Supporting Information

Isbell et al. 10.1073/pnas.1310880110

Fig. S1. Structural equation model. The top and bottom arrows respectively show the direct effects of N and CO_2 enrichment on productivity. The indirect effect of N (or CO_2) enrichment is the product of the effect of N (or CO_2) enrichment on observed diversity, and the effect of observed diversity on productivity. N and CO_2 enrichment treatments were coded as a binary variable that indicated the ambient (0) or enriched (1) treatment level; observed diversity was quantified the mean number of species observed in peak biomass samples and percent cover estimates; and productivity was the peak aboveground community biomass in the mixture. Productivity and observed diversity were In-transformed to meet linear model assumptions. The model was fit to species mixture data separately within each year of the experiment. Direct and indirect effects are reported in Fig. 2 C and D. Further details in *Methods*.

Table S1. and obser	BioCON experiment treatment ved number of species	effects on productivity
Source	Productivity	Observed no. of species

Source	Productivity	Observed no. of species
CO ₂ (C)	$F_{1,4} = 7.70*$	$F_{1,4} = 0.59$
Nitrogen (N)	$F_{1,156} = 16.29^{***}$	$F_{1,156} = 30.32^{***}$
Planted diversity (D)	$F_{1,156} = 40.18^{***}$	$F_{1,156} = 1863.57***$
Log _e (Year) (Y)	$F_{1,2056} = 9.23^{**}$	$F_{1,2056} = 1205.19^{***}$
C imes N	$F_{1,156} = 0.01$	$F_{1,156} = 3.21$
$C \times D$	$F_{1,156} = 1.87$	$F_{1,156} = 0.13$
$N \times D$	$F_{1,156} = 10.98**$	$F_{1,156} = 8.92 * *$
$C \times Y$	$F_{1,2056} = 0.08$	$F_{1,2056} = 1.06$
$N \times Y$	$F_{1,2056} = 5.53*$	$F_{1,2056} = 2.36$
$D \times Y$	$F_{1,2056} = 31.91 * * *$	$F_{1,2056} = 623.21$ ***
$C\timesN\timesD$	$F_{1,156} = 0.02$	$F_{1,156} = 0.40$
$C\timesN\timesY$	$F_{1,2056} = 0.26$	$F_{1,2056} = 1.00$
$C\timesD\timesY$	$F_{1,2056} = 0.16$	$F_{1,2056} = 0.60$
$N\timesD\timesY$	$F_{1,2056} = 7.79**$	$F_{1,2056} = 20.52 * * *$
$C \times N \times D \times Y$	$F_{1,2056} = 0.02$	$F_{1,2056} = 0.58$

* $P \le 0.05$; ** $P \le 0.01$; *** $P \le 0.001$.