These effects are compounded by poor health literacy and

Indigenous adults are less likely to engage with a conventional medical paradigm ¹⁸.
Delays in seeking care for uncomplicated urinary tract infections may therefore
contribute to the very high gram negative BSI incidence rates reported here.

The retrospective design of this study results in a number of limitations. Firstly, only limited demographic information is collected by ASH and the Indigenous population is relatively mobile. Residents of remote communities, for example, frequently stay in town camps and this is not recorded by ASH. The effect of town camp residence may therefore be underestimated if large numbers of remote residents acquire infection during these visits. Although foci of infection were determined by reviewing the results of microbiology and imaging for each presentation, these varied between patients according to the practice of the treating physician. The number of patients with concurrent bacterial infections and medical conditions, such as RHD, may therefore be underestimated. Similarly, seropositivity rates for infections, such as HBV and HTLV-1, could only be determined for a subset of patients. A further limitation is the identification of NCDs and previous infections using ICD-10 codes; however, coding errors are unlikely to vary systematically according to ethnicity or place of residence. The use of ICD-10 codes does, however, limit our ability to study factors that are more difficult to define and which might also influence infection risk, such as nutrition and health literacy. Finally, the present study has demonstrated an increased risk of infection and death associated with town camp residence. This occurred despite better access to health care relative to remote residents and little difference in crude measures of socioeconomic deprivation'. For community-acquired BSIs, risk of death was strongly associated with NCDs;

Page 23 of 85

BMJ Open

however, these conditions did not fully account for the increased risk following a nosocomial BSI. Unmeasured socioeconomic factors might contribute to increased mortality among town camp residents; however, recent research linking health outcomes to perceived racism ⁴⁵ may also be relevant to this marginalized population.

The disease burden among the Indigenous population of central Australia is similar to that of many developing countries where NCD prevalence rates are rising rapidly in a setting of persistently high infection rates ^{2,46}. Recently, the validity of conventional health transition theory has been challenged by findings that infection-related hospitalization rates are increasing among the most socially disadvantaged community members in a developed country ¹⁷. The present study provides a possible explanation for this observation and further suggests that, in contrast to the orderly epidemiological transition envisaged by Omran $(1971)^1$, life expectancy may fall where social deprivation persists in the face of a rising prevalence of non-communicable diseases. High BSI incidence rates among Indigenous Australians were associated with a heavy burden of other infections that provide portals of entry for invasive bacterial disease. Improving life expectancy in this setting will require public health initiatives to reduce pathogen exposure in addition to controlling the burgeoning non-communicable disease burden. Diabetes, harmful alcohol consumption and organ damage resulting from these conditions increased both the likelihood of infection and the subsequent risk of death. Both conditions are included in proposed international management strategies to control the non-communicable disease crisis ³⁷. However, our findings also illustrate the complexity of interactions between communicable and non-communicable diseases and support calls

for an integrated approach to disease management ⁴⁷. The intimate association between these conditions and human behaviour renders the empowerment of affected populations to adopt protective health-related strategies critical to the success of any management to beer texies only program⁴⁷.

BMJ Open

2
3
1
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
47
17
18
$\begin{bmatrix} 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1011231415161718192212232425262728293031223334353637383940 \end{bmatrix}$
20
20
21
22
23
24
24
25
26
27
20
20
29
30
31
22
5Z
33
34
35
36
00
37
38
39
10
-TU 14
41
42
43
44
45
46
47
48
49
50
51
52
53
03
54
55
56
57
57 58
68
59

Contributions: LE designed the study, collected the data, assisted with statistical analysis and prepared the manuscript, LF and SJ collected the data, AB assisted in manuscript preparation and RW was responsible for statistical analysis and assisted in manuscript preparation. Acknowledgments: We wish to thank Dr S.Guthridge, Department of Health Gains Planning, Northern Territory Government, for providing the population data.

10 **Conflict-of-interest** : None reported

11 **Funding statement:**

- 12 This study received funding from the Northern Territory Rural Clinical School, which is
- 13 an initiative of the Australian Department of Health and Ageing.
- 14 **Data sharing**: Data relate to Indigenous Australians and cannot be shared without
- 15 specific approval from the relevant Indigenous communities and the responsible HREC.
- 16 Obtaining such approval will require detail of all individuals seeking access and each
- 17 research project for which the inclusion of this data is proposed.

Table 1 Demographics and comorbi	uties for margene	ous and non-marg	senous DSI pai
2003-2007.			
	Indigenous	Non-	p-value for
	(n=558)	indigenous	difference
		(n=55)	
Age, yrs (±SD)	44.7±15.2	57.5±21.1	< 0.001
Gender (M/F)	234/324	31/23	0.03
(%)	(42/58)	(57/43)	
Residence			
Urban	89 (16.0)	55 (100.0)	
Town Camp	136 (24.4)	0 (0.0)	
Remote Community	333 (59.7)	0 (0.0)	< 0.001
Co-morbidities ^a			
Diabetes	247 (44.3)	11 (20.0)	< 0.001
Harmful Alcohol Consumption	205 (37.0)	7 (12.7)	< 0.001
Chronic Kidney Disease			
Stage 3-4	34 (6.1)	5 (9.1)	0.39
Stage 5	83 (14.9)	3 (5.5)	0.06
Chronic liver disease ^b	53 (9.6)	6 (10.9)	0.74
Bronchiectasis	27 (4.8)	0	0.10
Congestive Cardiac failure	15 (2.7)	3 (5.5)	0.25
Ischaemic heart disease	9 (1.6)	7 (15.2)	<0.001
Valvular Heart Disease	27 (4.8)	3 (5.5)	0.84

BMJ Open

Rheumatic heart disease	12 (2.0)	0 (0.0)	0.27
Palliative care	10 (1.8)	5 (9.1)	0.001
Malignancy	13 (2.3)	11 (20.0)	< 0.001
IVDU	0 (0.0)	3 (5.5)	0.001
Community Acquired	510 (91.6)	49 (90.7)	0.84
Primary focus of infection			
No focus	250 (44.8)	20 (36.4)	0.37
Pneumonia ^c	110 (19.7)	6 (10.9)	0.08
Skin abscess	66 (11.8)	5 (9.1)	0.65
Pyelonephritis ^d	63 (11.3)	5 (9.1)	0.56
Other	53 (9.5)	18 (32.7)	< 0.001
Enteritis	15 (2.7)	1 (1.8)	0.71
Bone/joint	1 (0.2)	0.0 (0.0)	0.61
Additional Infections ^e			
Acute bacterial infections	69 (12.4)	2 (3.6)	0.05
Pneumonia	18 (3.2)	0 (0.0)	0.39
Urinary tract	20 (3.6)	1 (1.8)	0.49
Skin	27 (4.8)	1 (1.8)	0.31
Enteritis	4 (0.7)	0	0.53
Chronic Viral infections			
HTLV-1 ^f	137 (45.2)	0 (0.0)	< 0.001
Hepatitis B virus ^f			
HBsAg	49 (12.9)	1 (6.7)	0.70

Anti-HBc	193 (62.5)	3 (27.3)	< 0.001
Parasites			
Strongyloidiasis ^t	78 (36.1)	0 (0.0)	0.001
Scabies	20 (4.0)	0 (0.0)	0.24
Mortality			
28 days	62 (11.1)	7 (12.7)	0.72
All deaths	145 (26.0)	15 (27.3)	0.84
Age of death (years)	47±15	68±21	< 0.001
Major BSI Pathogens ^g	1029	110	
Enterobacteriaeciae	370 (36.0)	38 (34.5)	0.56
Escherichia coli	246 (23.9)	28 (25.5)	0.37
Klebsiella pneumoniae	57 (5.54)	2 (1.82)	0.09
Staphylococcus aureus	191 (18.6)	20 (18.2)	0.83
MRSA	53 (5.15)	1 (0.91)	< 0.001
Streptococcus pneumoniae	136 (13.2)	8 (5.88)	< 0.001
Streptococcus pyogenes	68 (6.61)	8 (7.27)	0.42
Haemophilus influenzae	22 (2.14)	0	0.14
Enteric pathogens ^h	29 (2.81)	1 (0.91)	0.27

2 a. comorbidities determined from IC-10 discharge morbidity codes

3 b. Chronic liver disease attributed to alcohol (Indigenous, 43; non-Indigenous, 5), chronic

4 hepatitis B (Indigenous, 10; non-Indigenous, 0) and chronic hepatitis C (Indigenous, 0;

5 non-Indigenous, 3).

6 c. Chest X-rays performed for 457 Indigenous patients.

BMJ Open

- 3 e. Urine cultures performed for 310 Indigenous patients.
- 4 e. Alternative bacterial pathogen isolated.
- 5 f. Indigenous patients tested: HTLV-1, 309; HBsAg, 388; HBcAb, 309; Strongyloides
- 6 stercoralis serology, 235. Denominators exclude 6 Indigenous patients with indeterminate
- 7 HTLV-1 Western blot results and 19 Indigenous patients with borderline Strongyloides
- 8 serology whose infective status could not be determined.
- 9 f. Major BSI pathogens responsible for all recorded episodes 2001-2007.
- 10 g. Includes Salmonella spp., Shigella spp., Campylobacter spp.
- 11 Abbreviations: CHB, chronic hepatitis B virus; HCV, hepatitis C virus; IVDU,
- 12 intravenous drug use.

			S.aure	PUS	S	S.pneum	onia	K	K.Pneum	ionia	<i>E</i> .(Coli	
		No	Yes	p-value ¹	No	Yes	p-value ¹	No	Yes	p-value ¹	No	Yes	p-value
		(%)	(%)		(%)	(%)		(%)	(%)		(%)	(%)	
	n												
Residence				~									
Urban	89	86.5	13.5		89.9	10.1		96.6	3.4		76.4	23.6	
Town Camp	136	88.2	11.8		83.1	16.9		91.9	8.1		73.5	26.5	
Remote	333	80.5	19.5	0.08	89.2	10.8	0.15	94.6	5.4	0.30	73.0	27.0	0.81
Diabetes													
No	310	86.5	13.6		83.9	16.1		93.9	6.1		74.1	25.8	
Yes	247	79.8	20.2	0.035	92.7	7.3	0.002	94.7	5.3	0.66	72.9	27.1	0.73
CRF													
No	524	83.4	16.6		87.6	12.4		94.3	5.7		73.7	26.3	
Yes	34	82.4	17.7	0.87	91.2	8.8	0.54	94.1	5.9	0.97	73.5	26.5	0.99

Table 2. Demographic and non-communicable disease associations for the major BSI pathogens among Indigenous adults.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	31 of 85						BMJ	Open						
1 2 3														31
2 3 4 5 6 7 8 9 10	HD													
7 8	No	475	84.2	15.8		86.3	13.7		94.1	5.9		70.5	29.5	
	Yes	83	78.3	21.7	0.18	96.4	3.6	0.01	95.2	4.8	0.70	92.6	8.4	<0.001
11 12 13 14 15 16 17	CLD													
14 15	No	505	82.4	17.6		87.7	12.3		93.9	6.1		73.5	26.5	
16 17 18	Yes	53	92.5	7.6	0.06	88.7	11.3	0.84	98.1	1.9	0.20	75.6	24.5	0.75
19 20	Alcohol													
21 22 22	No	349	82.2	17.8		92.0	8.0		95.1	4.9		75.1	24.9	
18 19 20 21 22 23 24 25 26	Yes	205	84.9	15.1	0.42	80.5	19.5	<0.001	93.1	6.8	0.33	71.7	28.3	0.38
26														

Major BSI pathogens recorded during the 5 years period prior to the final BSI admission. Abbreviations: Alcohol, harmful alcohol consumption; CRF, stage 3 or 4 chronic renal disease; HD, stage 5 renal disease; CLD, chronic liver disease.

2	2
3	7

Table 3. Infections recorded for Indigenous and non-Indigenous adults during the 5 years prior to the final BSI presentation^a

	Indigenous	Non-Indigenous	p-value
	n=431 (%)	(n=52)	
Any	296 (68.7)	18 (34.6)	< 0.001
BSI	105 (24.4)	4 (7.7)	0.007
Respiratory Tract	179 (41.5)	3 (5.8)	< 0.001
Pneumonia	164 (38.1)	4 (7.7)	< 0.001
>3 episodes	32 (7.4)	0 (0.0)	0.04
Exacerbation BE	13 (6.0)	0 (0.0)	0.20
Skin/Soft Tissue	154 (35.7)	7 (13.5)	0.001
Infections			
Abscess	88 (20.5)	0 (0.0)	< 0.001
Cellulitis	47 (10.9)	7 (13.7)	0.55
Wound infection	42 (9.7)	0 (0.0)	0.02
Pyelonephritis	77 (17.9)	4 (7.7)	0.06
Bone/joint	11 (2.6)	0 (0.0)	0.24
Enteritis	21 (4.9)	1 (1.9)	0.33
Scabies	14 (3.3)	0 (0.0)	0.19
Other	6 (1.4)	0 (0.0)	0.39

a. Excluding haemodialysis patients (n=83 indigenous, 3 non-indigenous), patients with
bronchiectasis (n=27) and those residing outside the Alice Springs urban and rural
districts for whom data were not available (Indigenous, 18; non-Indigenous, 0).
Abbreviations: BSI, blood stream infections; BE, bronchiectasis.

BMJ Open

Table 4: Multivariate adjusted odds ratios for previous infections among Indigenous patients^a

	Any infection	BSI	Skin ^b	Pneumonia ^c
	$(n=470)^{b}$	(n=553)	(n=470)	(n=443)
	Odds ratio	Odds ratio	Odds ratio	Odds ratio
	(95% CI)	(95% CI)	(95% CI)	(95% CI)
Residence				
Urban	1.00	1.00	1.00	1.00
Town camp	1.2 (0.6-2.4)	1.8 (0.9-3.4)	1.3 (0.7-2.5)	1.3 (0.7-2.6)
Remote	0.8 (0.5-1.4)	1.3 (0.7-2.3)	1.2 (0.7-2.2)	0.8 (0.4-1.4)
Age (10 yrs)	0.9 (0.8-1.0)	1.1 (0.9-1.2)	0.9 (0.8-1.0)	1.0 (0.9-1.2)
Gender (0=F,	1.0 (0.7-1.5)	1.3 (0.9-1.9)	1.0 (0.7-1.6)	1.0 (0.7-1.6)
1=M)				
Diabetes	1.4 (0.9-2.2)	1.1 (0.7-1.7)	2.1 (1.4-3.3)	1.1 (0.7-1.7)
CRF	3.0 (1.1-8.2)	1.7 (0.8-3.8)	1.5 (0.7-3.2)	1.6 (0.7-3.7)
Alcohol	2.8 (1.8-4.4)	1.7 (1.1-2.5)	1.7 (1.1-2.6)	4.3 (2.8-6.7)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

a. Previous infections during 5 years prior to the final BSI in the study period. Adjusted for other risk factors in table.

b. Excluding patients receiving haemodialysis.

c. Excluding patients receiving haemodialysis and those with bronchiectasis

Abbreviations: BSI, blood stream infections; CRF, chronic renal failure excluding

patients receiving haemodialysis.

 BMJ Open

Table 5: Multivariate analysis of factors associated with 28 day and long-term survival for 510 Indigenous patients following a Community-acquired Blood Stream Infection^a.

				28 day surviva	ıl	Long-term s	urvival
	n	Deaths	Deaths	HR (95% CI)	p-value	HR (95% CI)	p-value
		(28	(all)				
		days)					
Residence							
Urban	63	7	20	1.00		1.0	
Town Camp	125	20	37	1.7 (0.7-4.1)		1.2 (0.7-2.2)	
Remote	302	22	67	0.9 (0.4-2.0)	0.12	0.9 (0.5-1.5)	0.28
Age (10yrs)				1.04 (0.8-1.3)	0.70	1.0 (0.9-1.1)	0.99
Gender (0=F,1=M)	298F/212M	23/26	65/59	1.5 (0.8-2.7)	0.17	1.3 (0.9-2.0)	0.13
CLD (0=No, 1=Yes)	41	11	20	3.3 (1.6-6.7)	0.001	2.5 (1.5-4.2)	<0.001
Non-RHD	37	9	16	2.9 (1.4-6.2)	0.005	2.1 (1.2-3.6)	0.01
CRF	28	6	11	2.6 (1.0-6.5)	0.04	2.3 (1.2-4.3)	0.01

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Malignancy	11	3	10	2.9 (0.9-9.9)	0.09	6.0 (3.0-12.4)	<0.001
Organism ^b							
E.coli	143	5	22	1.0		1.0	
S.aureus	83	7	18	2.7 (1.0-7.3)	0.05	1.8 (1.1-3.0)	0.03
K.pneumoniae	29	12	15	2.3 (0.7-7.5)	0.17	1.4 (0.7-2.7)	0.17
S.pneumoniae	67	5	17	13.4 (4.6-39.2)	<0.001	4.8 (2.5-9.5)	<0.001
Other	188	20	52	1.8 (0.5-6.3)	0.37	1.5 (0.8-3.0)	0.22

a. Excluded from analysis: 48 Nosocomial infections.

b. Pathogens isolated from blood cultures

Abbreviations: BSI, blood stream infection; CCF; CLD, chronic liver disease; CRF, chronic renal failure; Non-RHD, ischaemic heart

disease and cardiac failure.

60

BMJ Open

2			
3	1	Refer	rences
4	1	Iterer	
5	2	1	Owner A. A. there a fifth and the second start of a second start of the second start o
6	2	1.	Omran A. A theory of the epidemiology of population change. <i>Milbank Mem</i>
7	3		Fund Q. 1971;49:509-538.
8	4	2.	Maher D, Smeeth, L., Sekajugo, J. Health transition in Africa: practical policy
9	5		proposals for primary care. Bull WHO. 2010;88:943-948.
10	6	3.	Gracey M, King, M. Indigenous Health part 1: determinants and disease patterns.
11	7		Lancet. 2009;374:65-75.
12	8	4.	Frenk J, Bobadilla, JL., Sepulveda J., et al. Health transition in middle-income
13 14	9	т.	
14			countries: new challenges for health care. <i>Health Policy and Planning</i> .
16	10	_	1989;4(1):29-39.
17	11	5.	Heuveline P, Guilllot, M., Gwatkin, DR. The uneven tide of the health transition.
18	12		Soc Sci Med. 2002;55:313-322.
19	13	6.	United Nations. State of the World's Indigenous Peoples. New York: The United
20	14		Nations Department of Economic and Social Affairs; 2009.
21	15	7.	Australian Bureau of Statistics. The health and welfare of Australia's Aboriginal
22	16	·•	and Torres Strait Islander peoples. Canberra; 2005.
23	17	8.	
24		0.	Zhao Y, Dempsey, K. Causes of inequality in life expectancy between indigenous
25	18		and non-indigenous people in the Northern Territory, 1981-2000: a decomposition
26	19		study. Med J Aust. 2006;184:490-494.
27	20	9.	Australian Bureau of Statistics. The Health and Welfare of Australia's Aboriginal
28	21		and Torres Strait Islander Peoples. Canberra: Australia; 2010.
29	22		www.censusdata.abs.gov.au/census_services/getproduct/census/2011/community
30	23		profile/IARE701002?opendocument&navpos=230
31	24	10.	Davis J, Cheng, AC., McMillan, M., et al. Sepsis in the tropical Top End of
32 33	25	10.	
33 34			Australia's Northern Territory: disease burden and impact on Indigenous
35	26		Australians. Med J Aust. 2011;194:519-524.
36	27	11.	Einsiedel L, Woodman, RJ. Two Nations: racial disparities in bloodstream
37	28		infections recorded at Alice Springs Hospital, central Australia, 2001-2005. Med J
38	29		Aust. 2010;192:567-571.
39	30	12.	O'Grady K, Taylor-Thompson, D., Chang, A., et al. Rates of radiologically
40	31		confirmed pneumonia as defined by the World Health Organisation in Norther
41	32		Territory Indigenous children. Med J Aust. 2010;192(10):592-595.
42	33	13.	Einsiedel L, Fernandes, L., Spelman, T., et al. Bronchiectasis is associated with
43	34	10.	Human T Lymphotropic Virus 1 infection in an Indigenous Australian population.
44			
45	35	14	<i>Clin Infect Dis.</i> 2012;54(1):43-50.
46	36	14.	Einsiedel L, Fernandes, L., Woodman, R Racial disparities in infection-related
47	37		mortality at Alice Springs Hospital, central Australia, 2000-2005. Med J Aust.
48 49	38		2008;188:568-571.
49 50	39	15.	Kway M, Rose, CE., Fry, AM., et al. The influence of chronic illness on the
50 51	40		incidence of invasive pneumococcal disease in adults. Clin Infect Dis.
52	41		2005;192:377-386.
53	42	16.	Joshi N, Caputo, GM., Weitekamp, MR., et al. Infections in diabetic patients. N.
54	43	101	<i>Engl. J. Med.</i> 1999;341(25):1906-1912.
55	-+J		$L_{11}g_{1.0.1}g_{1.0.1}g_{1.0.0}g_{1$
56			
57			
58			
59			

Page 38 of 85

BMJ Open

2			
3	1	17.	Baker M, Barnard, LT., Kvalsvig, A., et al. Increasing incidence of serious
4	2	1/•	infectious diseases and inequalities in New Zealand: a national epidemiological
5	$\frac{2}{3}$		study. Lancet. 2012;379:1112-1119.
6		10	
7	4	18.	Einsiedel L, van Iersel, E., Macnamara, R., et al. Self-Discharge by adult
8 9	5		Aboriginal patients at Alice Springs Hospital, central Australia: insights from a
9 10	6		prospective cohort study. Aust Health Rev. 2012.
11	7	19.	Australian Bureau of Statistics. 2011 Census of population and Housing.
12	8		Aboriginal and Torres Strait Islander (Indigenous) Profile. Canberra; 2013.
13	9		2002.0.
14	10		www.abs.gov.au/AUSSTATS/abs@.nsf/lookup/4704.0Chapter218Oct+2010
15	11	20.	Skov S, Chikrizhs, TN., Li SQ., et al. How much is too much? Alcohol
16	12		consumption and related harm in the Northern Territory. <i>Med J Aust.</i>
17	12		1010;193:269-272.
18	13	21.	Bailie R, Runcie, MJ. Household infrastructure in Aboriginal communities and
19		21.	
20	15		the implications fro health improvement. <i>Med J Aust.</i> 2001;175:363-366.
21 22	16	22.	Anaya J. Report of the Special Rapporteur on the situation of human rights and
23	17		fundamental freedoms of indigenous peoples, James Anaya, on the situation of
24	18		indigenous people in Australia. United Nations; 2010.
25	19	23.	d'Espaignet E, Kennedy, K., Paterson, B., et al. Health Status in the Northern
26	20		Territory 1998. Darwin: Epidemiology, Primary Care and Coordinated Care
27	21		Branch;1998.
28	22	24.	McDonald E, Bailie, R., Grace, J., et al. An ecological approach to health
29	23		promotion in remote Australian Aboriginal communities. <i>Health Promotion</i>
30	23		International. 2010;25(1):42-53.
31		25	
32	25	25.	O'Brien J, Lu, B., Ali, NA., Martin, GS., et al. Alcohol dependence is
33	26		independently associated with sepsis, septic shock and hospital mortality among
34 35	27	• •	adult intensive care unit patients. Crit. Care Med. 2007;35(2):345-350.
36	28	26.	Laupland K, Gregson, DB., Zygun, DA., Doig, CJ., et al. Severe blood stream
37	29		infections: a population-based assessment. Crit Care Med. 2004;32:992-997.
38	30	27.	Nuori J, Butler, JC., Farley, MM., Harrison, LH., et al. Cigarette smoking and
39	31		invasive pneumococcal disease. N Engl J Med. 2000;342:681-689.
40	32	28.	Dopirak M, Hill, C., Oleksiw, M., Dumigan, D., et al. Surveillance of
41	33		hemodialysis-associated primary bloodstream infections: the experience of ten
42	34		hospital-based centers. Infect Control Hosp Epidemiol. 2002;23:721-724.
43	35	29.	Zhao Y, Connors, C., Wright, J., et al. Estimating chronic disease prevalence
44	36	_ /•	among the remote Aboriginal population of the Northern Territory using multiple
45 46	37		data sources. Aust NZ J Public Health. 2008;32:307-313.
46 47		20	
48	38	30.	Hoy W, Davey, RL., Sharma, S., Hoy, PW., et al. Chronic disease profiles in
49	39		remote Aboriginal settings and implications for health services planning. Aust NZ
50	40		<i>J Public Health</i> . 2010;34:11-18.
51	41	31.	Moberley S, Krause, V., Cook, H., Mulholland, K., et al. Failure to vaccinate of
52	42		failure of vaccine? Effectiveness of the 23-valent pneumococcal polysaccharide
53	43		vaccine program in Indigenous adults in the Northern Territory of Australia.
54	44		Vaccine. 2010;28:2296-2301.
55			
56			
57 58			
50 59			
00			

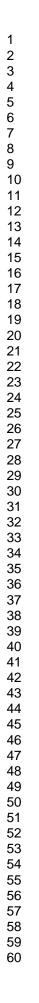
BMJ Open

2			
3	1	32.	Flory J, Joffe, M., Fishman, NO., Edelstein, PH., et al. Socioeconomic risk factors
4	2	02.	for bacteraemic pneumococcal pneumonia in adults. <i>Epidemiol Infect</i> .
5	3		2009;137:717-726.
6	4	33.	
7 8		55.	Tong S, Bishop, E., Lilliebridge, R., Cheng, A., et al. Community Associated
9	5		strains of Methicillin-Resistant Staphylococcus aureus and Methicillin-
10	6		Susceptible S.aureus in Indigenous Northern Australia: Epidemiology and
11	7		Outcomes. J Infect Dis. 2009;199:1461-1470.
12	8	34.	Huggan P, Wells, JE., Browne, M., Richardson, A., et al. Population-based
13	9		epidemiology of Staphylococcus aureus bloodstream infection in Canterbury,
14	10		New Zealand. Int Med J. 2010;40:117-125.
15	11	35.	Bagger J, Zindrou, D., Taylor, KM. Post-operative infection with Methicillin-
16	12		resistant Staphylococcus aureus and socioeconomic background. Lancet.
17	13		2004;363:706-708.
18 19	14	36.	Marmot M, Friel, S., Bell, R., Houweling, T., et al. Closing the gap in a
20	15	001	generation: health equity through action on the social determinants of health.
20	16		Lancet. 2008;372(November 8):1661-1669.
22		27	
23	17	37.	Beaglehole R, Bonita, R., Horton, R., Adams, C., et al for the Lancet NCD action
24	18		group and the NCD alliance. Priority actions for the non-communicable disease
25	19	• •	crisis. Lancet. 2011;377:1438-1447.
26	20	38.	Bailie R, Stevens, MR., McDonald, E., Halpin, S., et al. Skin infection, housing
27	21		and social circumstances in children liviing in remote Indigenous communities:
28	22		testing conceptual and methodological approaches. BMC public health. 2005;5.
29 30	23	39.	McDonald M, Towers, RJ., Andrews, RM., Benger, N., et al. Low rates of
31	24		streptococcal pharyngitis and high rates of pyoderma in Australian Aboriginal
32	25		communities where acute rheumatic fever is hyperendemic. Clin Infect Dis.
33	26		2006;43:683-689.
34	27	40.	Currie B, Carapetis, JR. Skin infections and infestations in Aboriginal
35	28	101	communites in northern Australia. Aust J Dermatol. 2000;41:139-145.
36	20	41.	Hewagama S, Spelman, T., Einsiedel, L. Staphylococcus aureus bacteraemia at
37	30	71.	Alice Springs Hospital, central Australia, 2003-2006. Int Med J. 2012;42:505-
38			
39 40	31	42	
40 41	32	42.	Carapetis J, Wolff, DR., Currie, BJ. Acute rheumatic fever and rheumatic heart
42	33		disease in the Top End of Australia's Northern Territory. Med J Aust. 1996;164(5
43	34		February):146-149.
44	35	43.	Jacoby P, Carvillo, K., Hall, S., Riley, T., et al. Crowding and other strong
45	36		predictors of upper respiratory carriage of otitis media related bacteria in
46	37		Australian Aboriginal and non-Aboriginal children. Paed Inf Dis J.
47	38		2011;30(6):480-485.
48	39	44.	Verdonck K, Gonzalez, E., Van Dooren, S., Vandamme, A., et al. Human T-
49	40		lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect
50 51	41		Dis. 2007;7:266-281.
52	42	45.	Priest N, Paradies, Y., Stevens, M., Bailie, R. Exploring relationships between
53	43	101	racism, housing and child illness in remote iindigenous communities. <i>J Epidemiol</i>
54	44		Community Health 2012;66:440-447.
55	44	46.	Boutayeb A, Boutayeb, B. The burden of non-communicable diseases in
56		40.	
57	46		developing countries. <i>int J Equity in Health</i> . 2005;4(1):2.
58			
59			

 47. De Maeseneer J, Roberts RG, Demarzo M, et al. Tackling NCDs: a different approach is needed. *The Lancet*. 2012;379(9829):1860-1861.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4		
5 6		
7 8 9 10	2 3	<u>NThe aAssociation of non-communicable diseases, with blood stream</u> infection incidence and survival in a retrospective cohort of <u>I</u> indigenous and
11 12	4 5	non-Indigenous <u>adults in central Australia in central Australians</u> .
13 14	6	Lloyd Einsiedel ¹ , Liselle Fernandes ¹ , Sheela Joseph ¹ , Alex Brown ² and
15 16	7	Richard J Woodman ¹
17 18	1	
19	8	
20 21	9	
22		
23 24	10	(1) Flinders University/Northern Territory Rural Clinical School, Alice Springs Hospital, 0870,
25	11	Northern Territory, Australia
26 27		
28	12	(2) Head, Centre for Indigenous Vascular Research, Baker IDI Heart and Diabetes
29 30	13	Institute, Alice Springs Hospital, 0870, Northern Territory, Australia.
31		
32 33	14	
34		
35 36	15	[§] Corresponding author:
37		
38 39	16	Lloyd Einsiedel. Alice Springs Hospital, Department of Medicine, Darwin, Northern
40	17	Territory, Australia. Tel: + 61 08 89519607, Fax: + 61 08 89538385, E-mail:
41 42	18	lloyd.einsiedel@health.sa.gov.au
43 44	10	
44 45	19	
46 47	20	Running title: Infection risk in Indigenous Australians
47 48	20	<u>Kunning uue</u> . miecuon risk in mugenous Australians
49 50	21	Keywords: <u>Epidemiologic transitionNon-communicable diseases</u> , diabetes, alcohol,
50 51		
52 53	22	<u>i</u> Infection, Indigenous <u>h</u> Health, Australia
53 54		
55 56		
57		
58 59		


Word count:

- Abstract: 293
- Text: 3758491
- References: 470
- Conflict-of-interest : None reported
- Funding statement:
- .tealth and Ageing This study received funding from the Northern Territory Rural Clinical School, which is
- an initiative of the Australian Department of Health and Ageing.

	3
2	Abstract
3	Objectives: We hypothesize that rising prevalence rates of non-communicable diseases
4	(NCDs) increases infection risk and worsens outcomes among socially disadvantaged
5	Indigenous Australians undergoing a rapid epidemiological transition.
6	Design: Pathology, imaging and discharge morbidity codes were retrospectively reviewed
7	for a period of 5 years prior to admission with a blood stream infection (BSI), 1st January
8	2003 to 30th June 2007.
9	Participants: 558 Indigenous and 55 non-Indigenous community residents of central
10	Australia.
11	Outcome measures: The effects of NCDs on risk of infection and death were determined
12	after stratifying by ethnicity.
13	Results: Mean annual BSI incidence rates were far higher among Indigenous residents
14	(Indigenous, 9 <u>3770</u> per 100,000; non-Indigenous, <u>6448</u> per 100,000 person-years;
15	IRR= <u>14.6</u> 20.33; 95% CI= <u>14.61</u> 20.31- <u>14.65</u> 20.35, p<0.001). Indigenous patients were
16	also more likely to have previous bacterial infections (68.7% versus 34.6%; respectively,
17	p<0.001), diabetes (44.3% versus 20.0%; p<0.001), harmful alcohol consumption (37.0%
18	versus 12.7%; p<0.001) and other communicable diseases (HTLV-1, 45.2%;
19	strongyloidiasis, 36.1%; HBV, 12.9%). Among Indigenous patients, diabetes increased
20	odds of current Staphylococcus aureus BSI (OR=1.6, 95% CI=1.0-2.5) and prior skin
21	infections (adjusted OR=2.1, 95% CI=1.4-3.3). Harmful alcohol consumption increased
22	odds of current Streptococcus pneumoniae BSI (OR=1.57, 95% CI=1.02-2.40) and of
23	previous BSI (OR=1.7, 95% CI=1.1-2.5), skin infection (OR=1.7, 95% CI=1.1-2.6) or
24	pneumonia (OR=4.3, 95% CI=2.8-6.7). Twenty-six percent of Indigenous patients died

at a mean (SD) age of 47±15 years. Complications of diabetes and harmful alcohol consumption predicted 28-day mortality (non-rheumatic heart disease, HR=2.9; 95% CI=1.4-6.2; chronic renal failure, HR=2.6, 95%CI=1.0-6.5; chronic liver disease, HR=3.3, 95% CI=1.6-6.7). Conclusion: In a socially disadvantaged population undergoing a rapid epidemiologic transition, NCDs are associated with an further-increased risk of infection risk of infection and BSI related mortality. Complex interactions between communicable diseases and NCDs demand an integrated approach to management, which must include itions to promote be... the empowerment of affected populations to promote behavioural change.

1 2		
3 4 5		
5 6 7		5
8 9	2 3	Article Summary
10 11	4 5	Article Focus
12 13	6	Remote dwelling, Indigenous Australians are undergoing a rapid epidemiological
14 15	7	transition, which is accompanied by a rapidly-rising burden of non-communicable
16 17	8	diseases (NCDs).
18 19	9	• In this setting of social disadvantage and frequent pathogen exposure, NCDs may
20 21	10	increase risk of infection and infection-related death.
22 23 24	11 12	 Key Messages We reveal substantial racial disparities in rates of infection and of NCDs,
25	13	reflecting the dual burden of disease that affects this Indigenous population.
26 27	14	• NCDs were associated with an increased risk of blood stream infections with
28 29	15	some pathogens, previous infections that provide portals of entry for life-
30 31	16	threatening invasive disease and infection-related mortality.
32 33	17	Complex interactions between communicable diseases and NCDs demand an
34 35	18	integrated approach to management, which must include the empowerment of
36 37 38	19	affected populations to promote behavioural change.
39 40	20 21	Strengths and limitations of this study
41 42	22	• This hospital-based study only includes patients who were admitted with a
43 44	23	blood stream infection. We are therefore unable to determine the actual risk of
45 46	24	blood stream infections that is attributable to NCDs or to comment on background
47 48	25	rates of other infections that, which might be treated in the community.
49 50	26	• The major strength of our study lies in the demography of the study population,
51 52	27	which is served by a single hospital, and the extensive nature of the clinical
53 54		
55 56		
57 58		
59 60		

3

2 Introduction

Complex interactions between the demographic, economic and sociologic determinants of disease result in changing patterns of health and disease over time¹. The development of modern social and economic structures, for example, has been is associated with a reduction in infectious diseases and nutritional deficiencies and a corresponding rise in non-communicable diseases (NCDs) that are associated with due to ageing andor lifestyle factors¹. In many developing countries The rapidity of this is phenomenon has been termed the 'epidemiologic transition' (Omran) has resulted in a . In developing countries, rapid demographic change has dramatic been associated with marked increases in NCD the pPrevalence rates of of non-communicable diseases (NCDs), such as diabetes, amongin populations that have with a substantial pre-existing infectious disease are rising rapidly in developing countries, adding to a pre-existing-burden-of infectious diseases in populations that are undergoing rapid demographic changes^{2,3}. This phenomenon proceeds at different rates according to the socioeconomic status of particular sub-groups within a given population and may reinforce established health inequalities ^{4,5}. Among Indigenous people, forced displacement, the collapse of Indigenous economies and the destruction of socio-political structures have been the shared experience of colonization⁶. Indigenous people living within developed countries continue to live in poverty and experience a 'protracted' epidemiologic transition⁴ that is associated with a

double burden of communicable and non-communicable diseases^{7,8} similar to that of
 many developing countries². A similar double burden of communicable and non communicable diseases and NCDs affects marginalized Indigenous people living in

poverty within developed countries ^{3,4}.—In central Australia, Among Indigenous Australians, for example, diabetes and other NCDs NCDs are the major contributors to racial disparities in mortality ⁸ and to a life expectancy that remains 147 years less for Indigenous Australian men relative to than that of their non-Indigenous peers,—⁹, A In central Australia, rising prevalence rates of NCDs affect an Indigenous population in which a high burden of infectious diseases persists in this Indigenous population. Incidence rates of sepsis ¹⁰, blood stream infections ¹¹ and childhood pneumonia_¹²(ref), and prevalence rates of bronchiectiasis¹³ are the highest reported worldwide. Strongyloidiasis and chronic viral infections, such as with hepatitis B virus (HBV) and the Human T-Lymphotropic Virus 1 (HTLV-1), are also common ¹¹. Population-based infection-related mortality rates for Indigenous adults in central Australia therefore remain higher than those of some African countries prior to the current HIV pandemic and the median age of in-hospital death is only 48 years ¹⁴.

Interactions between communicable diseases and NCDs have been little studied; however, an appreciable effect of NCDs on infection rates is likely where pathogen exposure is frequent. Diabetes, for example, contributes to the risk of serious bacterial infections including Streptococcus pneumoniae¹⁵ and Staphylococcus aureus¹⁶, which are common pathogens in overcrowded Indigenous Australian communities¹¹. The NCD burden may therefore have a substantial impact on infection rates and outcomes where these two epidemics coincide. Such an interaction could reverse health gains in populations undergoing a rapid epidemiologic transition and exacerbate health inequalities among disadvantaged subgroups within developed countries. The recent

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 2 description in New Zealand of an increasing divergence in infection-related
3 hospitalization rates according to social status is consistent with this possibility and
4 challenges health transition theory ¹⁷.

Central Australia is well placed to study interactions between poverty, NCDs and infectious diseases. Most Indigenous residents live in remote communities in conditions of considerable socio-economic disadvantage, leaving a minority within the major regional township of Alice Springs. The latter have ready access to a well-resourced medical facility, Alice Springs Hospital (ASH), which has sophisticated diagnostic capabilities and provides specialist medical care to a region of 1,000,000 km². Indigenous residents of Alice Springs dwell in either overcrowded 'town camps', which have poor amenities and limited refuse disposal, or are integrated with the majority of the non-Indigenous population within the township's suburbs. Indigenous adults living in town camps and remote communities are often unemployed, have limited education (ABS) and poor health literacy-¹⁸(ref). AFor example, among Indigenous adult residents of town camps, nearly half60% have less than 8 years or less of schooling, labour participation rates are less than 20% and only 12% are employed ¹⁹ (ABS 2013). Despite an extremely complex regulatory framework and numerous a variety of Government attemptsinterventions to minimize risk, harmful alcohol consumption in this setting remains common ²⁰(ref).

The Indigenous population of <u>central Australia this region</u> also has among the highest
 blood stream infection incidence rates reported ¹¹. Living conditions that increase the risk

of pathogen exposure ²¹(ref) and high background rates of focal infections, which provide portals of entry for bacterial invasion, are likely to precede these life-threatening infections. Blood stream infection incidence rates therefore provide measurable endpoints to which environmental and host factors contribute.

Here we report the infectious and non-communicable disease burden among community
residents of central Australia who presented with a blood stream infection and determine
risk factors for infection and death after stratifying by ethnicity.

2 Methods

We conducted a retrospective review of all positive blood cultures collected from adult patients (age≥15 years) admitted to ASH between 1st January 2001 and 31st June 2007. In July 2007 the Australian Federal Government suspended racial discrimination legislation and implemented an 'Emergency Response' that resulted in considerable uncertainty among Indigenous residents²². This raised concerns that the central Australian resident population could change as people moved interstate to escape these restrictions and no data was collected after this date. Data collected included organism, ethnicity, dates of birth, dates of death, indigenous status and place of residence. For patients who presented between 1st January 2003 and 31st June 2007 we also obtained ICD 10 morbidity codes and the results of microbiological and radiological investigations for each admission for 5 years prior to the final BSI presentation. NCDs were derived from ICD-10 morbidity codes for diabetes, harmful alcohol consumption, >stage 2 chronic kidney disease, ischaemic heart disease, chronic liver disease and malignancy. Bronchiectasis was diagnosed radiologically using American College of Chest Physician criteria. Heart failure and valvular heart disease, including rheumatic heart disease (RHD), were diagnosed by trans-thoracic echocardiography. Ischaemic heart disease and cardiac failure were combined ('non-rheumatic heart disease') for statistical analysis.

21 Definitions

22 Residence

Place of residence was categorized as i) remote (>100 km from Alice Springs), ii) Alice
Springs town camp and iii) urban (resident in Alice Springs, but not in a town camp).

Nursing home residents were included in calculations of BSI incidence rates, but
excluded from further analysis because the primary study objective was to determine risk
factors for infection and death among community residents.

6 Infections

A blood culture from which a pathogen was isolated was defined as a 'BSI episode'. Repeated culture of the same organism from blood culture was regarded as a separate 'episode' only if blood samples were drawn more than one month apart. Blood stream infections were defined as community-acquired if a pathogen was isolated from blood cultures drawn within 48 hours of admission and nosocomial if isolated from blood cultures drawn after this time. Foci of infection were determined where possible from ICD-10 morbidity codes in association with pathology and imaging results for each admission for five years prior to the final BSI during the study period. A diagnosis of pneumonia was made if there was radiological evidence of consolidation and this was attributed to the pathogen isolated from blood cultures if the same organism was also isolated from sputum or the blood culture isolate was an organism typically associated with pneumonia, such as Streptococcus pneumoniae. Blood stream infections excluded infections with potential contaminants including coagulase negative staphylococci, bacillus spp., coryneforms and viridans streptococci unless grown from more than one BC in a 24 hour period, as were *Acinetobacter sp* in the absence of an identifiable focus.

BMJ Open

The study was approved by the Central Australian Human Research Ethics Committee-(www.health.nt.gov.au/Agency/Advisory_Groups_and_Taskforces/Human_Research_Et hics_Committee/index.aspx).

6 Statistics.

All associations were assessed using data obtained for the final BSI admission within the study period. Univariate analysis for categorical data was performed using Chi-squared statistics and Fishers Exact where appropriate. Multivariate analysis was performed using binary logistic regression. Short (28-day) and long term survival analysis following the final BSI episode in the study period was performed using the log-rank statistic for univariate analysis and Cox regression for multivariate analysis. We calculated the annual population-based incidence rates for 2001-2006 for the combined Alice Springs and Anangu Pitjantjatjara Yankunyatjara (APY) land areas using the total number of BSI presentations each year as the numerator. The denominator used was the estimated Adult resident population obtained from Australian Bureau of Statistics 2006 census data for the Alice Springs region combined with that of the neighbouring APY land areas. To enable analysis according to place of residence this population was further divided into that of i) the Alice Springs urban area excluding town camps (Indigenous 2898, non-Indigenous 18471), ii) Alice Springs town camps, including that of a closely affiliated neighbouring community (Indigenous, 1482), and iii) the Alice Springs rural area (Indigenous, 8925; non-Indigenous, 2775), which included that for the APY land areas (Indigenous=1302, non-Indigenous=294).

Results

Patient demographics

558 Indigenous and 55 non-indigenous adult community residents presented to ASH with a BSI between January 2003 and July 2007. Detailed demographic, clinical and microbiological data are described in Table 1. Indigenous patients were younger (Indigenous, 44.7 ± 15.2 ; non-Indigenous, 57.5 ± 21.1 ; p<0.001), more likely to be female (Indigenous, 58.1%; non-Indigenous, 41.8%; p<0.03) and to live in a town camp or remote community (Indigenous, 84.0%; non-Indigenous, 0; p<0.001). Non-communicable diseases including diabetes (Indigenous, 44.3%; non-Indigenous, 20.0%; p<0.001) and harmful alcohol consumption (Indigenous, 37.0%; non-Indigenous, 12.7%; p<0.001) were more common among Indigenous patients, while non-Indigenous patients were more likely to have ischaemic heart disease (Indigenous, 3.4%; non-Indigenous, 31.6%; p<0.001), malignancy (Indigenous, 2.3%; non-Indigenous, 20.0%; p<0.001), to be receiving palliative care (Indigenous, 1.8%; non-Indigenous, 9.1%; p=0.001) and to have a history of intravenous drug use (Indigenous, 0; non-Indigenous, 5.5%; p=0.001). Forty-seven (8.4%) Indigenous and 5 (9.3%) non-indigenous BSI episodes were nosocomial (Table 1).

21 Population-based incidence rates 2001-2006

The overall population based BSI incidence rate for the Alice Springs area between 2001
 and 2006 was more than 20 times higher for Indigenous adults (970 per 100,000 person years) than for non Indigenous adults (48 per 100,000 person years) (IRR=20.33; 95%)

	15
2	CI, 20.31-20.35; p<0.001). Incidence rates for Indigenous town camp residents
3	(4,042/100,000 person years) were nearly 70 times higher than amongst non Indigenous
4	urban residents (60/100,000 person years) (IRR=67.9, 95% CI=67.8 67.9, p<0.001) and
5	greater than 3 times that of either urban dwelling Indigenous adults (IRR=3.87, 95%
6	CI=3.86 3.87, p<0.001) or those from remote communities (IRR=3.42, 95% CI=3.42-
7	3.42, p<0.001) (Fig 1). The overall population-based BSI incidence rate for the Alice
8	Springs area between 2001 and 2006 was nearly 15 more than 14 times higher for
9	Indigenous adults (937 per 100,000 person-years) than for non-Indigenous adults (64 per
10	100,000 person-years) (IRR=14.62; 95% CI, 14.61, 14.65; p<0.001). Incidence rates for
11	Indigenous town camp residents (2,794/100,000 person-years) were more than 40 times
12	higher than those of amongst non-Indigenous urban residents (64/100,000 person years)
13	(IRR=43.6, 95% CI=43.57-43.65, p<0.001) and at least threegreater than 3 times higher
14	than thoseat of urban dwelling Indigenous adults either urban dwelling indigenous adults
15	(<u>(IRR=3.421, 95% CI=3.418-3.423, p<0.001</u>) or those those from remote communities
16	(IRR=3.87, 95% CI=3.864-3.868, p<0.001) (Fig 1).
17	
18	
19	Microbial Aetiology
20	Escherichia coli and S.aureus were the most common pathogens causing BSI in both
21	ethnic groups. Methicillin-resistant S.aureus (Indigenous, 53 (5.2%); non-Indigenous, 1
22	(0.9%); p<0.001) and S.pneumoniae (Indigenous, 136 (13.2%); non-Indigenous, 8
23	(5.9%); p<0.001) were more common among Indigenous patients (Table 1).
24	

Risk factors for BSI were determined for pathogens contributing more than 5% of all BSI episodes (Table 2). Diabetes was more common among Indigenous patients with a S.aureus BSI during their final BSI admission (20.2% versus 13.5%; OR=1.6 (1.04, 2.53; p=0.03) (Table 2). In contrast, increased risk of Streptococcus pneumoniae BSI was associated with harmful alcohol consumption, while risk was reduced among patients with diabetes or those receiving haemodialysis (Table 2). Risk of BSI with other major pathogens (E.coli, Klebsiella pneumoniae or Streptococcus pyogenes) was not increased by any NCD (Table 2).

11 Concurrent infections

During their final BSI admission, Indigenous patients more often had an additional focus of bacterial infection unrelated to the presenting BSI (Indigenous, n=69 (12.4%); non-Indigenous, n=2 (3.6%); p=0.05) (Table 1). Infections with HTLV-1 (45.2%), *S.stercoralis* (36.1%) and hepatitis B virus (anti-HBc, 62.5%; HBsAg, 12.9%) were also more common among Indigenous patients (Table 1). *Sarcoptes scabiei* infestations were only found in Indigenous patients (n=20; 4.0%) (Table 1).

19 Previous infections

Excluding Indigenous patients who were at increased risk of recurrent infection (haemodialysis, 83; bronchiectasis, 27) and those residing outside the Alice Springs region who could not be followed-up (17), 296 of 431 (68.7%) Indigenous adults were admitted with an acute infection during the five years prior to the final BSI admission (Table 3). Significantly more common among Indigenous patients were pneumonia,

BMJ Open

previous BSI, skin abscesses and wound infections (Table 3). Predisposing factors for
previous infection-related admissions included diabetes (previous skin infections),
harmful alcohol consumption (previous skin infections, pneumonia and BSI) and stage 34 chronic kidney disease (any previous infection) (Table 4).

7 Mortality

8 28 day mortality

Overall 28-day mortality rates following a BSI were 11.7% and 11.4% for Indigenous and non-Indigenous adults, respectively. Mortality rates among Indigenous patients were highest for town camp residents (Fig 2) and varied according to pathogen. Among the major pathogens causing BSI, most often fatal within the first 28 days was K.pneumoniae infection (40.0%) followed by S.pneumoniae (9.6%) S.aureus (8.0%), and E.coli (5.0%) $(\chi^2=39.1, 4df; p<0.001)$. Case fatality rates according to focus of infection were pneumonia (21.5%), pyelonephritis (8.9%) and skin infections (7.2%) (χ^2 =14.5, 3df; p=0.002).

18 1. Community-acquired BSI amongst Indigenous patients

19 Non-communicable diseases including chronic liver disease, non-rheumatic heart disease

20 and chronic kidney disease were independent predictors of death (Table 5). Relative to

21 patients with E.coli BSI, both S.aureus (HR=2.7, 95% CI=1.0-7.3; p=0.05) and

22 S.pneumoniae (HR=13.4, 95% CI=4.6-39.2; p<0.001) were independently associated

23 with an increased risk of death (Table 5).

2. Nosocomial BSI amongst Indigenous patients

In univariate analysis, place of residence (p=0.04) was a predictor of short-term mortality. Within the first 28 days of admission, town camp residents were more likely to die (7 of 11=64%) relative to other township (0 of 6=0.0%) or remote residents (14 of 30=46.7%) (p=0.039). In multivariate analysis, place of residence remained an independent predictor (p<0.001) and there was also an increased risk in those with non-rheumatic heart disease (HR=4.6, 95% CI=1.2,17.6; p=0.03), a primary focus of pneumonia (HR=6.0, 95% CI=1.5, 24.5) and those with a previous BSI (HR=3.8, 95% CI=1.4, 10.3; p-0.008).

11 3. Nosocomial and Community acquired BSI amongst non-Indigenous patients

In multivariate analysis, only non-rheumatic heart disease was an independent predictor of short-term mortality amongst non-indigenous patients with a community-acquired BSI (HR=12.5, 95% CI=1.0, 150.3; p<0.05). There were 3 deaths within 28 days amongst 12 non-indigenous patients with non-rheumatic heart disease and 3 deaths amongst 56 patients without non-rheumatic heart disease. Numbers of nosocomial BSI amongst nonindigenous patients were too few (n=5) to attempt survival analysis.

19 Long-term mortality

One-hundred and forty-five (26.0%) Indigenous and 15 (27.3%) non-Indigenous patients died during the 2,056 years of follow-up at a mean \pm SD age of 47 \pm 15 and 68 \pm 21 years (p<0.001), respectively. Amongst Indigenous patients, mortality rates were again highest amongst those from town camps (Log-rank χ^2 =5.05, p=0.08) (Fig 2).

Among Indigenous patients, NCDs (non-rheumatic heart disease, chronic kidney disease, chronic liver disease and malignancy) and BSI with S.aureus and S.pneumoniae were independent predictors of long-term mortality following community-acquired BSI (Table 5). Residence in a town camp (town camp, 7 of 11; local residence, 0 of 6; remote areas, 14 of 30; χ^2 =6.5, 2df; p=0.04) and BSI with *K.pneumoniae* BSI (HR=4.0, 95% CI=1.5, 11.2; p=0.007) were the only univariate predictors of long-term mortality for nosocomial BSI's amongst Indigenous patients. There were no independent predictors of long-term mortality for non-Indigenous patients

with community acquired infections and too few non-indigenous patients with nosocomial BSI's (n=5) to perform long-term survival analysis.

3 Discussion

The Indigenous adult population of central Australia has among the highest BSI incidence rates worldwide. Relative to their non-Indigenous peers, rates for Indigenous adults were nearly 15420-fold higher overall and 470-fold-fold higher among Indigenous town camp residents. A high burden of other infections, particularly repeated respiratory and skin infections, provide portals of entry for life-threatening invasive bacterial disease. Nearly 70% of Indigenous patients required admission for an acute infection in the preceding five years, 24.4% experienced a prior BSI and a second unrelated bacterial infection was found in 12.4% of patients. Chronic viral and parasitic infections were also common. Among Indigenous adults who were tested, more than 60% had been infected with Hepatitis B virus, 13% remained HBsAg positive, nearly half were HTLV-1 seropositive and 36% were S.stercoralis seropositive. A similar burden of infection is experienced by Indigenous children amongst whom frequent co-infection with bacterial pathogens and parasites ²³ contributes to 'failure-to-thrive' ²⁴. In our adult cohort, 26.0% of Indigenous patients died during the study period at a mean age of only 47 years. Although we were unable to attribute cause of death in the present study, 60% of Indigenous deaths at ASH are infection-related ¹⁴.

High prevalence rates of non-communicable diseases were also found in our Indigenous
cohort. These included diabetes, harmful alcohol consumption, chronic lung disease and
end-stage kidney disease, all of which increase the risk of bacterial infection ^{16,25, 15, 26}.
Invasive pneumococcal disease (IPD), for example, is three, 5.6 and 7-11 times more

common among patients with diabetes¹⁵, chronic lung disease¹⁵ and alcohol dependence ^{15,27}, respectively. Alcohol dependence and diabetes also increase risk of a BSI requiring intensive care nearly six-fold and haemodialysis increases risk several hundred fold ²⁶, largely due to prolonged central venous access ²⁸. In the present study, rates of diabetes among Indigenous adults were nearly three times reported background rates ²⁹. Diabetes was associated with S.aureus BSI and with previous skin infections, but not with S.pneumoniae BSI. Stage 3-4 chronic kidney disease, which is most often a complication of diabetes in our patient population³⁰, was associated with any previous infection. Harmful alcohol consumption was associated with S.pneumoniae BSI and with previous infection-related admissions. Non-communicable diseases, including non-rheumatic heart disease, chronic kidney disease and chronic liver disease, were also major predictors of mortality after a BSI. However, once invasive infections were established, S.aureus and S. pneumoniae predicted death independently of any underlying medical condition.

The present study has compared risk of non-communicable diseases among patients presenting with a BSI and cannot determine the population-based risks attributable to these conditions. Nevertheless, racial disparities in NCD prevalence are unlikely to fully account for the BSI incidence rate ratios reported here, nor do regional differences in their prevalence ²⁹ explain IPD incidence rates that are twice as high among Indigenous residents of central Australia relative to those of the tropical north ³¹. In the USA, higher IPD incidence rates among Black Americans ^{15,32} are more robustly associated with poverty than race ³². An increased risk of S.aureus infection has also been reported among those of lower socio-economic position 33-35 and infection-related hospital

admissions in New Zealand are associated with social deprivation ¹⁷. The socioeconomic
circumstances of Indigenous Australians are therefore likely to further increase the
infection risks associated with non-communicable diseases.

Social disadvantage predisposes to non-communicable diseases ^{36, 37} while increasing pathogen exposure and limiting opportunities to implement behavioural strategies that ameliorate risk ³⁸. In some Indigenous Australian communities the average number of people living per house is 17^{39} and non-functioning health hardware leads to environmental conditions that are detrimental to householders ²¹. Overcrowded housing ⁴⁰ and an inability to maintain adequate skin hygiene²¹ contribute to high rates of pyoderma. More than 40% of Indigenous patients in the present study were previously admitted with skin infections, which are the most common primary focus for S.aureus bacteraemia in this population⁴¹. Scabies, a recognized cause of *S.aureus* and Streptococcal pyoderma ^{40,42}, affected 4% of our cohort. Streptococcal pyoderma underlies most cases of RHD in the Northern Territory ³⁹ and this was confirmed echocardiographically in 2% of our Indigenous cohort. Similarly, the transmission of respiratory pathogens is promoted by household crowding 43 and nearly 40% of Indigenous adults were admitted previously with pneumonia. Environmental contamination²⁴, inadequate sanitation and unhygienic food preparation areas²¹ contribute to infection with enteric pathogens and S.stercoralis. The risks of complicated strongyloidiasis, crusted scabies ⁴⁴ and bronchiectasis ¹³ are further increased by HTLV-1 infection; however, no attempt has been made to control transmission of this virus among Indigenous Australians. These effects are compounded by poor health literacy ; less than

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

<u>30% of Indigenous adults understood the reason for hospital admission and Previously</u> we have shown that Indigenous adults are less likely to engage with a conventional medical paradigm ¹⁸. <u>D</u> and delays in seeking care for uncomplicated urinary tract infections may <u>therefore</u> contribute to the very high gram negative BSI incidence rates reported here.

The retrospective design of this study results in a number of limitations. Firstly, only limited -demographic information is collected by ASH and the Indigenous population is relatively mobile. Rresidents of remote communities, for example, frequently stay in town camps_-and this is not recorded by ASH. The effect of town camp residence may therefore be underestimated if large numbers of remote residents acquire infection during these visits. Although foci of infection were determined by reviewing the results of microbiology and imaging for each presentation, these varied between patients according to the practice of the treating physician. The number of patients with concurrent bacterial infections and medical conditions, such as RHD, may therefore be underestimated. Similarly, seropositivity rates for infections, such as HBV and HTLV-1, could only be determined for a subset of patients. A further limitation is the identification of NCDs and previous infections using ICD-10 codes; however, coding errors are unlikely to vary systematically according to ethnicity or place of residence. The use of ICD-10 codes does, however, limit our ability to study factors that are more difficult to define and which might also influence infection risk, such as nutrition and health literacy. Finally, the present study has demonstrated an increased risk of infection and death associated with town camp residence. This occurred despite better access to health care relative to

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 remote residents and little difference in crude measures of socioeconomic deprivation⁷.
3 For community-acquired BSIs, risk of death was strongly associated with NCDs;
4 however, these conditions did not fully account for the increased risk following a
5 nosocomial BSI. Unmeasured socioeconomic factors might contribute to increased
6 mortality among town camp residents; however, recent research linking health outcomes
7 to perceived racism ⁴⁵ may also be relevant to this marginalized population.

The disease burden among the Indigenous population of central Australia is similar to that of many developing countries where NCD prevalence rates are rising rapidly in a setting of persistently high infection rates ^{2,46}. Recently, the validity of conventional health transition theory has been challenged by findings that infection-related hospitalization rates are increasing among the most socially disadvantaged community members in a developed country ¹⁷. The present study provides a possible explanation for this observation and further suggests that, in contrast to the orderly epidemiological transition envisaged by Omran (1971)¹, life expectancy may fall where social deprivation persists in the face of a rising prevalence of non-communicable diseases. High BSI incidence rates among Indigenous Australians were associated with a heavy burden of other infections that provide portals of entry for invasive bacterial disease. Improving life expectancy in this setting will require public health initiatives to reduce pathogen exposure in addition to controlling the burgeoning non-communicable disease burden. Diabetes, harmful alcohol consumption and organ damage resulting from these conditions increased both the likelihood of infection and the subsequent risk of death. Both conditions are included in proposed international management strategies to control the

non-communicable disease crisis ³⁷. However, our findings also illustrate the complexity of interactions between communicable and non-communicable diseases and support calls for an integrated approach to disease management_47. The intimate association between these conditions and human behaviour renders , which must include the -empowerment of affected populations to adopt protective health-related strategiesbehaviours critical to the success of any management program that reduce risk-47, (National Aboriginal Health Strategy). , which must include the empowerment of affected populations to promote behavioural change 40.

3			
4 5			
6 7		26	
8 9	2	Contributions:	
10 11	3	LE designed the study, collected the data, assisted with statistical analysis and prepared	
12 13	4	the manuscript, LF and SJ collected the data, AB assisted in manuscript preparation and	
14 15	5	RW was responsible for statistical analysis and assisted in manuscript preparation.	
16 17	6		
18 19	7	Acknowledgments:	
20 21	8	We wish to thank Dr S.Guthridge, Department of Health Gains Planning, Northern	
22	9	Territory Government, for providing the population data.	
23 24			
25			
26 27			
28			
29			
30 31			
32			
33			
34			
35			
36 37			
38			
39			
40			
41 42			
42 43			
44			
45			
46			
47			
48 49			
50			
51			
52			
53			
54 55			
55 56			
57			
58			
59			
60			
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines	.xhtml

2	Table 1 Demographics and comorbidities for indigenous and non-indigenous BSI patients

3 2003-2007.

	Indigenous	Non-	p-value for
	(n=558)	indigenous	difference
		(n=55)	
Age, yrs (±SD)	44.7±15.2	57.5±21.1	< 0.001
Gender (M/F)	234/324	31/23	0.03
(%)	(42/58)	(57/43)	
Residence			
Urban	89 (16.0)	55 (100.0)	
Town Camp	136 (24.4)	0 (0.0)	
Remote Community	333 (59.7)	0 (0.0)	< 0.001
Co-morbidities ^a			
Diabetes	247 (44.3)	11 (20.0)	<0.001
Harmful Alcohol Consumption	205 (37.0)	7 (12.7)	<0.001
Chronic Kidney Disease			
Stage 3-4	34 (6.1)	5 (9.1)	0.39
Stage 5	83 (14.9)	3 (5.5)	0.06
Chronic liver disease ^b	53 (9.6)	6 (10.9)	0.74
Bronchiectasis	27 (4.8)	0	0.10
Congestive Cardiac failure	15 (2.7)	3 (5.5)	0.25
Ischaemic heart disease	9 (1.6)	7 (15.2)	< 0.001
Valvular Heart Disease	27 (4.8)	3 (5.5)	0.84

			2
Rheumatic heart disease	12 (2.0)	0 (0.0)	0.27
Palliative care	10 (1.8)	5 (9.1)	0.001
Malignancy	13 (2.3)	11 (20.0)	< 0.001
IVDU	0 (0.0)	3 (5.5)	0.001
Community Acquired	510 (91.6)	49 (90.7)	0.84
Primary focus of infection			
No focus	250 (44.8)	20 (36.4)	0.37
Pneumonia ^c	110 (19.7)	6 (10.9)	0.08
Skin abscess	66 (11.8)	5 (9.1)	0.65
Pyelonephritis ^d	63 (11.3)	5 (9.1)	0.56
Other	53 (9.5)	18 (32.7)	< 0.001
Enteritis	15 (2.7)	1 (1.8)	0.71
Bone/joint	1 (0.2)	0.0 (0.0)	0.61
Additional Infections ^e			
Acute bacterial infections	69 (12.4)	2 (3.6)	0.05
Pneumonia	18 (3.2)	0 (0.0)	0.39
Urinary tract	20 (3.6)	1 (1.8)	0.49
Skin	27 (4.8)	1 (1.8)	0.31
Enteritis	4 (0.7)	0	0.53
Chronic Viral infections			
HTLV-1 ^f	137 (45.2)	0 (0.0)	< 0.001
Hepatitis B virus ^f			
HBsAg	49 (12.9)	1 (6.7)	0.70

			29
Anti-HBc	193 (62.5)	3 (27.3)	<0.001
Parasites			
Strongyloidiasis ^f	78 (36.1)	0 (0.0)	0.001
Scabies	20 (4.0)	0 (0.0)	0.24
Mortality			
28 days	62 (11.1)	7 (12.7)	0.72
All deaths	145 (26.0)	15 (27.3)	0.84
Age of death (years)	47±15	68±21	< 0.001
Major BSI Pathogens ^g	1029	110	
Enterobacteriaeciae	370 (36.0)	38 (34.5)	0.56
Escherichia coli	246 (23.9)	28 (25.5)	0.37
Klebsiella pneumoniae	57 (5.54)	2 (1.82)	0.09
Staphylococcus aureus	191 (18.6)	20 (18.2)	0.83
MRSA	53 (5.15)	1 (0.91)	<0.001
Streptococcus pneumoniae	136 (13.2)	8 (5.88)	<0.001
Streptococcus pyogenes	68 (6.61)	8 (7.27)	0.42
Haemophilus influenzae	22 (2.14)	0	0.14
Enteric pathogens ^h	29 (2.81)	1 (0.91)	0.27
	Strongyloidiasis ^f Scabies Mortality 28 days All deaths Age of death (years) Major BSI Pathogens ^g Enterobacteriaeciae Escherichia coli Klebsiella pneumoniae Staphylococcus aureus MRSA Streptococcus pneumoniae Streptococcus pyogenes Haemophilus influenzae Enteric pathogens ^h	Strongyloidiasis $78 (36.1)$ Scabies $20 (4.0)$ Mortality $28 days$ $28 days$ $62 (11.1)$ All deaths $145 (26.0)$ Age of death (years) 47 ± 15 Major BSI Pathogens ^g 1029 Enterobacteriaeciae $370 (36.0)$ Escherichia coli $246 (23.9)$ Klebsiella pneumoniae $57 (5.54)$ Staphylococcus aureus $191 (18.6)$ MRSA $53 (5.15)$ Streptococcus pneumoniae $136 (13.2)$ Streptococcus pyogenes $68 (6.61)$ Haemophilus influenzae $22 (2.14)$ Enteric pathogens ^h $29 (2.81)$	Strongyloidiasis ^f 78 (36.1) 0 (0.0) Scabies 20 (4.0) 0 (0.0) Mortality 28 days 62 (11.1) 7 (12.7) All deaths 145 (26.0) 15 (27.3) Age of death (years) 47±15 68±21 Major BSI Pathogens ^g 1029 110 Enterobacteriaeciae 370 (36.0) 38 (34.5) Escherichia coli 246 (23.9) 28 (25.5) Klebsiella pneumoniae 57 (5.54) 2 (1.82) Staphylococcus aureus 191 (18.6) 20 (18.2) MRSA 53 (5.15) 1 (0.91) Streptococcus pneumoniae 136 (13.2) 8 (5.88) Streptococcus pyogenes 68 (6.61) 8 (7.27) Haemophilus influenzae 22 (2.14) 0

2 a. comorbidities determined from IC-10 discharge morbidity codes

3 b. Chronic liver disease attributed to alcohol (Indigenous, 43; non-Indigenous, 5), chronic

4 hepatitis B (Indigenous, 10; non-Indigenous, 0) and chronic hepatitis C (Indigenous, 0;

5 non-Indigenous, 3).

6 c. Chest X-rays performed for 457 Indigenous patients.

- 2 d. Respiratory cultures performed for 150 Indigenous patients.
- 3 e. Urine cultures performed for 310 Indigenous patients.
- 4 e. Alternative bacterial pathogen isolated.
- 5 f. Indigenous patients tested: HTLV-1, 309; HBsAg, 388; HBcAb, 309; Strongyloides
- 6 stercoralis serology, 235. Denominators exclude 6 Indigenous patients with indeterminate
- 7 HTLV-1 Western blot results and 19 Indigenous patients with borderline Strongyloides
- 8 serology whose infective status could not be determined.
- 9 f. Major BSI pathogens responsible for all recorded episodes 2001-2007.
- 10 g. Includes Salmonella spp., Shigella spp., Campylobacter spp.
- 11 Abbreviations: CHB, chronic hepatitis B virus; HCV, hepatitis C virus; IVDU,
- 12 intravenous drug use.

		S.aureus			S.pneumonia			K.Pneumonia			<i>E.C</i>		
		No	Yes	p-value ¹	No	Yes	p-value ¹	No	Yes	p-value ¹	No	Yes	p-value
		(%)	(%)		(%)	(%)		(%)	(%)		(%)	(%)	
	n												
Residence						Y							_
Urban	89	86.5	13.5		89.9	10.1		96.6	3.4		76.4	23.6	
Town Camp	136	88.2	11.8		83.1	16.9		91.9	8.1		73.5	26.5	
Remote	333	80.5	19.5	0.08	89.2	10.8	0.15	94.6	5.4	0.30	73.0	27.0	0.81
Diabetes													
No	310	86.5	13.6		83.9	16.1		93.9	6.1		74.1	25.8	
Yes	247	79.8	20.2	0.035	92.7	7.3	0.002	94.7	5.3	0.66	72.9	27.1	0.73
CRF													
No	524	83.4	16.6		87.6	12.4		94.3	5.7		73.7	26.3	

Table 2. Demographic and non-communicable disease associations for the major BSI pathogens among Indigenous adults.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7 8	HD													32
9 10	No	475	84.2	15.8		86.3	13.7		94.1	5.9		70.5	29.5	
11	Yes	83	78.3	21.7	0.18	96.4	3.6	0.01	95.2	4.8	0.70	92.6	8.4	<0.001
12 13 14	CLD													
15 16	No	505	82.4	17.6		87.7	12.3		93.9	6.1		73.5	26.5	
17 18	Yes	53	92.5	7.6	0.06	88.7	11.3	0.84	98.1	1.9	0.20	75.6	24.5	0.75
19 20	Alcohol													
21 22	No	349	82.2	17.8		92.0	8.0		95.1	4.9		75.1	24.9	
21 22 23 24	Yes	205	84.9	15.1	0.42	80.5	19.5	<0.001	93.1	6.8	0.33	71.7	28.3	0.38
25 26 27 28										6	4			

 Major BSI pathogens recorded during the 5 years period prior to the final BSI admission. Abbreviations: Alcohol, harmful alcohol

consumption; CRF, stage 3 or 4 chronic renal disease; HD, stage 5 renal disease; CLD, chronic liver disease.

BMJ Open

			33
Table 3. Infections recor	ded for Indigenous an	d non-Indigenous adults	during the 5 years
prior to the final BSI pre	sentation ^a		
	Indigenous	Non-Indigenous	p-value
	n=431 (%)	(n=52)	
Any	296 (68.7)	18 (34.6)	<0.001
BSI	105 (24.4)	4 (7.7)	0.007
Respiratory Tract	179 (41.5)	3 (5.8)	< 0.001
Pneumonia	164 (38.1)	4 (7.7)	< 0.001
>3 episodes	32 (7.4)	0 (0.0)	0.04
Exacerbation BE	13 (6.0)	0 (0.0)	0.20
Skin/Soft Tissue	154 (35.7)	7 (13.5)	0.001
Infections			
Abscess	88 (20.5)	0 (0.0)	<0.001
Cellulitis	47 (10.9)	7 (13.7)	0.55
Wound infection	42 (9.7)	0 (0.0)	0.02
Pyelonephritis	77 (17.9)	4 (7.7)	0.06
Bone/joint	11 (2.6)	0 (0.0)	0.24
Enteritis	21 (4.9)	1 (1.9)	0.33
Scabies	14 (3.3)	0 (0.0)	0.19
Other	6 (1.4)	0 (0.0)	0.39
a. Excluding haemodialy	vsis patients (n=83 ind	igenous, 3 non-indigenou	s), patients with
bronchiectasis (n=27) an	d those residing outsid	de the Alice Springs urba	n and rural

districts for whom data were not available (Indigenous, 18; non-Indigenous, 0).

BSI, Abbreviations: blood stream infections; BE, bronchiectasis.

Table 4: Multivariate adjusted odds ratios for previous infections among Indigenous patients^a

	Any infection (n=470) ^b	BSI (n=553)	Skin ^b (n=470)	Pneumonia ^c (n=443)	
	Odds ratio	Odds ratio	Odds ratio	Odds ratio	
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	
Residence					
Urban	1.00	1.00	1.00	1.00	
Town camp	1.2 (0.6-2.4)	1.8 (0.9-3.4)	1.3 (0.7-2.5)	1.3 (0.7-2.6)	
Remote	0.8 (0.5-1.4)	1.3 (0.7-2.3)	1.2 (0.7-2.2)	0.8 (0.4-1.4)	
Age (10 yrs)	0.9 (0.8-1.0)	1.1 (0.9-1.2)	0.9 (0.8-1.0)	1.0 (0.9-1.2)	
Gender (0=F,	1.0 (0.7-1.5)	1.3 (0.9-1.9)	1.0 (0.7-1.6)	1.0 (0.7-1.6)	
1=M)					
Diabetes	1.4 (0.9-2.2)	1.1 (0.7-1.7)	2.1 (1.4-3.3)	1.1 (0.7-1.7)	
CRF	3.0 (1.1-8.2)	1.7 (0.8-3.8)	1.5 (0.7-3.2)	1.6 (0.7-3.7)	
Alcohol	2.8 (1.8-4.4)	1.7 (1.1-2.5)	1.7 (1.1-2.6)	4.3 (2.8-6.7)	

a. Previous infections during 5 years prior to the final BSI in the study period. Adjusted

for other risk factors in table.

b. Excluding patients receiving haemodialysis.

c. Excluding patients receiving haemodialysis and those with bronchiectasis

Abbreviations: BSI, blood stream infections; CRF, chronic renal failure excluding

patients receiving haemodialysis.

Table 5: Multivariate analysis of factors associated with 28 day and long-term survival for 510 Indigenous patients following a

28 day survival Long-term survival Deaths HR (95% CI) Deaths p-value HR (95% CI) p-value n (all) (28 days) Residence Urban 63 20 1.00 1.0 7 Town Camp 125 20 37 1.7 (0.7-4.1) 1.2 (0.7-2.2) Remote 302 22 67 0.9 (0.4-2.0) 0.12 0.9 (0.5-1.5) 0.28 1.04 (0.8-1.3) 0.70 1.0 (0.9-1.1) 0.99 Age (10yrs) 0.17 Gender (0=F, 1=M)298F/212M 23/26 65/59 1.5 (0.8-2.7) 1.3 (0.9-2.0) 0.13 CLD (0=No, 1=Yes) 41 11 20 3.3 (1.6-6.7) 0.001 2.5 (1.5-4.2) < 0.001 Non-RHD 16 2.9 (1.4-6.2) 0.01 37 9 0.005 2.1 (1.2-3.6) CRF 28 6 11 2.6 (1.0-6.5) 0.04 2.3 (1.2-4.3) 0.01

Community-acquired Blood Stream Infection^a.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

						37
11	3	10	2.9 (0.9-9.9)	0.09	6.0 (3.0-12.4)	<0.001
143	5	22	1.0		1.0	
83	7	18	2.7 (1.0-7.3)	0.05	1.8 (1.1-3.0)	0.03
29	12	15	2.3 (0.7-7.5)	0.17	1.4 (0.7-2.7)	0.17
67	5	17	13.4 (4.6-39.2)	<0.001	4.8 (2.5-9.5)	<0.001
188	20	52	1.8 (0.5-6.3)	0.37	1.5 (0.8-3.0)	0.22
	143 83 29 67	143 5 83 7 29 12 67 5	143 5 22 83 7 18 29 12 15 67 5 17	143 5 22 1.0 83 7 18 2.7 (1.0-7.3) 29 12 15 2.3 (0.7-7.5) 67 5 17 13.4 (4.6-39.2)	143 5 22 1.0 83 7 18 2.7 (1.0-7.3) 0.05 29 12 15 2.3 (0.7-7.5) 0.17 67 5 17 13.4 (4.6-39.2) <0.001	143 5 22 1.0 1.0 83 7 18 2.7 (1.0-7.3) 0.05 1.8 (1.1-3.0) 29 12 15 2.3 (0.7-7.5) 0.17 1.4 (0.7-2.7) 67 5 17 13.4 (4.6-39.2) < 0.001 4.8 (2.5-9.5)

a. Excluded from analysis: 48 Nosocomial infections.

b. Pathogens isolated from blood cultures

Abbreviations: BSI, blood stream infection; CCF; CLD, chronic liver disease; CRF, chronic renal failure; Non-RHD, ischaemic heart

disease and cardiac failure.

2	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
-34567891011231451678900112222242526789003123334356789001122322222222222222333333333333333333	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36	
27	
37	
38	
39	
40	
41	
42	
43	
43	
44	
45	
46	
47	
48	
40	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59 60

1

1 References

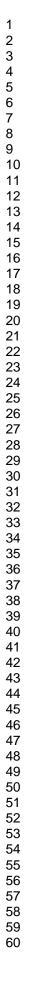
2 3	1.	Omran A. A theory of the epidemiology of population change. <i>Milbank Mem Fund O</i> . 1971;49:509-538.
4	2.	Maher D, Smeeth, L., Sekajugo, J. Health transition in Africa: practical policy
4 5	2.	proposals for primary care. <i>Bull WHO</i> . 2010;88:943-948.
	2	
6	3.	Gracey M, King, M. Indigenous Health part 1: determinants and disease patterns.
7		Lancet. 2009;374:65-75.
8	4.	Frenk J, Bobadilla, JL., Sepulveda J., Cervantes, ML. Health transition in middle-
9		income countries: new challenges for health care. <i>Health Policy and Planning</i> .
10	_	1989;4(1):29-39.
11	5.	Heuveline P, Guilllot, M., Gwatkin, DR. The uneven tide of the health transition.
12		Soc Sci Med. 2002;55:313-322.
13	6.	United Nations. State of the World's Indigenous Peoples. New York: The United
14		Nations Department of Economic and Social Affairs; 2009.
15	7.	<u>Australian Bureau of</u> Statistics. <i>The health and welfare of Australia's Aboriginal</i>
16		and Torres Strait Islander peoples. Canberra; 2005.
17	8.	Zhao Y, Dempsey, K. Causes of inequality in life expectancy between indigenous
18		and non-indigenous people in the Northern Territory, 1981-2000: a decomposition
19		study. Med J Aust. 2006;184:490-494.
20	9.	Australian Bureau of Statistics. The Health and Welfare of Australia's Aboriginal
21		and Torres Strait Islander Peoples. Canberra: Australia; 2010.
22		www.censusdata.abs.gov.au/census_services/getproduct/census/2011/community
23		profile/IARE701002?opendocument&navpos=230
24	10.	Davis J, Cheng, AC., McMillan, M., Humphrey, AB., Stephens, DP., Anstey,
25	- • •	NM. Sepsis in the tropical Top End of Australia's Northern Territory: disease
26		burden and impact on Indigenous Australians. <i>Med J Aust.</i> 2011;194:519-524.
27	11.	Einsiedel L, Woodman, RJ. Two Nations: racial disparities in bloodstream
28		infections recorded at Alice Springs Hospital, central Australia, 2001-2005. Med.
29		Aust. 2010;192:567-571.
30	12.	O'Grady K, Taylor-Thompson, D., Chang, A., Torzillo, P., Morris, P., Mackenzie.
31	14,	G., Wheaton, G., Bauert, P., De Campo, M., De Campo, J., Ruben, A. Rates of
32		radiologically confirmed pneumonia as defined by the World Health Organisation
33		in Norther Territory Indigenous children. <i>Med J Aust.</i> 2010;192(10):592-595.
33 34	13.	Einsiedel L, Fernandes, L., Spelman, T., Steinfort, D., Gotuzzo, E. Bronchiectasis
34 35	13.	is associated with Human T Lymphotropic Virus 1 infection in an Indigenous
		Australian population. <i>Clin Infect Dis.</i> 2012;54(1):43-50.
36	14.	
37	14.	Einsiedel L, Fernandes, L., Woodman, R Racial disparities in infection-related
38		mortality at Alice Springs Hospital, central Australia, 2000-2005. <i>Med J Aust.</i>
39		2008;188:568-571.
40	15.	Kway M, Rose, CE., Fry, AM., Singleton, JA., Moore, Z., Zell, ER., Whitney,
41		CG. The influence of chronic illness on the incidence of invasive pneumococcal
42		disease in adults. Clin Infect Dis. 2005;192:377-386.
43	16.	Joshi N, Caputo, GM., Weitekamp, MR., Karchmer, AW. Infections in diabetic
44		patients. N. Engl. J. Med. 1999;341(25):1906-1912.

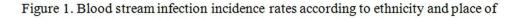
BMJ Open

1			
2			
3			
4			
5			
6			39
7			
8	1	17	Delten M. Demend I.T. Kaslerie, A. Vermell, A. Zhang, I. Kasll, M. Wilson
9	1	17.	Baker M, Barnard, LT., Kvalsvig, A., Verrall, A., Zhang, J., Keall, M., Wilson,
10	2		N., Wall, T., Howden-Chapman, P. Increasing incidence of serious infectious
11	3		diseases and inequalities in New Zealand: a national epidemiological study.
12	4	10	Lancet. 2012;379:1112-1119.
13	5	18.	Einsiedel L, van Iersel, E., Macnamara, R., Spelman, T., Heffernan, M., Bray, L,
14	6 7		Morris, H., Porter, B., Davis, A. Self-Discharge by adult Aboriginal patients at
15	8		Alice Springs Hospital, central Australia: insights from a prospective cohort
16		10	study. Aust Health Rev. 2012.
17	9	19.	<u>Australian Bureau of</u> Statistics. 2011 Census of population and Housing.
18	10		Aboriginal and Torres Strait Islander (Indigenous) Profile. Canberra; 2013.
	11		2002.0.
19	12	20	www.abs.gov.au/AUSSTATS/abs@.nsf/lookup/4704.0Chapter218Oct+2010
20	13	20.	Skov S, Chikrizhs, TN., Li SQ., Pircher, S., Whetton, S. How much is too much?
21	14		Alcohol consumption and related harm in the Northern Territory. <i>Med J Aust.</i>
22	15	21	1010;193:269-272.
23	16	21.	Bailie R, Runcie, MJ. Household infrastructure in Aboriginal communities and
24	17	22	the implications fro health improvement. <i>Med J Aust.</i> 2001;175:363-366.
25	18	22.	Anaya J. Report of the Special Rapporteur on the situation of human rights and
26	19	1	fundamental freedoms of indigenous peoples, James Anaya, on the situation of
27	20	22	<i>indigenous people in Australia.</i> United Nations; 2010.
28	21	23.	d'Espaignet E, Kennedy, K., Paterson, B., Measey, M. <i>Health Status in the</i>
29	22		Northern Territory 1998. Darwin: Epidemiology, Primary Care and Coordinated
30	23	24	Care Branch;1998.
31	24	24.	McDonald E, Bailie, R., Grace, J., Brewster, D. An ecological approach to health
32	25		promotion in remote Australian Aboriginal communities. <i>Health Promotion</i>
33	26	25	International. 2010;25(1):42-53.
34	27	25.	O'Brien J, Lu, B., Ali, NA., Martin, GS., Aberegg, SK., Marsh, CB., Lemeshow,
35	28		S., Douglas, IS. Alcohol dependence is independently associated with sepsis,
36	29 20		septic shock and hospital mortality among adult intensive care unit patients. <i>Crit.</i>
37	30	26	Care Med. 2007;35(2):345-350.
38	31	26.	Laupland K, Gregson, DB., Zygun, DA., Doig, CJ., Mortis, G., Church, DL.
39	32		Severe blood stream infections: a population-based assessment. <i>Crit Care Med.</i>
40	33	27	2004;32:992-997.
41	34	27.	Nuori J, Butler, JC., Farley, MM., Harrison, LH., McGeer, A., Kolczak, MS.,
42	35		Breiman, RF. Cigarette smoking and invasive pneumococcal disease. <i>N Engl J</i>
43	36	20	Med. 2000;342:681-689. Deniral M. Hill, C. Olaksiw, M. Dumisen, D. Arusi, I. English, E. Carusilla
44	37	28.	Dopirak M, Hill, C., Oleksiw, M., Dumigan, D., Arvai, J., English, E., Carusillo,
45	38		E., Malo-Schlegel, S., Richo, J., Traficanti, K., Welch, B., Cooper, B.
43 46	39		Surveillance of hemodialysis-associated primary bloodstream infections: the
40 47	40		experience of ten hospital-based centers. <i>Infect Control Hosp Epidemiol.</i>
	41	20	2002;23:721-724.
48	42	29.	Zhao Y, Connors, C., Wright, J., Guthridge, S. Estimating chronic disease
49	43		prevalence among the remote Aboriginal population of the Northern Territory
50	44	20	using multiple data sources. <i>Aust NZ J Public Health</i> . 2008;32:307-313.
51	45	30.	Hoy W, Davey, RL., Sharma, S., Hoy, PW., Smith, JM., Kondalsamy-
52	46		Chennakesavan, S. Chronic disease profiles in remote Aboriginal settings and
53			
54			
55			
56			
57			

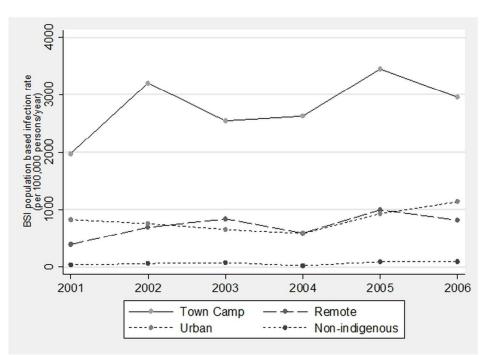
39

1


1


2

implications for health services planning. *Aust NZ J Public Health*. 2010;34:11-18.


- 3 31. Moberley S, Krause, V., Cook, H., Mulholland, K., Carapetis, J., Torzillo, P.,
 Andrews, R. Failure to vaccinate of failure of vaccine? Effectiveness of the 23 valent pneumococcal polysaccharide vaccine program in Indigenous adults in the
 Northern Territory of Australia. *Vaccine*. 2010;28:2296-2301.
- Flory J, Joffe, M., Fishman, NO., Edelstein, PH., Metlay, JP. Socioeconomic risk
 factors for bacteraemic pneumococcal pneumonia in adults. *Epidemiol Infect*.
 2009;137:717-726.
- Tong S, Bishop, E., Lilliebridge, R., Cheng, A., Spasova-Penkova, Z., Holt, D.,
 Giffard, P., McDonald, M., Currie, B., Boutlis, C. Community Associated strains
 of Methicillin-Resistant Staphylococcus aureus and Methicillin-Susceptible
 S.aureus in Indigenous Northern Australia: Epidemiology and Outcomes. *J Infect Dis.* 2009;199:1461-1470.
- Huggan P, Wells, JE., Browne, M., Richardson, A., Murdoch, DR., Chambers,
 ST. Population-based epidemiology of Staphylococcus aureus bloodstream
 infection in Canterbury, New Zealand. *Int Med J.* 2010;40:117-125.
 - Bagger J, Zindrou, D., Taylor, KM. Post-operative infection with Methicillin resistant Staphylococcus aureus and socioeconomic background. *Lancet*.
 2004;363:706-708.
 - 36. Marmot M, Friel, S., Bell, R., Houweling, T., Taylor, S. Closing the gap in a
 generation: health equity through action on the social determinants of health.
 Lancet. 2008;372(November 8):1661-1669.
- 37. Beaglehole R, Bonita, R., Horton, R., Adams, C., Alleyne, G., Asaria, P. et al for
 the Lancet NCD action group and the NCD alliance. Priority actions for the noncommunicable disease crisis. *Lancet*. 2011;377:1438-1447.
- 38. Bailie R, Stevens, MR., McDonald, E., Halpin, S., Brewster, D., Robinson, G.,
 Guthridge, S. Skin infection, housing and social circumstances in children living
 in remote Indigenous communities: testing conceptual and methodological
 approaches. *BMC public health*. 2005;5.
- 31 39. McDonald M, Towers, RJ., Andrews, RM., Benger, N., Currie, BJ., Carapetis, JR.
 32 Low rates of streptococcal pharyngitis and high rates of pyoderma in Australian
 33 Aboriginal communities where acute rheumatic fever is hyperendemic. *Clin Infect*34 Dis. 2006;43:683-689.
 - 40. Currie B, Carapetis, JR. Skin infections and infestations in Aboriginal
 communites in northern Australia. *Aust J Dermatol.* 2000;41:139-145.
- Hewagama S, Spelman, T., Einsiedel, L. Staphylococcus aureus bacteraemia at
 Alice Springs Hospital, central Australia, 2003-2006. *Int Med J.* 2012;42:505 512.
- 40 42. Carapetis J, Wolff, DR., Currie, BJ. Acute rheumatic fever and rheumatic heart
 41 disease in the Top End of Australia's Northern Territory. *Med J Aust.* 1996;164(5
 42 February):146-149.
- 43 43. Jacoby P, Carvillo, K., Hall, S., Riley, T., Bowman, J., Leach, A., Lehamn, D.,
 44 Kalgoorlie Otitis Media Resarch Project Team. Crowding and other strong
 45 predictors of upper respiratory carriage of otitis media related bacteria in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1 2 3 4 5 6 7 8 9 10 11 12 13 14	44. 45. 46. 47.	 Australian Aboriginal and non-Aboriginal children. <i>Paed Inf Dis J.</i> 2011;30(6):480-485. Verdonck K, Gonzalez, E., Van Dooren, S., Vandamme, A., Vanham, G., Gotuzzo, E. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. <i>Lancet Infect Dis.</i> 2007;7:266-281. Priest N, Paradies, Y., Stevens, M., Bailie, R. Exploring relationships between racism, housing and child illness in remote iindigenous communities. <i>J Epidemiol Community Health</i> 2012;66:440-447. Boutayeb A, Boutayeb, B. The burden of non-communicable diseases in developing countries. <i>int J Equity in Health.</i> 2005;4(1):2. De Maeseneer J, Roberts RG, Demarzo M, et al. Tackling NCDs: a different approach is needed. <i>The Lancet.</i> 2012;379(9829):1860-1861.
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42			De Maeseneer J, Roberts RG, Demarzo M, et al. Tackling NCDs: a different approach is needed. <i>The Lancet</i> . 2012;379(9829):1860-1861.
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59			

residence.

Blood Stream infection incidence rates according to ethnicity and place of residence. Town Camp, Indigenous residents of Town Camp; Urban, Indigenous residents of township who do not reside in a town camp; Remote, Indigenous residents of remote Indigenous communities. Non-Indigenous residents of Alice Springs region.

92x90mm (300 x 300 DPI)

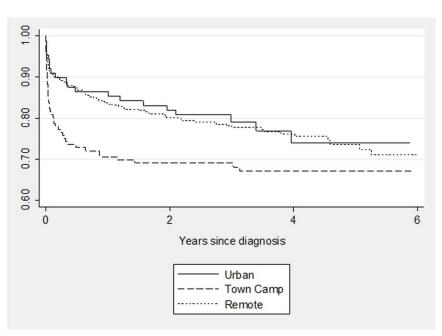


Fig 2. Survival of Indigenous adults following a blood stream infection according to place of residence.

Survival following the final BSI recorded during the study period according to place of residence. Urban, residence within the township, but not in a town camp; Town Camp, residence in a town camp within the township; Remote, residence in a remote Indigenous community. Median follow-up time for all Indigenous subjects was 3.23 years and for Urban, Town camp and Remote subjects was 2.99, 3.04 and 3.38 years, respectively.

90x94mm (300 x 300 DPI)

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Methods		and for the former of the form
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
betting	9	exposure, follow-up, and data collection
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
1 unterpunto	Ū	selection of participants. Describe methods of follow-up
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of
		selection of participants
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
		addressed
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of
		sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
Continued on next page		

Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time
		Case-control study—Report numbers in each exposure category, or summary measures of
		exposure
		Cross-sectional study-Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful
		time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
		of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.