Content	Page number
General	S2
Ligands synthesis and Characterization	S2
Synthesis and Characterization of Gold Complexes	S3
General procedure for Synthesis L ₉	S11
General procedure for Synthesis L ₁₀	S12
Condition A: General procedure for gold-catalyzed synthesis of α -carboxymethyl ketones	\$13
Condition B: General procedure for synthesis (<i>E</i>)-4-phenyl-2-(prop-1- enyl)oxazole in one pot	S 22
Condition C: General procedure for synthesis 3-phenylfuran-2(5H)- one from 2-oxo-2-ethyl 2-phenylacetates	S23
Single crystal X-ray structure report	S27
¹ H, ¹³ C NMR and ³¹ P spectra of Ligand and products	S36

General. Ethyl acetate (ACS grade), hexanes (ACS grade), diethyl ether (ACS grade) and anhydrous 1, 2-dichloroethane (HPLC grade) were purchased from Fisher Scientific and used without further purification. Chlorobenzene (HPLC grade) was purchased from Acros without further purification. Methylene chloride and tetrahydrofuran were purified using MBraun Solvent Purifier. Commercially available reagents were used without further purification. Reactions were monitored by thin layer chromatography (TLC) using Sorbent Technologies' pre-coated silica gel plates. Flash column chromatography was performed over Sorbent Technologies' silica gel (230-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Varian 400 MHz, 500 MHz and 600 MHz spectrometers using residue solvent peaks as internal standards. Infrared spectra were recorded with a Perkin Elmer FT-IR spectrum 2000 spectrometer and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Micromass QTOF₂ Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization or Waters GCT Premier time-of-flight mass spectrometer with a field ionization (FI) ion source.

In a Schlenk tube, it was charged with reagents: Pd_2dba_3 (46 mg, 5 mol% Pd), BINAP (93 mg, 7.5 mol %), NaO'Bu (231 mg, 2.4 mmol, 1.2 equiv), 1,2-dibromobenzene **1** (2.0 mmol), and 4methylpiperidine **2** (2.0 mmol, 1.0 equiv). Toluene (5 mL) and stir bar were added. Then, the reaction system was stirred in an oil bath at 80 °C for 15h under N₂. Upon completion, the mixture was concentrated and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired product **3** in 65% yield.

In a Schlenk tube, $Pd(OAc)_2$ (typically 3 mol%) and DiPPF [1,1'bis(diisopropylphosphino)ferrocene; $Pd:L \sim 1:1.2$], di(1-adamantyl)phosphine (1.2mmol) and NaO'Bu(1.44mmol), followed by the addition of the aryl halide **3**(1.2mmol) in 6mL toluene; the Schlenk tube was then degassed twice. The resulting mixture was heated at 110 °C until complete consumption of the phosphine was achieved, as judged on the basis of ³¹P NMR data. The solution was then cooled and filtered through a plug of silica, which in turn was washed with CH_2Cl_2 . Removal of the solvent from the combined eluent afforded product in 65% yield that was further purified by recrystallization or by washing with appropriate solvents (*vide infra*). All ligands were worked up in air and were found to be stable when handled on the bench top.

L₂ Prepared by the coupling of $(1-Ad)_2$ PH and *1-(2-bromophenyl)-4-methylpiperidine* via the standard procedure employing 3 mol% Pd and 3.6 mol% ligand in 65% yield as a white solid. ¹H NMR (CDCl₃): ¹H NMR (500 MHz, Chloroform-d) δ 7.68 (dt, *J* = 7.6, 1.3 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.05 (ddd, *J* = 8.0, 4.5, 1.2 Hz, 1H), 6.99 (td, *J* = 7.4, 1.2 Hz, 1H), 3.26 (d, *J* = 10.0 Hz, 2H), 2.61 (t, *J* = 10.6 Hz, 2H), 1.99 – 1.86 (m, 18H), 1.70-1.66 (m, 12H), 1.61 (d, *J* = 8.6 Hz, 2H), 1.48 – 1.40 (m, 3H), 0.99 (d, *J* = 5.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.97 (d, *J*_{PC} = 21.1 Hz), 137.27 (d, *J*_{PC} = 3.2 Hz), 131.49 (d, *J*_{PC} = 26.8 Hz), 129.09 , 121.37 , 120.22 (d, *J*_{PC} = 3.7 Hz), 54.00 (d, *J*_{PC} = 5.7 Hz), 41.88 (d, *J*_{PC} = 13.5 Hz), 37.12 , 36.65 (d, *J*_{PC} = 27.8 Hz), 34.47 , 30.75 , 28.98 (d, *J*_{PC} = 8.4 Hz), 22.10 . ³¹P NMR (162 MHz, Chloroform-d) δ 21.67. IR(cm⁻¹): 2847,1581,1452,1380,1342,1300,1262,1215, 918, 767. MS (ESI/[M+H]⁺): 476.35.

Synthesis and Characterization of Gold Complexes:

This complex was prepared quantitatively by stirring the ligand with an equivalent of Me₂SAuCl followed by simple concentration under vacuum. ¹H NMR (500 MHz, Chloroform-d) δ 7.78 – 7.71 (m, 1H), 7.60 – 7.51 (m, 2H), 7.29-7.26 (m, 1H), 2.89 – 2.70 (m, 4H), 2.37 (qd, *J* = 12.2, 4.4 Hz, 2H), 2.20 (d, *J* = 11.6 Hz, 6H), 2.15 – 2.07 (m, 6H), 2.02 – 1.93 (m, 6H), 1.67 (s, 12H), 1.61 – 1.45 (m, 3H), 1.10 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.82 (d,

 $J_{PC} = 7.0$ Hz), 134.89 , 132.27 , 126.69 (d, $J_{PC} = 4.8$ Hz), 124.31 (d, $J_{PC} = 6.7$ Hz), 122.31 (d, $J_{PC} = 47.4$ Hz), 56.11 , 42.14 (d, $J_{PC} = 3.1$ Hz), 41.88 (d, $J_{PC} = 23.6$ Hz), 36.31 (d, $J_{PC} = 1.3$ Hz), 33.35 , 31.06 , 28.58 (d, $J_{PC} = 9.9$ Hz), 21.29 . ³¹P NMR (162 MHz, Chloroform-d) δ 53.71. IR (cm⁻¹):2906, 2850, 1451, 1301, 1262, 935. MS (ESI/[M+Na]⁺) :730.21.

L₃ Prepared by the coupling of $(1-Ad)_2$ PH and *1-(2-bromophenyl)-4-tert-butylpiperidine* via the standard procedure employing 3 mol% Pd and 3.6 mol% ligand in 52% yield as a white solid. ¹H NMR (500 MHz, Chloroform-d) δ 7.68 (d, *J* = 7.5 Hz, 1H), 7.31 – 7.21 (m, 1H), 7.03 (dd, *J* = 7.9, 4.5 Hz, 1H), 6.98 (t, *J* = 7.4 Hz, 1H), 3.39 (d, *J* = 9.6 Hz, 2H), 2.56 (t, *J* = 10.9 Hz, 2H), 2.00 – 1.86 (m, 18H), 1.68-1.63 (m, 14H), 1.50 (qd, *J* = 12.2, 3.6 Hz, 2H), 1.06 (ddd, *J* = 12.4, 9.0, 3.5 Hz, 1H), 0.91 (s, 9H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.83 (d, *J*_{PC} = 21.0 Hz), 137.27 (d, *J*_{PC} = 3.1 Hz), 131.36 (d, *J*_{PC} = 27.3 Hz), 129.08 , 121.26 , 120.01 (d, *J*_{PC} = 3.8 Hz), 54.65 (d, *J*_{PC} = 6.2 Hz), 46.50 , 41.92 (d, *J*_{PC} = 13.5 Hz), 37.13 , 36.70 (d, *J*_{PC} = 27.9 Hz), 32.30 , 28.99 (d, *J*_{PC} = 8.4 Hz), 27.51 , 26.98 . ³¹P NMR (162 MHz, Chloroform-d) δ 21.59. IR(cm⁻¹):2901, 2847, 1580, 1449, 1301, 1277, 1245, 1047, 937. MS (ESI/[M+H]⁺):518.38.

This complex was prepared quantitatively by stirring the ligand with an equivalent of Me₂SAuCl followed by simple concentration under vacuum. ¹H NMR (500 MHz, Chloroform-d) δ 7.75 (t, *J* = 7.3 Hz, 1H), 7.62 (dd, *J* = 8.1, 4.6 Hz, 1H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.27 (t, *J* = 7.4 Hz, 1H), 2.94 (d, *J* = 10.9 Hz, 2H), 2.76 (t, *J* = 10.6 Hz, 2H), 2.25 – 2.17 (m, 8H), 2.13-2.11 (m, 6H), 1.99-1.97 (m, 6H), 1.70-1.64 (m, 14H), 1.11 (t, *J* = 11.9 Hz, 1H), 0.97 (s, 9H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.89 (d, *J* _{PC} = 7.2 Hz), 134.88 , 132.29 , 127.02 (d, *J*_{PC} = 5.0 Hz), 124.31 (d, *J*_{PC} = 6.8 Hz), 122.25 (d, *J*_{PC} = 46.7 Hz), 56.97 , 47.90 , 42.16 (d, *J*_{PC} = 3.1 Hz), 41.90

(d, $J_{PC} = 23.9$ Hz), 36.32 , 32.66 , 28.60 (d, $J_{PC} = 9.9$ Hz), 27.98 , 27.06 . ³¹P NMR (162 MHz, Chloroform-d) δ 53.27. IR (cm⁻¹): 2905, 2852, 1471, 1450, 1307, 1138, 974. MS (ESI/[M+Na]⁺): 772.26.

L₄ Prepared by the coupling of (1-Ad)₂PH and *1-(2-bromophenyl)-3-methylpiperidine* via the standard procedure employing 3 mol% Pd and 3.6 mol% ligand in 57% yield as a white solid. ¹H NMR (500 MHz, Chloroform-d) δ 7.67 (d, *J* = 7.6 Hz, 1H), 7.26(td, *J* = 7.6, 1.2 Hz, 1H), 7.02 (ddd, *J* = 8.0, 4.5, 1.1 Hz, 1H), 6.98 (td, *J* = 7.4, 1.2 Hz, 1H), 3.25 – 3.16 (m, 2H), 2.54 (td, *J* = 11.2, 2.4 Hz, 1H), 2.21 (t, *J* = 10.5 Hz, 1H), 2.00 – 1.85 (m, 19H), 1.81 – 1.71 (m, 2H), 1.70 – 1.61 (m, 13H), 1.01 – 0.90 (m, 1H), 0.88 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.99 (d, *J*_{PC} = 20.9 Hz), 137.33 (d, *J*_{PC} = 3.2 Hz), 131.35 (d, *J*_{PC} = 26.9 Hz), 129.12 , 121.29 (d, *J*_{PC} = 13.9 Hz), 37.13 , 36.67 (dd, *J*_{PC} = 27.8, 4.1 Hz), 32.98 , 30.94 , 28.97 (dd, *J*_{PC} = 8.4, 1.1 Hz), 25.65 , 19.71 . ³¹P NMR (162 MHz, Chloroform-d) δ 21.55. IR(cm⁻¹): 2901, 2847, 1580, 1450, 1301, 1263, 1222, 1063, 990, 738. MS (ESI/[M+H]⁺):476.34.

This complex was prepared quantitatively by stirring the ligand with an equivalent of Me₂SAuCl followed by simple concentration under vacuum. ¹H NMR (500 MHz, Chloroform-d) δ 7.75 (t, *J* = 7.3 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.31 – 7.25 (m, 1H), 2.82 (d, *J* = 8.3 Hz, 1H), 2.77 – 2.60 (m, 4H), 2.34 (t, *J* = 10.6 Hz, 1H), 2.21-2.19 (m, 6H), 2.15 – 2.07 (m, 6H), 1.98-1.93 (m, 7H), 1.67-1.61 (m, 13H), 1.02 – 0.90 (m, 1H), 0.84 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.73 (d, *J*_{PC} = 7.0 Hz), 134.89 , 132.31 (d, *J*_{PC} = 1.7 Hz), 126.70 (d, *J*_{PC} = 4.8 Hz), 124.29 (d, *J*_{PC} = 6.7 Hz), 122.16 (d, *J*_{PC} = 47.3 Hz), 63.69 , 55.84 , 42.14 (dd, *J*_{PC} = 8.5, 3.1 Hz), 41.80 (d, *J*_{PC} = 4.9 Hz), 36.31 , 32.97 , 29.86 , 28.59 (d, *J* = 9.9 Hz), 25.17 , 20.21 . ³¹P

NMR (162 MHz, Chloroform-d) δ 53.69. IR(cm⁻¹): 2905, 2850, 1451, 1344, 1262, 971, 775, 735. MS (ESI/[M+Na]⁺) : 730.22.

L₅ Prepared by the coupling of (1-Ad)₂PH and *Cis-1-(2-bromophenyl)-3,5-dimethylpiperidine* via the standard procedure employing 3 mol% Pd and 3.6 mol% ligand in 68% yield as a white solid. ¹H NMR (500 MHz, Chloroform-d) δ 7.67 (d, *J* = 7.5 Hz, 1H), 7.26 (q, *J* = 7.6, 5.8 Hz, 1H), 7.03 – 6.95 (m, 2H), 3.25 (d, *J* = 9.1 Hz, 2H), 2.11 (t, *J* = 10.7 Hz, 2H), 1.97-1.89 (m, 20H), 1.77 (d, *J* = 12.7 Hz, 2H), 1.67 (br, 12H), 0.86 (d, *J* = 6.6 Hz, 6H), 0.61 (q, *J* = 12.1 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.66 (d, *J*_{PC} = 20.9 Hz), 137.39 (d, *J*_{PC} = 3.2 Hz), 131.11 (d, *J*_{PC} = 26.7 Hz), 129.12, 121.17, 119.98 (d, *J*_{PC} = 3.7 Hz), 61.57 (d, *J*_{PC} = 5.8 Hz), 42.19, 41.95 (d, *J*_{PC} = 13.6 Hz), 37.13, 36.67 (d, *J*_{PC} = 27.8 Hz), 30.96, 28.97 (d, *J*_{PC} = 8.4 Hz), 19.57. ³¹P NMR (162 MHz, Chloroform-d) δ 21.76. IR (cm⁻¹): 2902, 2847, 1370, 1455, 1284, 970. MS (ESI/[M+H]⁺): 490.39.

This complex was prepared quantitatively by stirring the ligand with an equivalent of Me₂SAuCl followed by simple concentration under vacuum. ¹H NMR (500 MHz, Chloroform-d) δ 7.75 (t, *J* = 7.3 Hz, 1H), 7.55 – 7.53 (m, 2H), 7.29-7.26 (m, 1H), 2.74 (d, *J* = 7.5 Hz, 4H), 2.31 – 2.16 (m, 8H), 2.12 (br, 6H), 1.98 (br, 6H), 1.92 (d, *J* = 12.6 Hz, 1H), 1.70-1.65 (br, 12H), 0.85 (d, *J* = 6.2 Hz, 6H), 0.63 (q, *J* = 11.6 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.50 (d, *J_{PC}* = 7.1 Hz), 134.90 , 132.30 , 126.62 (d, *J_{PC}* = 4.9 Hz), 124.28 (d, *J_{PC}* = 6.8 Hz), 122.10 (d, *J_{PC}* = 47.0 Hz), 63.28 , 42.13 (d, *J_{PC}* = 3.1 Hz), 42.03 , 41.91 (d, *J_{PC}* = 23.6 Hz), 36.31, 29.80, 28.59 (d, *J_{PC}* = 9.9 Hz), 20.01. ³¹P NMR (162 MHz, Chloroform-d) δ 53.65. IR (cm⁻¹): 2906, 2850, 1455, 1344, 1329, 1262, 972, 774, 735. HRMS calculated for [C₃₃H₄₈AuClNNaP]⁺:744.2776, found 744.2763.

L₆ Prepared by the coupling of (1-Ad)₂PH and *trans-1-(2-bromophenyl)-3,5-dimethylpiperidine* via the standard procedure employing 3 mol% Pd and 3.6 mol% ligand in 52% yield as a white solid. ¹H NMR (500 MHz, Chloroform-d) δ 7.69 (d, J = 7.5 Hz, 1H), 7.27 (t, J = 7.4 Hz, 1H), 7.04 (dd, J = 7.4, 4.7 Hz, 1H), 6.99 (t, J = 7.3 Hz, 1H), 3.08 (d, J = 9.4 Hz, 2H), 2.48 (br, 2H), 2.10 (dd, J = 9.7, 6.1 Hz, 2H), 2.04 – 1.79 (m, 19H), 1.69 (s, 6H), 1.64 (s, 6H), 1.56 (br, 1H), 1.36 (t, J = 5.6 Hz, 2H), 1.03 (d, J = 6.7 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 161.44 (d, $J_{PC} = 21.3$ Hz), 137.61 (d, $J_{PC} = 2.8$ Hz), 131.24 (d, $J_{PC} = 27.8$ Hz), 129.23 , 121.30 , 120.07 (d, $J_{PC} = 3.9$ Hz), 42.35 (d, $J_{PC} = 14.0$ Hz), 41.77 (d, $J_{PC} = 13.7$ Hz), 39.20 , 37.13 (d, $J_{PC} = 2.6$ Hz), 36.72 (d, $J_{PC} = 26.3$ Hz), 28.97 (t, $J_{PC} = 8.9$ Hz), 27.74 , 19.54 (d, $J_{PC} = 2.0$ Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 19.56. IR (cm⁻¹): 2861, 2847, 1619, 1452, 1276, 1220, 774, 735. MS (ESI/[M+H]⁺): 490.38.

This complex was prepared quantitatively by stirring the ligand with an equivalent of Me₂SAuCl followed by simple concentration under vacuum. ¹H NMR (600 MHz, Chloroform-d) δ 7.76 (t, *J* = 7.6 Hz, 1H), 7.60 (dd, *J* = 8.1, 4.7 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 3.07 – 3.00 (m, 3H), 2.53 (d, *J* = 10.9 Hz, 1H), 2.32 (br, 3H), 2.26 (br, 3H), 2.16-2.14 (m, 3H), 2.04-1.98 (m, 11H), 1.75-1.73 (m, 3H), 1.69-1.66 (m, 9H), 1.48 (d, *J* = 7.2 Hz, 3H), 1.20 (td, *J* = 12.6, 4.7 Hz, 1H), 0.89-0.84 (m, 4H). ¹³C NMR (151 MHz, Chloroform-d) δ 161.42 (d, *J*_{PC} = 6.7 Hz), 135.13 , 132.26 , 126.68 (d, *J*_{PC} = 5.7 Hz), 123.92 (d, *J*_{PC} = 6.9 Hz), 122.02 (d, *J*_{PC} = 45.5 Hz), 65.64 , 59.89 , 43.12 , 42.97 (d, *J*_{PC} = 2.8 Hz), 41.76 (d, *J*_{PC} = 24.4 Hz), 41.50 , 38.56 , 36.38 , 29.75 , 28.86 (d, *J*_{PC} = 9.8 Hz), 28.45 (d, *J*_{PC} = 9.8 Hz), 25.56 , 19.93 (d, *J*_{PC} = 10.6 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 54.27. IR(cm⁻¹): 2905, 2850, 1455, 1395, 1301, 1201, 1216, 1057, 972, 793, 754. MS (ESI/[M+Na]⁺):744.22.

L₇ Prepared by the coupling of $(1-Ad)_2$ PH and *cis* -4-(2-bromophenyl)-2,6-dimethylmorpholine via the standard procedure employing 3 mol% Pd and 3.6 mol% ligand in 69 % yield as a white solid. ¹H NMR (500 MHz, Chloroform-d) δ 7.69 (d, *J* = 7.4 Hz, 1H), 7.28(t, *J* = 7.4 Hz, 1H), 7.06 – 6.99 (m, 2H), 3.90 (ddt, *J* = 8.8, 6.2, 3.3 Hz, 2H), 3.22 (d, *J* = 12.0 Hz, 2H), 2.43 (t, *J* = 10.6 Hz, 2H), 1.93 (dd, *J* = 24.5, 13.2 Hz, 18H), 1.67 (br, 12H), 1.19 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 159.20 (d, *J*_{PC} = 20.5 Hz), 137.58 (d, *J*_{PC} = 3.0 Hz), 130.96 (d, *J*_{PC} = 27.3 Hz), 129.38, 121.85, 119.91 (d, *J*_{PC} = 3.8 Hz), 71.71, 59.17 (d, *J*_{PC} = 5.8 Hz), 41.97 (d, *J*_{PC} = 13.3 Hz), 37.07, 36.80 (d, *J*_{PC} = 27.2 Hz), 28.92 (d, *J*_{PC} = 8.5 Hz), 19.08. ³¹P NMR (162 MHz, Chloroform-d) δ 20.59. IR(cm⁻¹): 2901, 2847, 1458, 1356, 1309, 1279, 1246, 1154, 1021, 752. MS (ESI/[M+H]⁺): 492.36.

This complex was prepared quantitatively by stirring the ligand with an equivalent of Me₂SAuCl followed by simple concentration under vacuum. ¹H NMR (500 MHz, Chloroform-d) δ 7.77 (t, *J* = 7.4 Hz, 1H), 7.59 – 7.57 (m, 2H), 7.32 (dt, *J* = 5.7, 2.7 Hz, 1H), 4.73 (ddt, *J* = 8.7, 6.2, 3.1 Hz, 2H), 2.69 (dd, *J* = 11.2, 1.7 Hz, 2H), 2.56 (t, *J* = 10.5 Hz, 2H), 2.21-2.19 (m, 6H), 2.14 – 2.07 (m, 6H), 1.99 (br, 6H), 1.68 (br, 12H), 1.17 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 159.03 (d, *J*_{PC} = 7.1 Hz), 135.07, 132.61 , 127.13 (d, *J*_{PC} = 4.9 Hz), 124.80 (d, *J*_{PC} = 6.7 Hz), 122.41 (d, *J*_{PC} = 46.6 Hz), 70.07 , 60.61 , 42.19 (d, *J*_{PC} = 3.0 Hz), 42.01 (d, *J*_{PC} = 23.6 Hz), 36.26 , 28.58 (d, *J*_{PC} = 9.9 Hz), 19.41 . ³¹P NMR (162 MHz, Chloroform-d) δ 53.68. IR (cm⁻¹): 2905, 2851, 1450, 1300, 1140, 1078, 974. HRMS calculated for [C₃₂H₄₆AuCINNaOP]⁺: 746.2569, found 746.2560.

L₈ Prepared by the coupling of (1-Ad)₂PH and *Cis*-4-(2-bromophenyl)-2,6-diphenylmorpholine via the standard procedure employing 3 mol% Pd and 3.6 mol% ligand in 63 % yield as a white solid. ¹H NMR (500 MHz, Chloroform-d) δ 7.73 (d, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 4H), 7.39 (t, *J* = 7.6 Hz, 4H), 7.30 (t, *J* = 7.3 Hz, 2H), 7.27 – 7.23 (m, 1H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.97 (dd, *J* = 7.9, 4.4 Hz, 1H), 5.08 (d, *J* = 8.3 Hz, 2H), 3.58 (d, *J* = 11.9 Hz, 2H), 2.80 (t, *J* = 10.8 Hz, 2H), 2.03 (q, *J* = 12.2 Hz, 12H), 1.94 (br, 6H), 1.72 (br, 12H). ¹³C NMR (126 MHz, Chloroform-d) δ 158.76 (d, *J*_{PC} = 20.6 Hz), 140.83 , 137.62 (d, *J*_{PC} = 3.1 Hz), 130.98 (d, *J*_{PC} = 27.1 Hz), 129.44 , 128.20 , 127.44 , 126.02 , 122.12 , 119.92 (d, *J*_{PC} = 3.8 Hz), 78.09 , 59.98 (d, *J*_{PC} = 6.1 Hz), 42.08 (d, *J*_{PC} = 13.3 Hz), 37.11 , 36.93 (d, *J*_{PC} = 26.9 Hz), 28.97 (d, *J*_{PC} = 8.5 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 20.84. IR (cm⁻¹):2909, 2846, 1732, 1450, 1347, 1223, 1104, 971. MS (ESI/[M+H]⁺): 616.42.

This complex was prepared quantitatively by stirring the ligand with an equivalent of Me₂SAuCl followed by simple concentration under vacuum. ¹H NMR (500 MHz, Chloroform-d) δ 7.79 (t, *J* = 7.3 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.55 (d, *J* = 7.3 Hz, 5H), 7.34 (t, *J* = 7.5 Hz, 4H), 7.27 (d, *J* = 6.9 Hz, 3H), 5.91 (d, *J* = 8.1 Hz, 2H), 3.08 – 2.90 (m, 4H), 2.33 – 2.15 (m, 12H), 2.02 (br, 6H), 1.71 (br, 12H). ¹³C NMR (126 MHz, Chloroform-d) δ 158.52 (d, *J*_{PC} = 7.0 Hz), 140.62 , 135.18 (d, *J*_{PC} = 1.5 Hz), 132.59 (d, *J*_{PC} = 1.6 Hz), 128.16 , 127.56 , 127.01 (d, *J*_{PC} = 5.0 Hz), 126.46 , 124.96 (d, *J*_{PC} = 6.7 Hz), 122.49 (d, *J*_{PC} = 45.8 Hz), 76.39 , 60.93 , 42.26 (d, *J*_{PC} = 2.6 Hz), 42.09 , 36.31 , 28.62 (d, *J*_{PC} = 9.9 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 54.06. IR (cm⁻¹):2905, 2859, 1474, 1450, 1347, 1304, 1097, 758. MS (ESI/[M+Na]⁺): 870.24.

General procedure for Synthesis L9:

In a 100mL Schlenk tube, it was charged with reagents: 2-bromo-4,6-dimethylaniline(1.98 g, 10.0 mmol), 1,5-dibromopentane(3.45g, 15 mmol), Diisopropylethylamine (2.54 g, 20 mmol), NaI (150 mg, 1 mmol) in 50 mL toluene and the reaction system was stirred in an oil bath at 120°C for 15h. Upon completion, the mixture was concentrated and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired product **3** in 50% yield.

In a 25mL Schlenk tube, $Pd(OAc)_2$ (typically 3 mol %) and DiPPF (1,1'bis(diisopropylphosphino)ferrocene; Pd:L = 1:1.2), di(1-adamantyl)phosphine (1.5mmol) and NaO'Bu(1.8 mmol), followed by the addition of the aryl halide **3**(1.5mmol) in 8 mL toluene; the Schlenk tube was then degassed twice. The resulting mixture was heated at 110 °C until complete consumption of the phosphine was achieved, as judged on the basis of ³¹P NMR data. The solution was then cooled and filtered through a plug of silica, which in turn was washed with CH₂Cl₂. Removal of the solvent from the combined eluent afforded **L9** in 45% yield that was further purified by washing with EtOAc.

¹H NMR (500 MHz, Chloroform-d) δ 7.34 (s, 1H), 6.99 (s, 1H), 3.29 (dd, J = 13.4, 5.5 Hz, 2H), 2.97 – 2.86 (m, 2H), δ 2.30 (s, 3H), 2.29 (s, 3H), 2.02 – 1.98 (m, 6H), 1.88-1.86(m, 12H), 1.76 – 1.62 (m, 14H), 1.61 – 1.50 (m, 4H). ¹³C NMR (126 MHz, Chloroform-d) δ 156.16 (d, $J_{PC} = 25.2$ Hz), 137.55 (d, $J_{PC} = 5.8$ Hz), 135.91 (d, $J_{PC} = 2.3$ Hz), 135.15 (d, $J_{PC} = 27.0$ Hz), 132.60 , 131.77 , 52.99 (d, $J_{PC} = 7.5$ Hz), 42.19 (d, $J_{PC} = 13.6$ Hz), 37.08, 37.03 (d, $J_{PC} = 27.7$ Hz), 28.99 (d, $J_{PC} = 8.5$ Hz), 26.74 , 24.69 , 21.00 , 20.30 (d, $J_{PC} = 1.4$ Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 21.74. IR(cm⁻¹): 2865, 2847, 450, 1277, 1219, 1124, 971.MS (ESI/[M+H] ⁺): 490.41.

This complex was prepared quantitatively by stirring the ligand with an equivalent of Me₂SAuCl followed by simple concentration under vacuum. ¹H NMR (500 MHz, Chloroform-d) δ 7.37 (dd, J = 7.1, 1.6 Hz, 1H), 7.11 (s, 1H), 3.30 (td, J = 11.2, 2.9 Hz, 2H), 2.85 – 2.70 (m, 4H), 2.49 (s, 3H), 2.35 (s, 3H), 2.26 – 2.10 (m, 12H), 2.03 – 1.93 (m, 7H), 1.72 – 1.57 (m, 14H), 1.37-1.29 (m, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 153.45 (d, $J_{PC} = 6.5$ Hz), 139.98 (d, $J_{PC} = 4.4$ Hz), 137.48 (d, $J_{PC} = 1.8$ Hz), 133.73 (d, $J_{PC} = 2.6$ Hz), 133.34 (d, $J_{PC} = 7.8$ Hz), 124.09 (d, $J_{PC} = 4.4$ Hz), 50.29 , 42.39 (d, $J_{PC} = 3.3$ Hz), 42.34 (d, $J_{PC} = 22.7$ Hz), 36.38 (d, $J_{PC} = 1.2$ Hz), 28.71 (d, $J_{PC} = 9.8$ Hz), 25.30 , 23.62 , 21.51 (d, $J_{PC} = 1.1$ Hz), 20.96 . ³¹P NMR (162 MHz, Chloroform-d) δ 59.83. IR (cm⁻¹):2906, 2847, 1450, 1344, 1304, 1224, 1107, 973. HRMS calculated for [C₃₃H₄₈AuClNNaP]⁺:744.2776, found 744.2770.

General procedure for Synthesis L10.

In a 25mL Schlenk tube, $Pd_2(dba)_3$ (typically 2.5 mol %) and Xantphos (10 mol %), Cis-3,5dimethylpiperidinium chloride (2 mmol) and NaO'Bu(4.8 mmol), followed by the addition of the aryl halide 1(2 mmol) in 10 mL toluene; the Schlenk tube was then degassed twice. The resulting mixture was heated at 100 °C for 12h under N₂. The solution was then cooled and filtered through a plug of silica, the mixture was then concentrated and the residue was purified by chromatography on silica gel to give 1-(2-bromo-4,6-dimethylphenyl)-3,5-dimethylpiperidine **3** in 10 % yield. The procedure for the synthesis Ligand 10 is the same as the synthesis L9.

¹H NMR (500 MHz, Chloroform-d) δ 7.34 (d, J = 16.6 Hz, 1H), [7.05 (s), 6.88 (s), 1H] 3.07 (t, J = 10.9 Hz, 1H), 2.90 – 2.85 (m, 1H), 2.75 (d, J = 9.2 Hz, 1H), 2.60 (t, J = 10.6 Hz, 1H), 2.30 (s, 3H), [2.26 (s), 2.25 (s), 3H], 2.13 – 2.07 (m, 1H), 2.04 – 1.82 (m, 18H), 1.74-1.59 (m, 14H), 0.84 (d, J = 6.3 Hz, 3H), 0.80 (d, J = 6.6 Hz, 3H), [0.76 (J = 12.0 Hz), 0.61 (q, J = 12.0 Hz),1H]. ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.30 (d, $J_{PC} = 26.7$ Hz), 154.77 (d, $J_{PC} = 23.8$ Hz), 138.19 (d, $J_{PC} = 8.2$ Hz), 136.64 , 136.40 , 135.86 (d, $J_{PC} = 21.3$ Hz), 135.28 , 134.70 (d, $J_{PC} = 30.8$ Hz), 133.00 , 132.28 , 131.88 , 131.68 , 60.84 , 60.76 , 58.90 , 43.41 (d, $J_{PC} = 9.9$ Hz), 42.77 , 42.49 , 42.34 (d, $J_{PC} = 13.0$ Hz), 42.02 (d, $J_{PC} = 14.3$ Hz), 37.33 (d, $J_{PC} = 26.1$ Hz), 37.15 , 37.04 , 36.75 , 36.57 (d, $J_{PC} = 29.4$ Hz), 19.36 (d, $J_{PC} = 19.2$ Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 21.86 , 21.59. IR (cm⁻¹):2902, 2847, 1451, 1376, 1342, 1223, 961, 858, 751. MS (ESI/[M+H]⁺):518.36 .

This complex was prepared quantitatively by stirring the ligand with an equivalent of Me₂SAuCl followed by simple concentration under vacuum. ¹H NMR (500 MHz, Chloroform-d) δ 7.38 (d, *J* = 6.9 Hz, 1H), 7.10 (s, 1H), 2.91 (dd, *J* = 10.2, 4.8 Hz, 2H), 2.82 – 2.69 (m, 4H), 2.45 (s, 3H), 2.34 (s, 3H), 2.23 – 2.11 (m, 12H), 1.99 (br, 6H), 1.91 (d, *J* = 12.7 Hz, 1H), 1.71-1.65 (m, 13H), 0.85 (s, 3H), 0.84 (s, 3H), 0.66 (q, *J* = 12.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 152.90 (d, *J*_{PC} = 6.3 Hz), 139.97 (d, *J*_{PC} = 4.5 Hz), 137.51 , 133.78 , 133.33 (d, *J*_{PC} = 7.7 Hz), 123.97 (d, *J*_{PC} = 49.5 Hz), 57.45 , 42.52 – 42.24 (m), 41.65 , 36.37 , 29.87 , 28.72 (d, *J*_{PC} = 9.8

Hz), 21.56 , 20.94 , 20.18 . ³¹P NMR (162 MHz, Chloroform-d) δ 59.64. IR(cm⁻¹):2906, 2851, 1452, 1301, 1225, 972, 734. HRMS calculated for [C₃₅H₅₂AuClNNaP]⁺:772.3089, found 772.3111.

Condition A: General procedure for gold-catalyzed synthesis of a-carboxymethyl ketones:

$$Me + Ph OH \frac{PhCl (0.05 M), r.t., 12 h}{(1.5 equiv)} Me + Ph OH \frac{PhCl (0.05 M), r.t., 12 h}{(1.5 equiv)} Me + 9 O Ph 3a$$

To a 3 dram vial containing 2 mL of chlorobenzene were added sequentially a carboxylic acid (0.2 mmol), an alkyne (0.26 mmol), L₅AuCl (0.01 mmol) and NaBAr^F₄ (0.02 mmol). The resulting mixture was stirred at room temperature. To this vial a solution of 8-methylquinoline *N*-oxide (47.7 mg, 0.3 mmol) in 4 mL of chlorobenzene was then added via a syringe pump in 12 h. Upon completion, the reaction mixture was concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes /ethyl acetate) to afford the desired product **3**.

2-Oxododecyl benzoate 3a

The compound **3a** was prepared in 96% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.10 (dt, *J* = 8.4, 1.5 Hz, 2H), 7.60 (tt, *J* = 7.1, 1.3 Hz, 1H), 7.51 – 7.43 (m, 2H), 4.88 (s, 2H), 2.50 (t, *J* = 7.4 Hz, 2H), 1.64 (p, *J* = 7.5 Hz, 2H), 1.27 (d, *J* = 19.9 Hz, 14H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.17, 165.86, 133.37, 129.86, 129.27, 128.45, 68.38, 38.93, 31.86, 29.52, 29.41, 29.33, 29.27, 29.15, 23.29, 22.65, 14.09. IR (cm⁻¹): 2878, 2849, 1732, 1720, 1625, 1602, 1450, 1413, 1281, 1090, 720. MS (ESI) (M+Na⁺): 327.23.

2-Oxododecyl 2-methylbenzoate 3b

The compound **3b** was prepared in 94% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 7.93 (dd, J = 8.1, 1.4 Hz, 1H), 7.35 (td, J = 7.5, 1.4 Hz, 1H), 7.19 (ddd, J = 7.2, 3.7, 2.0 Hz, 2H), 4.79 (s, 2H), 2.54 (s, 3H), 2.42 (t, J = 7.4 Hz, 2H), 1.64 – 1.50 (m, 2H), 1.29 – 1.12 (m, 14H), 0.81 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 204.16, 166.69, 140.64, 132.36, 131.69, 130.81, 125.75, 68.18, 38.92, 31.86, 29.52, 29.41, 29.33, 29.27, 29.15, 23.29, 22.65, 21.67, 14.09. IR (cm⁻¹): 2882, 2855, 1725, 1604, 1578, 1459, 1378, 1256, 1143, 1082, 905, 738. MS (ESI) (M+Na⁺): 341.26.

The compound **3c** was prepared in 96% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.27 – 7.65 (m, 2H), 6.80 – 6.51 (m, 2H), 4.80 (s, 2H), 3.06 (s, 6H), 2.49 (t, *J* = 7.4 Hz, 2H), 1.62 (q, *J* = 7.2 Hz, 2H), 1.27 (d, *J* = 15.2 Hz, 14H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.49, 166.13, 153.51, 131.64, 115.96, 110.83, 68.02, 40.09, 38.93, 31.88, 29.54, 29.43, 29.36, 29.29, 29.18, 23.27, 22.66, 14.10. IR (cm⁻¹): 2878, 2849, 1727, 1715, 1702, 1648, 1619, 1501, 1464, 1439, 1375, 1287, 1191. MS (ESI) (M+Na⁺): 370.25.

2-Oxododecyl 2-bromobenzoate 3d

The compound **3d** was prepared in 91% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 7.95 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.68 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.43 – 7.31 (m, 2H), 4.89 (s, 2H), 2.50 (t, *J* = 7.4 Hz, 2H), 1.65 (p, *J* = 7.4 Hz, 2H), 1.27 (d, *J* = 19.7 Hz, 14H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 203.58, 165.26, 134.44, 132.98, 131.82, 131.12, 127.23, 121.99, 68.60, 38.99, 31.87, 29.53, 29.41, 29.33, 29.29, 29.15, 23.27, 22.67, 14.10. IR (cm⁻¹): 2855, 2758, 1732, 1591, 1468, 1377, 1292, 1251, 1029, 926, 745. MS (ESI) (M+Na⁺): 405.16.

2-Oxododecyl 3-(trifluoromethyl)benzoate 3e

The compound **3e** was prepared in 92% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.36 (s, 1H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H), 4.93 (s, 2H), 2.49 (t, *J* = 7.4 Hz, 2H), 1.65 (p, *J* = 7.3 Hz, 2H), 1.43 – 1.10 (m, 14H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 203.29, 164.58, 133.06, 131.30, 131.04, 130.16, 129.87, 129.85, 129.15, 126.81, 126.77, 124.65, 122.49, 68.60, 38.87, 31.86, 29.51, 29.40, 29.31, 29.26, 29.13, 23.34, 22.64, 14.07. IR (cm⁻¹): 2883, 2851, 1725, 1546, 1468, 1413, 1341, 1302, 1257, 1170, 1123, 1089, 919, 823. MS (ESI) (M+Na⁺): 395.20.

2-Oxododecyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate 3f

The compound **3f** was prepared in 66% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.53 (s, 1H), 8.17 (dt, *J* = 7.8, 1.6 Hz, 1H), 8.01 (dt, *J* = 7.4, 1.2 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 4.88 (s, 2H), 2.49 (t, *J* = 7.4 Hz, 2H), 1.66 – 1.59 (m, 2H), 1.35 (s, 12H), 1.29-1.25 (m, 14H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.26, 165.94, 139.60, 136.17, 132.53, 128.64, 128.44, 127.87, 84.10, 68.36, 38.89, 31.86, 29.52, 29.41, 29.33, 29.27, 29.14, 24.86, 23.29, 22.65, 14.09. IR (cm⁻¹): 2881, 2855, 1830, 1726, 1523, 1362, 1253, 1201, 1144, 906. MS (ESI) (M+Na⁺): 453.25.

2-oxododecyl 3-nitrobenzoate 3g

The compound **3g** was prepared in 68% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 9.11 – 8.77 (m, 1H), 8.67 – 8.24 (m, 2H), 7.68 (t, *J* = 8.0 Hz, 1H), 4.96 (s, 2H), 2.49 (t, *J* = 7.4 Hz, 2H), 1.75 – 1.59 (m, 2H), 1.27 (d, *J* = 17.8 Hz, 14H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 202.86, 163.80, 148.29, 135.49, 131.06, 129.72, 127.76, 124.87, 68.78, 38.86, 31.85, 29.51, 29.39, 29.31, 29.26, 29.12, 23.35, 22.64, 14.08. IR (cm⁻¹): 2919, 2850, 1742, 1726, 1644, 1618, 1530, 1482, 1471, 1413, 1346, 1302, 1268, 1147, 773, 718. Ms (ESI) (M+Na⁺): 372.21.

2-Oxododecyl thiophene-2-carboxylate 3h

The compound **3h** was prepared in 90% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 7.88 (dd, *J* = 3.8, 1.3 Hz, 1H), 7.61 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.13 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.84 (s, 2H), 2.48 (t, *J* = 7.4 Hz, 2H), 1.63 (p, *J* = 7.4 Hz, 2H), 1.39 – 1.16 (m, 14H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.02, 161.38, 134.25, 133.09, 132.50, 127.89, 68.34, 38.88, 31.86, 29.52, 29.40, 29.33, 29.27, 29.14, 23.27, 22.66, 14.10. IR (cm⁻¹): 2923, 2849, 1725, 1707, 1525, 1418, 1404, 1368, 1268, 1122, 1089, 998, 966. MS (ESI) (M+Na⁺): 333.19.

2-Oxododecyl cinnamate 3i

The compound **3i** was prepared in 94% yield according to the general procedure (eluents: ethyl acetate : hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 7.77 (d, *J* = 16.0 Hz, 1H), 7.55 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.44 – 7.37 (m, 3H), 6.54 (d, *J* = 16.0 Hz, 1H), 4.78 (s, 2H), 2.46 (t, *J* = 7.5 Hz, 2H), 1.63 (p, *J* = 7.4 Hz, 2H), 1.37 – 1.16 (m, 14H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.31, 166.12, 146.14, 134.15, 130.54, 128.90, 128.20, 116.84, 68.03, 38.88, 31.86, 29.52, 29.40, 29.32, 29.27, 29.14, 23.32, 22.65, 14.08. IR (cm⁻¹): 2920, 2850, 1717, 1665, 1641, 1518, 1447, 1413, 1317, 1258, 1181, 863, 766. MS (ESI) (M+Na⁺): 353.25.

(E)-2-Oxododecyl 3-(furan-2-yl)acrylate 3j

The compound **3j** was prepared in 97% yield according to the general procedure (eluents: ethyl acetate : hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 7.64 – 7.40 (m, 1H), 6.65 (d, *J* = 3.4 Hz, 2H), 6.48 (dd, *J* = 3.1, 1.6 Hz, 1H), 6.40 (d, *J* = 15.7 Hz, 1H), 4.75 (s, 2H), 2.45 (t, *J* = 7.5 Hz, 2H), 1.61 (q, *J* = 7.2 Hz, 2H), 1.29-1.26 (m, 14H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.43, 166.18, 150.73, 145.04, 132.23, 115.39, 114.42, 112.36, 68.02, 38.86, 31.86, 29.52, 29.41, 29.32, 29.27, 29.13, 23.28, 22.65, 14.08. IR (cm⁻¹): 2881, 2851, 1705, 1664, 1638, 1542, 1211, 1112. MS (ESI) (M+Na⁺): 343.23.

(2E,4E)-2-Oxododecyl hexa-2,4-dienoate 3k

The compound **3k** was prepared in 93% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 7.33 (dd, *J* = 15.4, 10.0 Hz, 1H), 6.39 – 6.05 (m, 2H), 5.87 (d, *J* = 15.7 Hz, 1H), 4.70 (s, 2H), 2.43 (t, *J* = 7.5 Hz, 2H), 1.87 (d, *J* = 5.8 Hz, 3H), 1.61 (q, *J* = 7.3 Hz, 2H), 1.29-1.26 (m, 14H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.56, 166.39, 146.43, 140.30, 129.69, 117.58, 67.84, 38.84, 31.86, 29.52, 29.40, 29.31, 29.27, 29.13, 23.28, 22.65, 18.67, 14.08. IR (cm⁻¹): 2880, 2849, 1720, 1649, 1624, 1462, 1410, 1331, 1244, 1149, 1129, 994. MS (ESI) (M+Na⁺): 317.25.

2-oxododecyl 2-(1-methyl-1H-indol-3-yl)acetate 31

The compound **31** was prepared in 90 % yield according to the condition A.¹H NMR (600 MHz, Chloroform-d) δ 7.62 (d, J = 7.9 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 7.09 (s, 1H), 4.66 (s, 2H), 3.90 (s, 2H), 3.77 (s, 3H), 2.34 (t, J = 7.5 Hz, 2H), 1.69 – 1.48 (m, 2H), 1.30-1.25 (m, 14H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.24, 171.30, 136.83, 127.81, 127.58, 121.77, 119.19, 118.85, 109.24, 106.21, 68.17, 38.78,

32.66, 31.85, 30.73, 29.50, 29.38, 29.27, 29.04, 23.18, 22.64, 14.08. IR(cm⁻¹):2926, 2855, 1732, 1468, 1376, 1134, 739. MS (ESI/[M+Na]⁺):394.27.

2-Oxododecyl 2-(trimethylsilyl)acetate 3m

The compound **3m** was prepared in 92% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (600 MHz, Chloroform-d) δ 4.60 (s, 2H), 2.39 (t, *J* = 7.5 Hz, 2H), 1.98 (s, 2H), 1.59 (p, *J* = 7.4 Hz, 2H), 1.32 – 1.17 (m, 14H), 0.87 (t, *J* = 7.0 Hz, 3H), 0.16 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 204.23, 172.12, 67.61, 38.85, 31.85, 29.51, 29.39, 29.30, 29.26, 29.12, 26.53, 23.27, 22.64, 14.08, -1.44. IR (cm⁻¹): 2882, 2856, 1728, 1546, 1418, 1392, 1241, 1111, 1090, 856. MS (ESI) (M+Na⁺): 337.16.

2-Oxododecyl 2-chloroacetate 3n

The compound **3n** was prepared in 80% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 4.76 (s, 2H), 4.19 (s, 2H), 2.42 (t, J = 7.4 Hz, 2H), 1.61 (p, J = 7.4 Hz, 2H), 1.35 – 1.16 (m, 14H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 202.64, 166.73, 68.88, 40.40, 38.79, 31.86, 29.52, 29.39, 29.29, 29.27, 29.09, 23.28, 22.66, 14.09. IR (cm⁻¹): 2883, 2850, 1723, 1137. MS (ESI) (M+Na⁺): 299.17.

2-oxododecyl 2-phenoxyacetate 3o

Pho
$$n-C_{10}H_{21}$$

The compound **30** was prepared in 78 % yield according to the condition A.¹H NMR (600 MHz, Chloroform-d) δ 7.31 (t, *J* = 8.0 Hz, 2H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.97 – 6.94 (m, 2H), 4.77 (s, 4H), 2.39 (t, *J* = 7.4 Hz, 2H), 1.67 – 1.51 (m, 2H), 1.31-1.26 (m, 14H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, cdcl₃) δ 202.96, 168.43, 157.68, 129.58, 121.84, 114.64, 68.21, 64.99,

38.80, 31.86, 29.52, 29.39, 29.29, 29.27, 29.09, 23.28, 22.66, 14.09. IR(cm⁻¹):2921, 2851, 1766, 1723, 1600, 1497, 1253, 1195, 1089, 753. MS (ESI/[M+Na]⁺):357.22.

1-tert-butyl 2-(2-oxododecyl) pyrrolidine-1,2-dicarboxylate 3p

The compound **30** was prepared in 54% yield according to the condition A.¹H NMR (500 MHz, Chloroform-d) δ [4.83 (d, J = 16.7 Hz, 4.54 (d, J = 16.7 Hz), 1H], 4.74 – 4.62 (m, 1H), [4.41 (dd, J = 7.4, 4.9 Hz, 4.33 (dd, J = 8.6, 4.0 Hz,), 1H], 3.54 (dddd, J = 20.6, 10.4, 8.0, 4.6 Hz, 1H), 3.41 (ddt, J = 34.8, 10.3, 7.5 Hz, 1H), 2.40 (td, J = 7.4, 3.3 Hz, 2H), 2.35 – 2.16 (m, 2H), 2.01 (ddq, J = 22.1, 16.3, 7.6 Hz, 1H), 1.89 (tdd, J = 12.3, 9.4, 4.5 Hz, 1H), 1.59 (q, J = 7.2 Hz, 2H), [1.45 (s), 1.41 (s), 9H], 1.29-1.25 (m, 14H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.10, 203.26, 172.49, 172.39, 154.45, 153.75, 79.94, 79.84, 68.12, 67.81, 58.91, 58.61, 46.61, 46.32, 38.80, 38.76, 31.85, 30.98, 30.02, 29.51, 29.39, 29.30, 29.27, 29.10, 28.41, 28.29, 24.29, 23.52, 23.25, 23.19, 22.65, 14.08. IR (cm⁻¹): 3110, 2927, 1698, 1607, 1551, 1434, 1398, 1323, 1214, 876, 863. Ms (ESI) (M+Na⁺): 420.30.

2-Oxododecyl cyclopropanecarboxylate 3q

The compound **3q** was prepared in 91% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 4.64 (s, 2H), 2.40 (t, *J* = 7.4 Hz, 2H), 1.77 – 1.70 (m, 1H), 1.59 (p, *J* = 7.3 Hz, 2H), 1.34 – 1.20 (m, 14H), 1.10 – 1.04 (m, 2H), 0.96 – 0.90 (m, 2H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.34, 174.19, 67.90, 38.81, 31.86, 29.52, 29.40, 29.31, 29.27, 29.13, 23.26, 22.65, 14.08, 12.59, 8.87. IR (cm⁻¹): 2957, 2922, 2850, 1735, 1730, 1722, 1644, 1466, 1418, 1391, 1201, 1174, 1130, 1093. MS (ESI) (M+Na⁺): 291.22.

2-Oxododecyl admantanecarboxylate 3r

The compound **3r** was prepared in 80% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (600 MHz, Chloroform-d) δ 4.60 (s, 2H), 2.39 (t, *J* = 7.4 Hz, 2H), 2.03 (s, 3H), 1.95 (s, 6H), 1.79 – 1.66 (m, 6H), 1.58 (q, *J* = 7.0 Hz, 2H), 1.29-1.24 (m, 14H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 204.49, 176.87, 67.67, 40.66, 38.79, 38.75, 36.42, 31.85, 29.51, 29.38, 29.32, 29.25, 29.13, 27.86, 23.17, 22.64, 14.07. IR (cm⁻¹): 2878, 2854, 1730, 1594, 1454, 1415, 1377, 1269, 1233, 1185, 1108, 1077. MS (ESI) (M+Na⁺): 385.32.

2-Oxo-2-phenylethyl benzoate 3s

The compound **3s** was prepared in 93% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.21– 8.11 (m, 2H), 8.02 – 7.94 (m, 2H), 7.67– 7.57 (m, 2H), 7.55– 7.43 (m, 4H), 5.58 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 192.07, 166.02, 134.29, 133.87, 133.33, 129.95, 129.39, 128.87, 128.42, 127.81, 66.44. IR (cm⁻¹): 1720, 1701, 1607, 1583, 1450, 1420, 1375, 1318, 1282, 1125, 1021, 961, 800, 759, 715. MS (ESI) (M+Na⁺): 263.05.

2-Cyclohexyl-2-oxoethyl benzoate 3t

The compound **3t** was prepared in 92% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.09 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.63 – 7.51 (m, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 4.96 (s, 2H), 2.51 (tt, *J* = 11.4, 3.5 Hz, 1H), 1.95 –

1.87 (m, 2H), 1.81 (dt, J = 11.9, 3.1 Hz, 2H), 1.68 (dtd, J = 11.0, 3.4, 1.8 Hz, 1H), 1.45 (qd, J = 12.7, 12.3, 3.1 Hz, 2H), 1.28 (dddd, J = 25.2, 15.0, 12.1, 8.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 206.30, 165.87, 133.28, 129.83, 129.35, 128.40, 67.12, 47.41, 28.16, 25.67, 25.46. IR (cm⁻¹): 2872, 2852, 1765, 1720, 1446, 1416, 1340, 1280, 1133, 1068, 914, 744, 712. MS (ESI) (M+Na⁺): 269.08.

2-Cyclopropyl-2-oxoethyl benzoate 3u

The compound **3u** was prepared in 95% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.11 (dt, *J* = 8.4, 1.5 Hz, 2H), 7.62 – 7.54 (m, 1H), 7.50 – 7.40 (m, 2H), 5.05 (s, 2H), 2.04 (tt, *J* = 7.9, 4.5 Hz, 1H), 1.27 – 1.07 (m, 2H), 0.99 (dq, *J* = 7.4, 3.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 203.77, 165.82, 133.32, 129.85, 129.29, 128.40, 68.77, 17.22, 11.41. IR (cm⁻¹): 1637, 1602, 1543, 1452, 1406, 1394, 1276, 1069, 1024, 993, 711. MS (ESI) (M+K⁺): 243.01.

2-Cyclohexenyl-2-oxoethyl benzoate 3v

The compound **3v** was prepared in 94% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.11 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.57 (tt, *J* = 7.1, 1.3 Hz, 1H), 7.50 – 7.38 (m, 2H), 6.93 (p, *J* = 2.1 Hz, 1H), 5.27 (s, 2H), 2.27 (dq, *J* = 6.2, 4.2, 3.1 Hz, 4H), 1.65 (ddtt, *J* = 11.5, 9.2, 6.0, 2.4 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 192.45, 166.15, 140.69, 137.28, 133.17, 129.89, 129.59, 128.35, 65.57, 26.04, 22.83, 21.66, 21.46. IR (cm⁻¹): 2753, 1727, 1708, 1685, 1637, 1602, 1585, 1451, 1426, 1316, 1281, 1213, 1120, 1072, 708. MS (ESI) (M+Na⁺): 267.05.

6-Chloro-2-oxohexyl benzoate 3w

The compound **3w** was prepared in 90% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.09 (dt, *J* = 8.4, 1.5 Hz, 2H), 7.59 (tt, *J* = 7.1, 1.3 Hz, 1H), 7.53 – 7.41 (m, 2H), 4.88 (s, 2H), 3.58 – 3.48 (m, 2H), 2.61 – 2.48 (m, 2H), 1.86 – 1.73 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 203.47, 165.84, 133.44, 129.83, 129.10, 128.47, 68.34, 44.49, 37.82, 31.70, 20.45. IR (cm⁻¹): 3065, 2938, 1722, 1633, 1602, 1591, 1585, 1452, 1417, 1316, 1275, 1178, 1128, 1094, 917, 713. MS (ESI) (M+Na⁺): 277.04.

6-(1,3-Dioxoisoindolin-2-yl)-2-oxohexyl benzoate 3x

The compound **3x** was prepared in 90% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:4). ¹H NMR (500 MHz, Chloroform-d) δ 8.08 (dt, *J* = 8.4, 1.5 Hz, 2H), 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.58 (tt, *J* = 7.1, 1.3 Hz, 1H), 7.50 – 7.41 (m, 2H), 4.88 (s, 2H), 3.70 (t, *J* = 6.8 Hz, 2H), 2.58 (t, *J* = 7.0 Hz, 2H), 1.72 (dddt, *J* = 12.2, 10.5, 5.0, 2.6 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 203.47, 168.35, 165.83, 133.90, 133.39, 132.05, 129.86, 129.18, 128.45, 123.21, 68.39, 38.02, 37.34, 27.88, 20.23. IR (cm⁻¹): 2937, 2662, 1771, 1759, 1715, 1625, 1602, 1452, 1437, 1364, 1278, 1120, 1043, 913, 713. MS (ESI) (M+Na⁺): 388.08.

6-Acetoxy-2-oxohexyl benzoate 3y

The compound **3y** was prepared in 92% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:6). ¹H NMR (500 MHz, Chloroform-d) δ 8.13 – 8.00 (m, 2H), 7.69 – 7.54 (m, 1H), 7.48 – 7.39 (m, 2H), 4.87 (s, 2H), 4.06 (t, *J* = 6.2 Hz, 2H), 2.54 (t, *J* = 7.1 Hz, 2H), 2.03 (s, 3H), 1.80 – 1.62 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 203.58, 171.07, 165.84, 133.43, 129.83, 129.12, 128.46, 68.36, 63.90, 38.15, 27.93, 20.90, 19.62. IR (cm⁻¹): 2662, 1725, 1629, 1602, 1585, 1453, 1417, 1368, 1316, 1277, 1248, 1114, 1044, 1027, 980, 714. MS (ESI) (M+Na⁺): 301.07.

2-Oxo-5-(tosyloxy)pentyl benzoate 3z

The compound **3z** was prepared in 76% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:8). ¹H NMR (500 MHz, Chloroform-d) δ 8.08 (dt, *J* = 8.4, 1.5 Hz, 2H), 7.80 – 7.72 (m, 2H), 7.60 (tt, *J* = 7.1, 1.3 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.82 (s, 2H), 4.07 (t, *J* = 6.0 Hz, 2H), 2.62 (t, *J* = 6.9 Hz, 2H), 2.43 (s, 3H), 2.02 – 1.93 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 202.83, 165.78, 144.88, 133.48, 132.81, 129.87, 129.83, 129.02, 128.48, 127.82, 69.27, 68.30, 34.26, 22.39, 21.59. IR (cm⁻¹): 2931, 1720, 1638, 1600, 1584, 1493, 1452, 1415, 1366, 1315, 1276, 1172, 1098, 1030, 993, 982, 712. MS (ESI) (M+Na⁺): 399.04.

3-Methoxy-2-oxooctyl benzoate 3aa

The compound **3aa** was prepared in 59% yield according to the general procedure (eluents: ethyl acetate: hexanes = 1:10). ¹H NMR (500 MHz, Chloroform-d) δ 8.09 (dt, J = 8.4, 1.5 Hz, 2H), 7.58 (tt, J = 7.1, 1.3 Hz, 1H), 7.49 – 7.42 (m, 2H), 5.33 – 4.89 (m, 2H), 3.78 (t, J = 6.2 Hz, 1H), 3.46 (s, 3H), 1.94 – 1.66 (m, 2H), 1.42 (dtd, J = 13.8, 8.0, 7.3, 3.9 Hz, 2H), 1.31 (qq, J = 7.9, 4.6, 3.8 Hz, 4H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.41, 165.92, 133.27, 129.85, 129.35, 128.39, 86.22, 66.67, 58.51, 31.82, 31.56, 24.43, 22.42, 13.96. IR (cm⁻¹): 2886, 2862, 1726, 1636, 1603, 1453, 1408, 1367, 1316, 1277, 1102, 1072, 866, 712. MS (ESI) (M+Na⁺): 301.12.

(*E*)-2-oxo-2-phenylethyl but-2-enoate (3ab)

The compound **3ab** was prepared in 93% yield according to the condition A. ¹H NMR (500 MHz, Chloroform-d) δ 7.95 – 7.89 (m, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.18 – 7.05 (m, 1H), 6.01 (dd, *J* = 15.6, 1.7 Hz, 1H), 5.39 (s, 2H), 1.93 (dd, *J* = 6.9, 1.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.33, 165.72, 146.38, 134.30, 133.80, 128.82, 127.78, 121.69,

65.81, 18.13. IR (cm⁻¹): 2943, 1742, 1707, 1659, 1451, 1373, 1180, 1107, 969, 758. MS (ESI/ [M+Na]⁺):227.07

Condition B: General procedure for synthesis (*E*)-4-phenyl-2-(prop-1-enyl)oxazole 4 in one pot.

To a 3 dram vial containing 2 mL of chlorobenzene were added sequentially a crotonic acid(0.2 mmol), an alkyne (0.26 mmol), L₅AuCl (0.01 mmol) and NaBAr^F₄ (0.02 mmol). The resulting mixture was stirred at room temperature. To this vial a solution of 8-methylquinoline *N*-oxide (47.7 mg, 0.3 mmol) in 4 mL of chlorobenzene was then added via a syringe pump in 12 h. Then acetamide (2 mmol) with BF₃·Et₂O (2 mmol) was added into the vial and the reaction system was stirred at 135 °C. Upon the completion by TLC, the reaction mixture was concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes /ethyl acetate) to afford the desired product (*E*)-4-phenyl-2-(prop-1-enyl)oxazole **4** in 80% yield. ¹H NMR (500 MHz, Chloroform-d) δ 7.80 (s, 1H), 7.73 (d, *J* = 7.1 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.33 – 7.29 (m, 1H), 6.79 (dd, *J* = 15.9, 6.9 Hz, 1H), 6.37 (dd, *J* = 15.9, 1.7 Hz, 1H), 1.96 (dd, *J* = 6.9, 1.7 Hz, 3H). ¹³C NMR (151 MHz, cdcl₃) δ 161.46, 141.36, 135.51, 132.55, 131.12, 128.67, 127.95, 125.46, 117.87, 18.46. IR (cm⁻¹): 3099, 2933, 1442, 1346, 1068, 961, 756. GCMS (*m/z*):185.

2-oxo-2-phenylethyl 2-phenylacetate 3ac

The compound **3ac** was prepared in 88 % yield according to the condition A. ¹H NMR (600 MHz, Chloroform-d) δ 7.92 – 7.87 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.37 – 7.33 (m, 4H), 7.30-7.28 (m, 1H), 5.35 (s, 2H), 3.83 (s, 2H). ¹³C NMR (151 MHz, cdcl₃) δ 191.98, 171.01, 134.17, 133.85, 133.56, 129.40, 128.83, 128.59, 127.75, 127.19, 66.34, 40.86. IR (cm⁻¹): 1745, 1704, 1589, 1450, 1226, 1152, 978. MS (ESI/[M+Na]⁺):277.08

2-oxododecyl 2-phenylacetate 3ad

The compound **3ad** was prepared in 85 % yield according to the condition A. ¹H NMR (600 MHz, Chloroform-d) δ 7.36 – 7.31 (m, 4H), 7.30 – 7.26 (m, 1H), 4.65 (s, 2H), 3.75 (s, 2H), 2.34 (t, *J* = 7.5 Hz, 2H), 1.57 (dd, *J* = 12.9, 5.8 Hz, 2H), 1.31-1.25 (m, 14H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, cdcl₃) δ 203.96, 170.83, 133.46, 129.32, 128.60, 127.23, 68.23, 40.85, 38.79, 31.86, 29.52, 29.40, 29.27, 29.08, 23.21, 22.65, 14.09. IR (cm⁻¹): 2926, 2855, 1734, 1497, 1456, 1244, 1158. MS (ESI/[M+Na]⁺): 341.22.

Condition C: General procedure for synthesis 3-phenylfuran-2(5H)-one from 2-oxo-2-ethyl 2-phenylacetates

A solution of 1,8-Diazabicycloundec-7-ene(DBU) (61mg, 0.4 mmol, 2 equiv) in CH₃CN (0.5 mL) was added drop wise to a stirred solution of 2-oxo-2-ethyl 2-phenylacetate (50.8 mg, 0.2 mmol) in CH₃CN (1 mL) at 0 °C. The mixture was stirred at 0 °C for 5 min, then TLC shows that it has done. Then water was added and extracted with ethyl acetate (3 x 10 mL). The combined extracts were washed with water, and dried over sodium sulfate. Removal of the solvent *in vacuo* gave a residue, which was purified by silica gel column chromatography using ethyl acetate-hexane (1:10, v/v) as eluent to afford 3,4-diphenylfuran-2(5H)-one (39.6mg, 84%).

3,4-diphenylfuran-2(5H)-one 6

¹H NMR (600 MHz, Chloroform-d) δ 7.46 – 7.28 (m, 10H), 5.18 (s, 2H). ¹³C NMR (151 MHz, cdcl₃) δ 173.40, 156.05, 130.83, 130.57, 130.13, 129.24, 128.98, 128.78, 128.66, 127.46, 126.17, 70.55. IR (cm⁻¹): 2922, 1752, 1447, 1340, 1037, 1064, 975, 788. MS (ESI/[M+Na]⁺):259.08.

4-decyl-3-phenylfuran-2(5H)-one 7

The compound **7** was prepared in 52 % yield according to the condition C. Time 2h.¹H NMR (500 MHz, Chloroform-d) δ 7.46-7.43 (m, 4H), 7.38 (m, 1H), 4.83 (s, 2H), 2.67 – 2.55 (m, 2H), 1.59 – 1.50 (m, 2H), 1.37 – 1.21 (m, 14H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.53, 162.19, 130.03, 128.86, 128.51, 128.41, 126.57, 71.14, 31.84, 29.70, 29.54, 29.49, 29.40, 29.25, 29.16, 27.91, 27.72, 22.65, 14.09. IR (cm⁻¹): 2926, 2855, 1761, 1500, 1446, 1128, 1036, 789. MS (ESI/[M+Na]⁺): 323.19.

1 Abstract

2 Experimental

- 3 Crystal data
- 4 C35H52AuCl5NP
- $_{5}$ $M_{r} = 891.96$
- 6 Triclinic, $P\overline{1}$
- $7 \quad a = 10.1842 (7) \text{ Å}$
- b = 12.352 (1) Åc = 15.6495 (11) Å
- 9 c = 15.6495 (11) A10 $\alpha = 103.871 (4)^{\circ}$
- $\beta = 93.006 (4)^{\circ}$
- 12 Data collection
- 13 Bruker Kappa Apex diffractometer
- 14 Absorption correction: Multi-scan SADABS
- 15 $T_{\min} = 0.440, T_{\max} = 0.746$
- 16 Refinement
- $17 \quad R[F^2 > 2\sigma(F^2)] = 0.053$
- $18 \quad wR(F^2) = 0.140$
- $19 \quad S = 1.01$
- 20 10930 reflections
- ²¹ 399 parameters

 $\gamma = 109.440 (4)^{\circ}$ $V = 1783.4 (2) Å^{3}$ Z = 2Mo Ka radiation, $\lambda = 0.71073 Å$ $\mu = 4.57 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.20 \times 0.05 \text{ mm}$

20907 measured reflections 10930 independent reflections 9219 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$

1 restraint H-atom parameters constrained $\Delta \rho_{max} = 5.57$ e Å⁻³ $\Delta \rho_{min} = -5.71$ e Å⁻³

- 22 Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97
- 23 (Sheldrick, 2008).
- 24 **References**
- 25 NOT FOUND

supplementary materials

Experimental 2

- (dayton_0m)
- Crystal data 4
- C35H52AuCl5NP
- $M_r = 891.96$ 6
- Triclinic, P1 a = 10.1842 (7) Å
- 8 b = 12.352(1) Å
- 9 c = 15.6495 (11) Å10
- $\alpha = 103.871 \ (4)^{\circ}$
- 11 $\beta = 93.006 \ (4)^{\circ}$ 12
- $\gamma = 109.440 \ (4)^{\circ}$ 13
- Data collection 14

15	Bruker Kappa Apex	20907 measured reflections
	diffractometer	10930 independent reflections
16	Radiation source: fine-focus sealed tube	9219 reflections with $I > 2\sigma(I)$
17	Graphite monochromator	$R_{\rm int} = 0.046$
18	ω scan	$\theta_{\rm max} = 30.8^\circ, \theta_{\rm min} = 1.4^\circ$
19	Absorption correction: Multi-scan	$h = -13 \rightarrow 14$
	SADABS	$k = -17 \rightarrow 15$
20	$T_{\min} = 0.440, T_{\max} = 0.746$	$l = -22 \rightarrow 21$
21	Refinement	
11	Refinement on F^2	Secondary atom site location: Difference Fourier map
~~) 3	Least-squares matrix: Full	Hydrogen site location: Inferred from neighbouring

 $R[F^2 > 2\sigma(F^2)] = 0.053$ sites $wR(F^2) = 0.140$ H-atom parameters constrained 25 S = 1.01 $w = 1/[\sigma^2(F_o^2) + (0.0876P)^2 + 3.8471P]$ 26 where $P = (F_0^2 + 2F_c^2)/3$ 10930 reflections $(\Delta/\sigma)_{\rm max} = 0.002$ 399 parameters 28 $\Delta \rho_{\rm max} = 5.57 \text{ e } \text{\AA}^{-3}$ 1 restraint 29 Primary atom site location: Structure-invariant direct $\Delta \rho_{\rm min} = -5.71 \text{ e} \text{ Å}^{-3}$ methods

Special details 31

24

27

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

V = 1783.4 (2) Å³

Mo *K* α radiation, $\lambda = 0.71073$ Å

F(000) = 896 $D_{\rm x} = 1.661 {\rm Mg} {\rm m}^{-3}$

 $\mu = 4.57 \text{ mm}^{-1}$

Plate, Colorless

 $0.30 \times 0.20 \times 0.05 \text{ mm}$

T = 100 K

Z = 2

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-33 factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

ull 1.112082 (17) 0.700140 (16) 0.256942 (11) 0.01466 (7) 21 0.7999 (5) 0.6815 (4) 0.3381 (3) 0.0137 (8) 22 0.6531 (5) 0.6539 (4) 0.3314 (3) 0.0160 (9) 12 0.6017 0.6384 0.2761 0.019* 13 0.5831 (5) 0.6494 (5) 0.4049 (3) 0.0180 (9) 13 0.4860 0.6294 0.3986 0.022* 14 0.6596 (5) 0.6750 (5) 0.4880 (3) 0.0191 (10) 14 0.6137 0.6706 0.5376 0.023* 5 0.8047 (5) 0.7071 (5) 0.4966 (3) 0.0178 (9) 15 0.8557 0.7273 0.5527 0.021* 6 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0139 (8) 7 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 7B 1.0401 0.6735 0.5387 0.018* 8 1.2286 (5) 0.6936 (4) 0.4309 0.0199 (9)	/)
11 0.7999 (5) 0.6815 (4) 0.3381 (3) 0.0137 (8) 12 0.6531 (5) 0.6539 (4) 0.3314 (3) 0.0160 (9) 12 0.6017 0.6384 0.2761 0.019* 13 0.5831 (5) 0.6494 (5) 0.4049 (3) 0.0180 (9) 13 0.4860 0.6294 0.3986 0.022* 14 0.6596 (5) 0.6750 (5) 0.4880 (3) 0.0191 (10) 14 0.6137 0.6706 0.5376 0.023* 15 0.8047 (5) 0.7071 (5) 0.4966 (3) 0.0189 (9) 15 0.8557 0.7273 0.5527 0.021* 16 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0159 (8) 17A 1.0225 0.5821 0.4461 0.018* 7B 1.0401 0.6735 0.5387 0.018* 8 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
2 0.6531 (5) 0.6539 (4) 0.3314 (3) 0.0160 (9) 12 0.6017 0.6384 0.2761 0.019* 13 0.5831 (5) 0.6494 (5) 0.4049 (3) 0.0180 (9) 13 0.4860 0.6294 0.3986 0.022* 14 0.6596 (5) 0.6750 (5) 0.4880 (3) 0.0191 (10) 14 0.6137 0.6706 0.5376 0.023* 15 0.8047 (5) 0.7071 (5) 0.4966 (3) 0.0189 (9) 15 0.8047 (5) 0.7071 (4) 0.4230 (3) 0.0178 (9) 15 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0139 (8) 17 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 18 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2266 0.6777 0.4309 0.019*	
12 0.6017 0.6384 0.2761 0.019* 13 0.5831 (5) 0.6494 (5) 0.4049 (3) 0.0180 (9) 13 0.4860 0.6294 0.3986 0.022* 14 0.6596 (5) 0.6750 (5) 0.4880 (3) 0.0191 (10) 14 0.6137 0.6706 0.5376 0.023* 15 0.8047 (5) 0.7071 (5) 0.4966 (3) 0.0178 (9) 15 0.8557 0.7273 0.5527 0.021* 6 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 18 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
3 0.5831 (5) 0.6494 (5) 0.4049 (3) 0.0180 (9) 13 0.4860 0.6294 0.3986 0.022* 14 0.6596 (5) 0.6750 (5) 0.4880 (3) 0.0191 (10) 14 0.6137 0.6706 0.5376 0.023* 15 0.8047 (5) 0.7071 (5) 0.4966 (3) 0.0178 (9) 15 0.8557 0.7273 0.5527 0.021* 6 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0139 (8) 7 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 8 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
13 0.4860 0.6294 0.3986 0.022* 14 0.6596 (5) 0.6750 (5) 0.4880 (3) 0.0191 (10 14 0.6137 0.6706 0.5376 0.023* 15 0.8047 (5) 0.7071 (5) 0.4966 (3) 0.0178 (9) 15 0.8557 0.7273 0.5527 0.021* 16 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0139 (8) 17 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 8 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
4 0.6596 (5) 0.6750 (5) 0.4880 (3) 0.0191 (10 14 0.6137 0.6706 0.5376 0.023* 25 0.8047 (5) 0.7071 (5) 0.4966 (3) 0.0178 (9) 15 0.8557 0.7273 0.5527 0.021* 26 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0139 (8) 27 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 8 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
14 0.6137 0.6706 0.5376 0.023* 15 0.8047 (5) 0.7071 (5) 0.4966 (3) 0.0178 (9) 15 0.8557 0.7273 0.5527 0.021* 16 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0139 (8) 17 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 8 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*))
25 0.8047 (5) 0.7071 (5) 0.4966 (3) 0.0178 (9) 15 0.8557 0.7273 0.5527 0.021* 16 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0139 (8) 17 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 18 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	,
15 0.8557 0.7273 0.5527 0.021* 16 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0139 (8) 17 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 18 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
36 0.8758 (5) 0.7097 (4) 0.4230 (3) 0.0139 (8) 37 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 8 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
77 1.0696 (5) 0.6646 (4) 0.4803 (3) 0.0151 (9) 17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 18 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
17A 1.0225 0.5821 0.4461 0.018* 17B 1.0401 0.6735 0.5387 0.018* 18 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
17B 1.0401 0.6735 0.5387 0.018* 8 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
18 1.2286 (5) 0.6936 (4) 0.4902 (3) 0.0159 (9) 18 1.2566 0.6777 0.4309 0.019*	
18 1.2566 0.6777 0.4309 0.019*	
(9) 1.3035 (5) 0.8250 (5) 0.5381 (3) 0.0189 (10))
19A 1 4042 0 8447 0 5397 0 023*	
Interface 0.021 0.023 0.023 IOB 1.2840 0.8397 0.5990 0.023*	
(10 12571 (5) 0.000 (5) 0.000 (3) 0.000 (9)	
10 1.2371(3) 0.3030(3) 0.4328(3) 0.0178(3)	
10 1.2055 0.0554 0.4528 0.021	
11 1 1.071(5) 0.000(4) 0.4040(5) 0.0105(7)	
11A 1.0076 0.0815 0.0458 0.020 (11B 1.0668 0.0171 0.4541 0.020*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.)
1.12A 1.5007 0.0521 0.5402 0.039	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	`
13 1.32/3 (6) 1.0368 (5) 0.5431 (4) 0.024/ (11)
13A 1.2990 1.0504 0.6011 0.037*	
113B 1.2995 1.0845 0.5109 0.037*	
113C 1.4277 1.0584 0.5490 0.037*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
15 0.8766 (6) 0.4927 (5) 0.0873 (3) 0.0196 (10))
115A 0.8907 0.5474 0.0504 0.024*	
115B 0.9679 0.5030 0.1166 0.024*	
16 0.6388 (5) 0.5028 (5) 0.1090 (3) 0.0194 (10))
116A 0.5782 0.5205 0.1518 0.023*	
116B 0.6506 0.5565 0.0714 0.023*	
170.7637 (6)0.4333 (5)0.2158 (3)0.0192 (10)))
117A 0.8543 0.4443 0.2466 0.023*	
117B 0.7041 0.4485 0.2600 0.023*	
18 0.6963 (6) 0.3048 (5) 0.1566 (4) 0.0226 (11))
1180.68410.24950.19370.027*	
190.7894 (6)0.2780 (5)0.0868 (4)0.0245 (11))
119A0.88100.28840.11590.029*	
119B0.74670.19610.05060.029*	
20 0.8060 (6) 0.3631 (5) 0.0284 (4) 0.0222 (10)))
20 0.8657 0.3466 -0.0164 0.027*	
21 0.6619 (6) 0.3470 (5) -0.0185 (4) 0.0247 (11	`
i21A 0.6733 0.4011 -0.0556 0.030*)

34 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

87	H21B	0.6177	0.2659	-0.0562	0.030*	
88	C22	0.5701 (6)	0.3727 (5)	0.0515 (4)	0.0239 (11)	
89	H22	0.4774	0.3614	0.0218	0.029*	
90	C23	0.5525 (6)	0.2878 (5)	0.1097 (4)	0.0258 (11)	
91	H23A	0.5081	0.2061	0.0734	0.031*	
92	H23B	0.4925	0.3034	0.1535	0.031*	
93	C24	0.9571 (5)	0.9173 (4)	0.2673 (3)	0.0165 (9)	
94	H24A	0.9173	0.9198	0.3224	0.020*	
95	H24B	1.0520	0.9180	0.2784	0.020*	
96	C25	0.8666 (5)	0.8012 (4)	0.1950 (3)	0.0137 (8)	
97	C26	0.7161 (5)	0.8041 (4)	0.1805 (3)	0.0162 (9)	
98	H26A	0.6561	0.7319	0.1365	0.019*	
99	H26B	0.6767	0.8078	0.2357	0.019*	
100	C27	0.7222 (5)	0.9141 (5)	0.1484 (4)	0.0197 (10)	
101	H27	0.6267	0.9145	0.1378	0.024*	
102	C28	0.8118 (6)	1.0275 (5)	0.2199 (4)	0.0199 (10)	
103	H28A	0.7709	1.0309	0.2746	0.024*	
104	H28B	0.8144	1.0971	0.2007	0.024*	
105	C29	0.9611 (6)	1.0271 (5)	0.2360 (3)	0.0194 (10)	
106	H29	1.0186	1.0998	0.2819	0.023*	
107	C30	1.0254 (6)	1.0235 (5)	0.1502 (4)	0.0214 (10)	
108	H30A	1.1205	1.0244	0.1605	0.026*	
109	H30B	1.0295	1.0933	0.1308	0.026*	
110	C31	0.9359 (6)	0.9098 (5)	0.0776 (3)	0.0183 (9)	
111	H31	0.9773	0.9078	0.0224	0.022*	
112	C32	0.7869 (6)	0.9101 (5)	0.0618 (3)	0.0202 (10)	
113	H32A	0.7295	0.8389	0.0160	0.024*	
114	H32B	0.7894	0.9791	0.0417	0.024*	
115	C33	0.9306 (5)	0.7999 (5)	0.1081 (3)	0.0169 (9)	
116	H33A	1.0250	0.7987	0.1173	0.020*	
117	H33B	0.8/44	0.7283	0.0623	0.020*	
118	C34	0.4367 (8)	0.0249 (7)	0.24/4 (5)	0.03/1 (15)	
119	H34A	0.5380	0.0653	0.2580	0.045*	
120	H34B	0.4156	-0.0464	0.2679	0.045*	
121	C35	0.2340(8) 1 24999(12)	0.4180(0) 0.72720(12)	0.2400(4)	0.03/1(15)	
122	CII	1.34000 (12)	0.72730(12)	0.20741(6)	0.0209(2)	
123	CI2 CI2	0.37839(18) 0.2586(2)	-0.0100/(15)	0.13308(10) 0.20021(12)	0.0558(5)	
124	C15	0.5380(2) 0.1081(2)	0.1191(3) 0.38231(10)	0.30921(13) 0.20787(12)	0.0078(8) 0.0420(4)	0.00
125	CIS	0.1001(3) 0.2402(11)	0.36231(19) 0.3452(11)	0.29787(12) 0.2825(7)	0.0420(4)	0.90
126	C10 C17	0.3+0.5(11) 0.20566 (18)	0.3+32(11) 0.36354(16)	0.2033(7) 0.12408(10)	0.032(2) 0.0296(3)	0.20
127	N	1 0267 (4)	0.30337(10) 0.7418(4)	0.12790(10) 0.4360(3)	0.0290 (3)	0.70
120	P	0.88228(12)	0.67502 (11)	0.1300 (3)	0.0121(2)	
129	1	0.00220 (12)	0.07302 (11)	0.23010 (0)	0.0121 (2)	

130 Atomic displacement parameters (Å²)

131	_	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
32	Au1	0.00833 (9)	0.01778 (10)	0.01339 (9)	0.00242 (6)	-0.00293 (6)	0.00028 (6)
133	C1	0.0055 (17)	0.017 (2)	0.0116 (18)	-0.0011 (16)	-0.0004 (14)	-0.0003 (16)
134	C2	0.0094 (19)	0.019 (2)	0.0142 (19)	0.0019 (17)	-0.0044 (16)	-0.0004 (17)
135	C3	0.012 (2)	0.020 (2)	0.019 (2)	0.0042 (18)	0.0005 (17)	0.0025 (18)
136	C4	0.015 (2)	0.026 (3)	0.015 (2)	0.0084 (19)	0.0006 (17)	0.0023 (18)
137	C5	0.013 (2)	0.022 (2)	0.0127 (19)	0.0021 (18)	-0.0032 (16)	0.0013 (17)
138	C6	0.0104 (19)	0.011 (2)	0.016 (2)	0.0022 (16)	-0.0030 (16)	-0.0007 (16)

supplementary materials

139	C7	0.0104 (19)	0.014 (2)	0.017 (2)	0.0021 (16)	-0.0022 (16)	0.0007 (16)
140	C8	0.0078 (19)	0.019 (2)	0.017 (2)	0.0027 (17)	-0.0011 (16)	0.0030 (17)
141	C9	0.010 (2)	0.023 (2)	0.017 (2)	0.0008 (18)	-0.0028 (16)	0.0025 (18)
142	C10	0.015 (2)	0.017 (2)	0.015 (2)	0.0019 (18)	-0.0029 (17)	-0.0001 (17)
143	C11	0.012 (2)	0.017 (2)	0.016 (2)	0.0017 (17)	-0.0035 (16)	0.0014 (17)
144	C12	0.014 (2)	0.030 (3)	0.035 (3)	0.008 (2)	0.001 (2)	0.014 (2)
145	C13	0.019 (2)	0.019 (3)	0.027 (3)	-0.001 (2)	0.000 (2)	0.001 (2)
146	C14	0.0118 (19)	0.012 (2)	0.0152 (19)	0.0009 (16)	-0.0012 (16)	0.0016 (16)
147	C15	0.016 (2)	0.017 (2)	0.017 (2)	0.0004 (18)	0.0008 (17)	-0.0025 (18)
148	C16	0.012 (2)	0.020 (2)	0.018 (2)	0.0013 (18)	-0.0086 (17)	-0.0014 (18)
149	C17	0.017 (2)	0.018 (2)	0.016 (2)	0.0033 (19)	-0.0033 (18)	0.0007 (18)
150	C18	0.023 (3)	0.013 (2)	0.024 (2)	-0.0001 (19)	-0.004 (2)	0.0024 (19)
151	C19	0.019 (2)	0.017 (2)	0.026 (3)	0.0014 (19)	-0.006 (2)	-0.004 (2)
152	C20	0.023 (3)	0.014 (2)	0.019 (2)	-0.0001 (19)	0.0005 (19)	-0.0038 (18)
153	C21	0.027 (3)	0.018 (2)	0.018 (2)	-0.001 (2)	-0.009 (2)	-0.0007 (19)
154	C22	0.018 (2)	0.020 (2)	0.024 (2)	0.003 (2)	-0.013 (2)	-0.003 (2)
155	C23	0.016 (2)	0.020 (3)	0.030 (3)	-0.002 (2)	-0.005 (2)	0.001 (2)
156	C24	0.013 (2)	0.015 (2)	0.015 (2)	0.0002 (17)	-0.0056 (16)	0.0005 (16)
157	C25	0.0114 (19)	0.015 (2)	0.0099 (17)	0.0014 (16)	-0.0037 (15)	0.0009 (15)
158	C26	0.012 (2)	0.015 (2)	0.020 (2)	0.0048 (17)	-0.0036 (17)	0.0023 (17)
159	C27	0.012 (2)	0.023 (2)	0.023 (2)	0.0067 (19)	-0.0043 (18)	0.0029 (19)
160	C28	0.019 (2)	0.017 (2)	0.021 (2)	0.0078 (19)	-0.0005 (19)	-0.0005 (18)
161	C29	0.020 (2)	0.021 (2)	0.014 (2)	0.007 (2)	-0.0038 (18)	-0.0004 (17)
162	C30	0.017 (2)	0.017 (2)	0.024 (2)	-0.0001 (19)	-0.0040 (19)	0.0041 (19)
163	C31	0.020 (2)	0.017 (2)	0.014 (2)	0.0030 (19)	0.0006 (17)	0.0027 (17)
164	C32	0.019 (2)	0.021 (2)	0.016 (2)	0.0039 (19)	-0.0056 (18)	0.0024 (18)
165	C33	0.018 (2)	0.020 (2)	0.0114 (19)	0.0076 (18)	-0.0002 (16)	0.0011 (17)
166	C34	0.035 (3)	0.035 (3)	0.033 (3)	0.008 (3)	-0.008 (3)	0.003 (3)
167	C35	0.035 (3)	0.039 (4)	0.027 (3)	0.009 (3)	-0.009 (3)	-0.002 (3)
168	Cl1	0.0106 (5)	0.0310 (7)	0.0198 (5)	0.0073 (5)	-0.0007 (4)	0.0052 (5)
169	Cl2	0.0334 (8)	0.0402 (8)	0.0269 (7)	0.0192 (7)	-0.0008 (6)	-0.0004 (6)
170	C13	0.0350 (9)	0.1043 (19)	0.0369 (9)	0.0315 (11)	-0.0156 (8)	-0.0350 (11)
171	C15	0.0626 (13)	0.0465 (11)	0.0223 (7)	0.0231 (10)	0.0129 (8)	0.0129 (7)
172	Cl6	0.043 (5)	0.082 (8)	0.040 (5)	0.029 (5)	0.009 (4)	0.020 (5)
173	Cl7	0.0287 (8)	0.0355 (8)	0.0168 (6)	0.0052 (6)	0.0007 (5)	0.0025 (6)
174	Ν	0.0095 (17)	0.0145 (18)	0.0124 (16)	0.0014 (14)	-0.0036 (13)	0.0001 (14)
175	Р	0.0078 (5)	0.0132 (5)	0.0106 (5)	0.0009 (4)	-0.0028 (4)	-0.0002 (4)

176 Geometric parameters (Å, °)

177	Au1—P	2.2512 (12)	C18—C19	1.531 (8)
178	Au1—Cl1	2.3128 (12)	C18—H18	0.9800
179	C1—C6	1.405 (6)	C19—C20	1.526 (9)
180	C1—C2	1.411 (6)	С19—Н19А	0.9700
181	C1—P	1.838 (5)	C19—H19B	0.9700
182	C2—C3	1.387 (7)	C20—C21	1.534 (8)
183	C2—H2	0.9300	C20—H20	0.9800
184	C3—C4	1.389 (7)	C21—C22	1.521 (9)
185	С3—Н3	0.9300	C21—H21A	0.9700
186	C4—C5	1.387 (7)	C21—H21B	0.9700
187	C4—H4	0.9300	C22—C23	1.521 (9)
188	C5—C6	1.393 (7)	C22—H22	0.9800
189	С5—Н5	0.9300	С23—Н23А	0.9700
190	C6—N	1.444 (6)	С23—Н23В	0.9700

		1 464 (6)	G2 (G2)	1 535 (8)
191	C/—N	1.464 (6)	C24—C29	1.537 (8)
192	C/C8	1.528 (7)	C24—C25	1.555 (6)
193	C/—H/A	0.9700	C24—H24A	0.9700
194	С7—Н7В	0.9700	C24—H24B	0.9700
195	C8—C9	1.519 (7)	C25—C33	1.537 (7)
196	C8—C12	1.526 (8)	C25—C26	1.551 (7)
197	С8—Н8	0.9800	C25—P	1.872 (5)
198	C9—C10	1.522 (8)	C26—C27	1.541 (7)
199	С9—Н9А	0.9700	C26—H26A	0.9700
200	С9—Н9В	0.9700	C26—H26B	0.9700
201	C10—C13	1.528 (7)	C27—C28	1.529 (7)
202	C10—C11	1.528 (7)	C27—C32	1.535 (8)
203	C10—H10	0.9800	С27—Н27	0.9800
204	C11—N	1.468 (6)	C28—C29	1.530(7)
205	C11—H11A	0.9700	C28—H28A	0.9700
206	C11—H11B	0.9700	C28—H28B	0.9700
207	C12—H12A	0.9600	C29—C30	1.522 (8)
208	C12—H12B	0.9600	С29—Н29	0.9800
209	C12—H12C	0.9600	C30—C31	1.539(7)
210	C13—H13A	0.9600	С30—Н30А	0.9700
211	C13—H13B	0.9600	C30—H30B	0.9700
212	C13—H13C	0.9600	C31—C32	1.527 (8)
213	C14—C16	1.543 (7)	C31—C33	1.528 (7)
214	C14—C17	1.548 (7)	C31—H31	0.9800
215	C14—C15	1.556 (7)	С32—Н32А	0.9700
216	C14—P	1.887 (5)	С32—Н32В	0.9700
217	C15—C20	1.545 (7)	С33—Н33А	0.9700
218	C15—H15A	0.9700	С33—Н33В	0.9700
219	C15—H15B	0.9700	C34—Cl2	1.750(7)
220	C16—C22	1.540(7)	C34—Cl3	1.755 (8)
221	C16—H16A	0.9700	С34—Н34А	0.9700
222	C16—H16B	0.9700	C34—H34B	0.9700
223	C17—C18	1.534 (7)	C35—Cl6	1.669 (8)
224	С17—Н17А	0.9700	C35—C17	1.744 (7)
225	C17—H17B	0.9700	C35—Cl5	1.771 (8)
226	C18—C23	1.529 (8)		
227				
228	P—Au1—Cl1	175.65 (4)	C19—C20—H20	109.3
229	C6—C1—C2	117.9 (4)	C21—C20—H20	109.3
230	C6—C1—P	123.1 (3)	C15—C20—H20	109.3
231	C2—C1—P	119.0 (3)	C22—C21—C20	108.9 (4)
232	C3—C2—C1	121.9 (4)	C22—C21—H21A	109.9
233	C3—C2—H2	119.1	C20—C21—H21A	109.9
234	C1—C2—H2	119.1	C22—C21—H21B	109.9
235	C2—C3—C4	119.4 (5)	C20—C21—H21B	109.9
235	C2—C3—H3	120.3	$H_{21}A = C_{21} = H_{21}B$	108.3
230	C4—C3—H3	120.3	$C_{21} - C_{22} - C_{23}$	109.8 (5)
237	C5-C4-C3	119.6 (5)	$C_{21} - C_{22} - C_{16}$	109.5 (5)
220	C5-C4-H4	120.2	C_{23} C_{22} C_{16}	109.0(5)
239	C3—C4—H4	120.2	$C_{21} = C_{22} = H_{22}$	109.2
24U 271	C4—C5—C6	121.5 (4)	$C_{23} - C_{22} - H_{22}$	109.2
241 242	C4—C5—H5	119.3	C16-C22-H22	109.2
242	С6—С5—Н5	119.3	$C_{22} - C_{23} - C_{18}$	109.8 (5)
243 244	C5-C6-C1	119.7 (4)	C22—C23—H23A	109.7
/ -+ -+				

245	C5—C6—N	118.9 (4)	C18—C23—H23A	109.7
246	C1—C6—N	121.5 (4)	С22—С23—Н23В	109.7
247	N	112.3 (4)	C18—C23—H23B	109.7
248	N—C7—H7A	109.1	H23A—C23—H23B	108.2
249	С8—С7—Н7А	109.1	C29—C24—C25	109.9 (4)
250	N—C7—H7B	109.1	C29—C24—H24A	109.7
251	C8—C7—H7B	109.1	C25—C24—H24A	109.7
252	H7A—C7—H7B	107.9	C29—C24—H24B	109.7
253	C9—C8—C12	111.4 (4)	C25—C24—H24B	109.7
254	C9—C8—C7	109.4 (4)	H24A—C24—H24B	108.2
255	C12—C8—C7	109.6 (4)	C33—C25—C26	109.5 (4)
256	С9—С8—Н8	108.8	C33—C25—C24	108.7 (4)
257	С12—С8—Н8	108.8	C26—C25—C24	107.5 (4)
258	С7—С8—Н8	108.8	C33—C25—P	108.7 (3)
259	C8—C9—C10	111.9 (4)	C26—C25—P	116.2 (3)
260	С8—С9—Н9А	109.2	C24—C25—P	105.9 (3)
261	С10—С9—Н9А	109.2	C27—C26—C25	109.5 (4)
262	С8—С9—Н9В	109.2	C27—C26—H26A	109.8
263	С10—С9—Н9В	109.2	C25—C26—H26A	109.8
264	H9A—C9—H9B	107.9	C27—C26—H26B	109.8
265	C9—C10—C13	112.0 (4)	C25—C26—H26B	109.8
266	C9—C10—C11	109.1 (4)	H26A—C26—H26B	108.2
267	C13-C10-C11	110.3 (4)	C28—C27—C32	109.4 (4)
268	С9—С10—Н10	108.5	C28—C27—C26	109.4 (4)
269	C13-C10-H10	108.5	C32—C27—C26	110.2 (4)
270	C11—C10—H10	108.5	C28—C27—H27	109.3
271	N-C11-C10	111.4 (4)	С32—С27—Н27	109.3
272	N	109.3	С26—С27—Н27	109.3
273	C10-C11-H11A	109.3	C27—C28—C29	109.3 (4)
274	N-C11-H11B	109.3	C27—C28—H28A	109.8
275	C10-C11-H11B	109.3	C29—C28—H28A	109.8
276	H11A—C11—H11B	108.0	C27—C28—H28B	109.8
277	C8—C12—H12A	109.5	C29—C28—H28B	109.8
278	C8—C12—H12B	109.5	H28A—C28—H28B	108.3
279	H12A—C12—H12B	109.5	C30—C29—C28	109.6 (4)
280	C8—C12—H12C	109.5	C30—C29—C24	109.4 (4)
281	H12A—C12—H12C	109.5	C28—C29—C24	109.8 (4)
282	H12B-C12-H12C	109.5	С30—С29—Н29	109.3
283	C10-C13-H13A	109.5	С28—С29—Н29	109.3
284	C10-C13-H13B	109.5	С24—С29—Н29	109.3
285	H13A—C13—H13B	109.5	C29—C30—C31	109.8 (4)
286	C10-C13-H13C	109.5	С29—С30—Н30А	109.7
287	H13A—C13—H13C	109.5	С31—С30—Н30А	109.7
288	H13B-C13-H13C	109.5	С29—С30—Н30В	109.7
289	C16—C14—C17	109.1 (4)	C31—C30—H30B	109.7
290	C16—C14—C15	107.7 (4)	H30A—C30—H30B	108.2
291	C17—C14—C15	107.8 (4)	C32—C31—C33	109.3 (4)
292	C16—C14—P	116.9 (3)	C32—C31—C30	109.0 (4)
293	C17—C14—P	106.1 (3)	C33—C31—C30	109.6 (4)
294	C15—C14—P	108.9 (3)	C32—C31—H31	109.7
295	C20-C15-C14	110.5 (4)	C33—C31—H31	109.7
296	C20—C15—H15A	109.5	C30—C31—H31	109.7
297	C14—C15—H15A	109.5	C31—C32—C27	109.7 (4)
298	C20—C15—H15B	109.5	C31—C32—H32A	109.7

299	C14—C15—H15B	109.5	С27—С32—Н32А	109.7
300	H15A—C15—H15B	108.1	C31—C32—H32B	109.7
301	C22—C16—C14	110.2 (4)	C27—C32—H32B	109.7
302	C22—C16—H16A	109.6	H32A—C32—H32B	108.2
302	C14—C16—H16A	109.6	C31—C33—C25	110.7 (4)
204	C22—C16—H16B	109.6	C31—C33—H33A	109.5
205	C_{14} C_{16} H_{16B}	109.6	C25_C33_H33A	109.5
305	H_{16A} $-C_{16}$ H_{16B}	109.0	C31_C33_H33B	109.5
207	C_{18} C_{17} C_{14}	110.0 (4)	C25_C33_H33B	109.5
200	C_{18} C_{17} H_{17A}	100.7	H33A_C33_H33B	109.5
308	$C_{10} = C_{17} = H_{17A}$	109.7	$C_{12}^{12} C_{24}^{12} C_{12}^{12}$	100.1 112.8(A)
309	$C_1 + C_1 / - H_1 / R$	109.7	C12 - C34 - C13	112.8 (4)
310	C_{10} C_{17} H_{17} H_{17} H_{17}	109.7	C12 - C34 - H24A	109.0
311	$C14 - C17 - \Pi17D$	109.7	CD = C34 = D34A	109.0
312	HI/A - CI/-HI/B	108.2	C12—C34—H34B	109.0
313	C_{23} C_{18} C_{17}	109.3 (5)		109.0
314	C23—C18—C17	109.2 (5)	H34A—C34—H34B	107.8
315	C19—C18—C17	110.7 (4)	Cl6—C35—Cl7	114.1 (5)
316	C23—C18—H18	109.2	Cl6—C35—Cl5	96.4 (5)
317	C19—C18—H18	109.2	Cl7—C35—Cl5	112.0 (4)
318	C17—C18—H18	109.2	C6—N—C7	111.8 (4)
319	C20-C19-C18	108.9 (5)	C6—N—C11	111.2 (4)
320	C20—C19—H19A	109.9	C7—N—C11	111.1 (4)
321	C18—C19—H19A	109.9	C1—P—C25	105.6 (2)
322	C20—C19—H19B	109.9	C1—P—C14	106.2 (2)
323	C18—C19—H19B	109.9	C25—P—C14	114.3 (2)
324	H19A—C19—H19B	108.3	C1—P—Au1	114.29 (15)
325	C19—C20—C21	110.4 (5)	C25—P—Au1	107.81 (16)
326	C19—C20—C15	108.9 (4)	C14—P—Au1	108.69 (16)
327	C21—C20—C15	109.6 (5)		
328				
329	C6—C1—C2—C3	-2.7 (7)	C32—C27—C28—C29	-60.0 (6)
330	P-C1-C2-C3	175.6 (4)	C26—C27—C28—C29	60.7 (6)
331	C1—C2—C3—C4	1.3 (8)	C27—C28—C29—C30	60.2 (6)
332	C2—C3—C4—C5	1.3 (8)	C27—C28—C29—C24	-60.0 (6)
333	C3—C4—C5—C6	-2.6 (8)	C25—C24—C29—C30	-60.0(5)
334	C4—C5—C6—C1	1.2 (8)	C25—C24—C29—C28	60.3 (5)
335	C4—C5—C6—N	-178.9(5)	C28—C29—C30—C31	-60.2 (6)
336	C2—C1—C6—C5	1.4 (7)	C24—C29—C30—C31	60.3 (5)
337	P-C1-C6-C5	-176.9 (4)	C29—C30—C31—C32	59.7 (6)
338	C2—C1—C6—N	-178.4(4)	C29—C30—C31—C33	-59.8 (6)
339	P-C1-C6-N	3.3 (7)	C33—C31—C32—C27	60.2 (5)
340	N-C7-C8-C9	55.0 (5)	C30-C31-C32-C27	-59.6(6)
2.41	N - C7 - C8 - C12	177 4 (4)	C_{28} C_{27} C_{32} C_{31}	60.2 (6)
242	$C_{12} - C_{8} - C_{9} - C_{10}$	-1753(4)	$C_{26} = C_{27} = C_{32} = C_{31}$	-60.0(5)
242	C7 - C8 - C9 - C10	-53 9 (6)	C_{32} C_{31} C_{33} C_{25}	-60.0(5)
343	C_{8}^{-} C_{9}^{0} C_{10}^{-} C_{13}^{13}	177.5(4)	$C_{32} = C_{31} = C_{33} = C_{25}$	59.3 (5)
344	C_{8}^{-} C_{9}^{-} C_{10}^{-} C_{11}^{-}	55 1 (5)	$C_{26}^{26} - C_{25}^{25} - C_{33}^{31} - C_{31}^{31}$	59.5 (5)
345	$C_{0} = C_{10} = C_{11} = C_{11}$	-571(5)	$C_{20} = C_{20} = C_{30} = C_{31}$	-585(5)
346	$C_{12} = C_{10} = C_{11} = N$	37.1(3) 170 5 (4)	$D_{24} = C_{25} = C_{35} = C_{31}$	-1724(2)
34/	$C_{15} = C_{10} = C_{11} = N$	-58.3 (6)	1 - 0.23 - 0.33 - 0.31	1/3.4 (3) 56 2 (6)
348	$C_{10} = C_{14} = C_{13} = C_{20}$	50.5 (0) 50.2 (5)	$C_{1} = C_{0} = N = C_{1}$	-122.0(5)
349	$C_{17} - C_{14} - C_{15} - C_{20}$	37.3(3) 1740(4)	$C_1 \longrightarrow C_0 \longrightarrow C_1$	-123.9(3)
350	$r = -C_{14} = -C_{15} = -C_{20}$	1 /4.U (4)	$C_{1} = C_{0} = N = C_{11}$	-08.3 (0)
351	C1/-C14-C16-C22	-57.5 (6)	$C_1 - C_0 - N - C_{11}$	111.5 (5)
	CIS_CI4_CI6_C77	79 5 (6)	I = X - I = (-1) - N - I = (-1) - (1//1(4)

353	P-C14-C16-C22	-177.8 (4)	C8—C7—N—C11	-58.1 (5)
354	C16—C14—C17—C18	58.6 (5)	C10-C11-N-C6	-175.8 (4)
355	C15—C14—C17—C18	-58.1 (5)	C10-C11-N-C7	59.1 (5)
356	P-C14-C17-C18	-174.6 (4)	C6-C1-P-C25	-113.2 (4)
357	C14-C17-C18-C23	-60.4 (6)	C2—C1—P—C25	68.5 (4)
358	C14—C17—C18—C19	60.0 (6)	C6-C1-P-C14	125.0 (4)
359	C23—C18—C19—C20	59.6 (5)	C2-C1-P-C14	-53.3 (5)
360	C17—C18—C19—C20	-60.7 (6)	C6—C1—P—Au1	5.1 (5)
361	C18—C19—C20—C21	-59.9 (5)	C2—C1—P—Au1	-173.1 (3)
362	C18—C19—C20—C15	60.5 (6)	C33—C25—P—C1	-178.7 (3)
363	C14-C15-C20-C19	-61.3 (6)	C26—C25—P—C1	-54.6 (4)
364	C14-C15-C20-C21	59.6 (6)	C24—C25—P—C1	64.6 (4)
365	C19—C20—C21—C22	59.7 (6)	C33—C25—P—C14	-62.3 (4)
366	C15—C20—C21—C22	-60.3 (6)	C26—C25—P—C14	61.8 (4)
367	C20-C21-C22-C23	-59.5 (6)	C24—C25—P—C14	-178.9 (3)
368	C20-C21-C22-C16	61.3 (6)	C33—C25—P—Au1	58.7 (3)
369	C14—C16—C22—C21	-62.0 (6)	C26—C25—P—Au1	-177.2 (3)
370	C14—C16—C22—C23	58.7 (6)	C24—C25—P—Au1	-58.0 (3)
371	C21—C22—C23—C18	60.5 (6)	C16—C14—P—C1	77.9 (4)
372	C16—C22—C23—C18	-60.1 (6)	C17—C14—P—C1	-44.0 (4)
373	C19—C18—C23—C22	-60.3 (6)	C15—C14—P—C1	-159.8 (3)
374	C17—C18—C23—C22	60.9 (6)	C16—C14—P—C25	-38.2 (4)
375	C29—C24—C25—C33	58.7 (5)	C17—C14—P—C25	-160.1 (3)
376	C29—C24—C25—C26	-59.9 (5)	C15—C14—P—C25	84.1 (4)
377	C29—C24—C25—P	175.3 (3)	C16—C14—P—Au1	-158.7 (3)
378	C33—C25—C26—C27	-57.4 (5)	C17—C14—P—Au1	79.5 (3)
379	C24—C25—C26—C27	60.6 (5)	C15—C14—P—Au1	-36.4 (4)
380	P-C25-C26-C27	179.0 (3)	Cl1—Au1—P—C1	-168.9 (6)
381	C25—C26—C27—C28	-61.9 (5)	Cl1—Au1—P—C25	-51.8 (6)
382	C25—C26—C27—C32	58.4 (5)	Cl1—Au1—P—C14	72.6 (6)

Titlejkg-IV-80-P31Solventcdcl3Spectrometer Frequency161.90

valieraliteinellennlaktikerkontachartatikentyteitekedel	ørnslannantanhunslavøv	nin wanter waard an an ar	un ferhansun für sternen som som ster för som ster första som	hannan rumada nahraradh	kongescherkendersterkelen voorserstelekonstanten	natur Murandur annandur	Nudah (wiin) mini pikon panana kana kana kana kana kana kana k	unit in the second of the s	Wyddydrofollwynylniaegodd yr ywrynolau	pynipuarthanna lainna tainaitheini turai	in strategicki strategicki strategicki strategicki strategicki strategicki strategicki strategicki strategicki s
60	50	40	30	20	10 f1 (ppm)	0	-10	-20	-30	-40	-50

Titlejkg-IV-81A-LAuCI-HSolventCDC3Spectrometer Frequency499.86

Titlejkg-IV-81-P31Solventcdcl3Spectrometer Frequency161.90

120	110	100	90	80	70	60	50	40	30	20	10	0 f1 (ppn	 -10 1)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

Titlejkg-V-64B-ligand-HSolventCDC3Spectrometer Frequency499.86

Titlejkg-V-64B-ligand-P31Solventcdcl3Spectrometer Frequency161.90

՟ՠՠՠՠՠ֎ՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ	#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

------ - - - ------Т Т Т · T - - -Т Т T Т 0 f1 (ppm) 120 110 100 90 80 70 60 50 40 30 20 10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120

Title	jkg-V-5A-LAuCI-C
Solvent	CDCI3
Spectrometer Frequency	125.70

hi huku ha	h (h h h h h h h h h h h h h h h h h h	limmini mini mini	hilingi ang	MANANAN MANANANANANANANANANANANANANANANA	VITAN MANANA	ni Mitaya Mitaya Af	uluuluuluu	ninninnin in	And Advision Ref	n Universition of	VQ/INALYO WWWW	ik in hindra	W(DYW YWWW	Wellin Turkey Ing		NAN WANKAN	diprindi Urry Andri	pini hayiniyi bi	inder Milling	Manana	In MANANA MANA	(NATUR) (NATUR)	Wananya (arang)
220	210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 ppm)	90	80	70	60	50	40	30	20	10	0	-10

Titlejkg-V-5A-P31-LAuClSolventcdcl3Spectrometer Frequency161.90

																		1						
MANANATINA NA	at Annual Market Connection	haddi wyanya na ha	a ta mata ang ang ang ang ang ang ang ang ang an	halvihahvihaitvihal	hundan an a	hini in an in Arthree an Arthree and Arthree a	AU VIDAMMONINUU	nninn an terretin	ayan ya ka	inilikakenikahen	antikovati oli takon tipet (a	h www.en	n Maran In Internation (n	novana na serie de la contra contr Contra contra c	WIN ING AND AND AND AND AND AND AND AND AND AND	lanin an inin kennari	an a	u nik (Unitani)	in water	(IVI/M/VI/VI/MINA)/ANA	ANNAN UUTAAN	niki (PV) improvintativa	wywww.	MANNATIAN MANA
120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

Titlejkg-N-138B-Ligand-P31Solventcdcl3Spectrometer Frequency161.90

120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120
											f	1 (ppm	ı)											

Title Solvent CDC13 Spectrometer Frequency 125.70

----53.69

Titlejkg-IV-140B-LAuCI-P31Solventcdcl3Spectrometer Frequency161.90

120

110

100

80

90

70

50

60

30

40

20

10

ten hanna managa na ang mang mang mang mang kang mang mang kang mang mang kang mang mang mang mang mang mang ma Ing nang mang mang mang mang mang mang ma	

0 -10

-20

-30

-50

-60

-40

-70

-80 -90 -100 -110 -120

Titlejkg-V-21B-Ligand-HSolventCDC3Spectrometer Frequency499.86

Titlejkg-V-21b-P31Solventcdcl3Spectrometer Frequency161.90

120

ΤT

110

100

90

80

70

60

Ν. PAd₂

ՠֈֈ֎ֈ֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎	

1

Т

50

Т

40

· T

30

- - -

20

Т

Т

-20

-30

-40

-50

-60

-70

-80

- - - - -

T

Т

-90 -100 -110 -120

Titlejkg-V-25-1-LAuSolventCDC3Spectrometer Frequency499.86

jkg-V-25-1-LAuQ-C13 Title Solvent CDC13 Spectrometer Frequency 125.70

220

Titlejkg-V-25-1-LAuCI-P31Solventcdcl3Spectrometer Frequency161.90

120	110	100	90	80	70	60	50	40	30	20	10 f	0 1 (ppm	-10 1)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

Titlejkg-IV-113-Ligand-HSolventCDC3Spectrometer Frequency499.86

Titlejkg-IV-113-Ligand-CSolventCDC3Spectrometer Frequency125.70

Titlejkg-IV-113b-P31Solventcdcl3Spectrometer Frequency161.90

ningen seinter für beneligter seinter ster i den tei den keine in den seine er ster ster ster keinter sein ster Ningen seinter für beneligter ster in den tei den keine ster ster ster ster ster keinter ster ster ster ster st	
and the advantage of the second s	
120 110 100 90 80 70 60 50 40 30 2	0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120

Title	jkg-IV-114b-P31
Solvent	cdcl3
Spectrometer Frequency	161.90

nnuthohmada	MMUMMM	un di la di la La di la di	i i i i i i i i i i i i i i i i i i i	n munin hinn	an dan dan dan dan dan dan dan dan dan d	aliwani kata kata kata kata kata kata kata kat	n white white the second second	i in the second	numininininini Turminininini	MMMMMM	M him unomiwm	naudal na Milin (namata V	an a	Millio Marya (Millionnia)	und inin inini	an a	u n hinn hinnen	iliyyacy ili yaddiwa	hailitettetettettettettettettettettettettett	an a	vili, "Ynivertij vin	nikan ing k alang kanalan kanal Kanalan kanalan k	www.weiling	upper with the second secon
120	110	100	90	80	70	60	50	40	30	20	10 1	0 f1 (ppm	-10)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

Title Solvent CDCI3 Spectrometer Frequency 499.86

Т

9.5

9.0

Titlejkg-V-84B-P31Solventcdcl3Spectrometer Frequency161.90

t a al ta				h		b	1										talanık tibri		1.1.1		1 ml			
4944944444	n na han na h	, MARINA MARINA	(Wayi)(Wi)	i Manina Manina Manina	WWWWWWW	ANNA ALIMANA	WINN/WINN/	MMMMM	HILLAW HANN	w. Wind	Vol ialian (WUNNUNNU	VALIMAN AN A	(MANALAN ANALAN	HANNA ANA ANA ANA ANA ANA ANA ANA ANA AN	lwiri ni din ka	WARDIN WANT	(MANAN) (MANAN)	NUMUNIN NAMUNIN	NY WWWWW	ha nna n an	WWWWWWW	ullin inininini	(NAMANA)
																								
120	110	100	90	80	70	60	50	40	30	20	10	0 f1 (ppr	-10 n)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

Titlejkg-IV-85-P31Solventcdcl3Spectrometer Frequency161.90

120	110	100	90	80	70	60	50	40	30	20	10	0 f1 (ppm	-10 1)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

Titlejkg-IV-108-ligand-CSolventCDC3Spectrometer Frequency125.70

Titlejkg-IV-108B-ligand-P31Solventcdcl3Spectrometer Frequency161.90

, Multing (Chapter	iliniideyh/mir	A.MATRANA ALANA	AMARINA IN ANALAMANA (Naga Niga Naga Naga Naga Naga Naga Naga	i Murandy Manjahan Ma	w u/w w///w/w/w/	WWWWW	WINNIYAYININ MANA	WWWWWWWWWWWW	n ili kalini kalini	MMMMM P	liyw ith y hyddyn	iyiyyin ii yyiniui	in hind the second s	uti/alipuali/ini)	ninina haina hainin h	hind (1991)	HUMANIA ()), ANA	YWWWWWWW	niw pia iwmw	ANNA ANNA ANNA ANNA ANNA ANNA ANNA ANN	Window Window Window Window Window	niy/ni/i/i/i/i
120	110	100	90 80	0 70	60	50	40	30	20	10	0 f1 (ppr	-10 n)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

Titlejkg-N-110A-LAuCI-P31Solventcdcl3Spectrometer Frequency161.90

Titlejkg-V-54-ligand-HSolventCDC3Spectrometer Frequency499.86

Titlejkg-V-54-ligand-CSolventCDC3Spectrometer Frequency125.70

Titlejkg-V-54-ligand-P31Solventcdcl3Spectrometer Frequency161.90

120	110	100	90	80	70	60	50	40	30	20	10 f	0 1 (ppm	-10 1)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

Titlejkg-V-54B-LAuCl-CSolventCDC3Spectrometer Frequency125.70

8.0

Titlejkg-V-66A-Ligand-P31Solventcdcl3Spectrometer Frequency161.90

\neg																								
120	110	100	90	80	70	60	50	40	30	20	10 f	0 f1 (ppm	-10 1)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

jkg-V-67-LAuQ-H Title Solvent CDCI3 Spectrometer Frequency 499.86

Titlejkg-V-67V-P31Solventcdcl3Spectrometer Frequency161.90

59.64

-1																								
120	110	100	90	80	70	60	50	40	30	20	10 f	0 1 (ppn	-10 n)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120

Titlezhaoyl-1-856SolventCDC3Spectrometer Frequency499.86

Title Solve Spec	ent trometer	Frequenc	zhaoyl- CDQ3 xy 125.70	-1-86-C	— 165.86		72 221	129.86	C+'07T -					68.38			38.93	31.86 29.52 29.41	29.15 29.15		
											o o	_C ₁₀ H	21								
1/11/11/11/11/11/11/11/11/11/11/11/11/1	 210	, , , , , , , , , , , , , , , , , , ,	WiriWijivywili 		//////////////////////////////////////	//////////////////////////////////////	 	WWWWWWWWWWWWWW	,	//////////////////////////////////////	aran da wan	 /////////////////////////////////////	antuwinitu 	дицицили р 	/////////////////////////////////////	, ////////////////////////////////////	WINNING O		20	 ۵	ίννψημημαμίψη -10

f1 (ppm)

Titlezhaoyl-1-88-1SolventCDCl3Spectrometer Frequency499.86

	204.16	166.69	140.64 132.36 131.69 130.81 125.75	68.18	38.92 31.86 20 52
Title	zhaoyl-1-88-C				1 5
Solvent	cdcl3				
Spectrometer	Frequency 150.79				

29.41 29.33 29.27 29.15 29.15

Title zhaoyl-1-92

f1 (ppm)

Titlezhaoyl-1-126-1-C13SolventCDCl3Number of Scans124Relaxation Delay1.0000Acquisition Date2013-03-31T15:37:03Spectrometer Frequency125.70

Titlezhaoyl-1-90SolventCDC3Spectrometer Frequency499.86

Titlezhaoyl-1-82SolventCDC3Spectrometer Frequency499.86

Titlejkg-IV-152B-P-HSolventcdcl3Spectrometer Frequency599.64

Title 25 zhaoyl-1-93-C 25 Solvent CDCl3 C	 77.26 C 77.00 C 76.75 C 68.88 		
$CI \longrightarrow C_{10}H_{21}$			
		4/wi.ay.nu//non-dalvawi.qu.l.h.f.burun.ll.hum.nu/nqu.luy/aqu.wi.qu.luy/1/44	//#////#/#############################

Titlezhaoyl-1-99SolventCDC3Spectrometer Frequency499.86

ł.

njininan limelainakan	anila), waka a	al or the call to the second	icial (\ally universes)	unindialityisterin	Lindharyoldy, Jahagup	un sa an	rðyfyytin (Jjúrði Alfreigar)	nindin ing mangang mang	אונוגן אוויקאן גע	n several hypothysis several hypothysis	elincing/sectorist	an jadi da yarata ang	ewdatnuw(Wjavinkaya	en Manageria	Autorial Analysis	lada Vela Vela International	ciya waya ku ya ku y	u), and outration	Wayawikarafi	(bian-to-thetertaura)	Louge Linds	n.www.qra.mi.di.wi.in	nt wei wielen Allen aucher
																						·	
220	210	200	190	180	170	160	150	140	130	120	110 f1 (100 ppm)	90	80	70	60	50	40	30	20	10	0	-10

Titlezhaoyl-1-95Solventcdcl3Spectrometer Frequency599.64

-67.67

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
f1 (ppm)																							

Titlezhaoyl-1-94-1SolventCDCl3Spectrometer Frequency499.86

---67.90

Titlezhaoyl-1-198-2SolventCDC3Spectrometer Frequency499.86

Titlezhaoyl-1-101SolventCDC3Spectrometer Frequency499.86

-68.39

Title Solvent Spectrome	ter Frequenc	zhaoyl-1-103-3- CDQ3 ;y 125.70	C — 165.92		∠ 133.27 ∠ 129.85 ∠ 129.35	7 128.39			66.67	58.51	7.31.82	 31.56 24.43 22.42 			
							O C		e 5 ₅ H ₁₁						
Vikudationalionaujonaj	n (In film Wile way and	nan iyun diya vatan da	ntarian (nije) ji ki	nyanamanyananya	nony, bir lado vil h	NAMINA AND AND AND AND AND AND AND AND AND A	NUTARIAN MANYARAMANANANANA	HAMANOPAN O'N IN THE MAN ON THE MAN ON THE MAN OF MAN O	YowanifilianNaturity	anan kanan kana Kanan kanan kana	N) MORAN MANA MANA MANA MANA MANA MANA MANA M	Nietolius (na 1919) Nietolius (na 1919)	un han han han han han han han han han ha	llww/ikidwamiało	ynlynllwydaunodyn
220 21	0 200	190 180	170	160 150 1 ⁻	40 130	0 120	110 100 f1 (ppm)	90 80	70	60 50	40	30 2	20 10	0 0	-10

Titlejkg-V-35-HSolventCDCl3Spectrometer Frequency499.86

Titlejkg-V-33A-P-HSolventCDQ3Spectrometer Frequency499.86

Titlejkg-V-26C-HSolventcdcl3Spectrometer Frequency599.64

Titlejkg-V-36-SM-HSolventcdcl3Spectrometer Frequency599.64

Title Solve Spec	ent ctrometer		jkg-V-3 cdcl3 cy 150.79	36-SM-C 9				133.46	129.32 128.60 127.23						√76.79 cdcl3				29.52 29.27 29.27 29.48	22.65			
													C ₁₀ H ₂	0	~°_]	Ph							
liyunuyuny	dalariyi dalar	MMMMMM	hani ng mananan k	4	(nya) wakapad	Helinity (Marin)	the all the second s	W UNINAN	I GINA I I I I I I I I I I I I I I I I I I	vinin vinin	N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/	htyr na drind da	Mahiliyinin	hakile faith an		in hundrig an	hayuyaawanaya	wakinten	in particular in the second	MANAN MAN	hni Yawki (i h	in an	IN NY YANY NY YANY
220	210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 ppm)	90	80	70	60	50	40	30	20	10	0	-10

Titlejkg-V-30-P-HSolventcdcl3Spectrometer Frequency599.64

Titlejkg-V-36C-HSolventCDC3Spectrometer Frequency499.86

