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Motif 1: Positive Cooperative Binding 

 

 

 
 

In this positive cooperative binding model (panel A), signaling molecule L binds to a target receptor molecule R 

which has two identical binding sites for L. LR represents R with one binding site occupied by L and L2R represents 

R with both binding sites occupied by L. The overall activity of R is proportionately correlated to its fractional 

occupancy by L. The binding processes can be described mathematically as follows:  

 

Equations:  d[LR]/dt = 2∙k1∙[L]∙[R] - k2∙[LR] - k3∙[L]∙[LR] + 2∙k4∙[L2R]  (1.1) 

d[L2R]/dt = k3∙[L]∙[LR] - 2∙k4∙[L2R]    (1.2) 

[R] = Rtot - [LR] - [L2R]     (1.3) 

Fractional occupancy = ([LR] + 2∙[L2R])/(2∙Rtot)  (1.4) 

 

Parameters: k1=0.01; k2=0.1; k3=0.01; k4=0.01; Rtot=100 (total amount of receptor molecules). 

 

Positive cooperative binding occurs because the binding affinity of the second binding (k3/k4=1) is 10-fold 

higher than the first binding (k1/k2=0.1). The resulting steady-state fractional occupancy of R vs. L is a slightly 

sigmoid curve with Hill coefficient=1.48 (panel B: blue curve). Panel C shows the stimulus-response curve on a log-

log scale. The Michaelis-Menten function serves as a reference response (gray curve). 
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Motif 2: Homo-dimerization 

 

 

 
 

In this homo-dimerization model (panel A), ligand L binds to receptor R forming LR. Two LRs then come together to 

form a homo-dimer LRRL. The binding processes can be described mathematically as follows: 

 

Equations: d[LR]/dt = k1∙[L]∙[R] - k2∙[LR] - 2∙k3∙[LR]∙[LR] + 2∙k4∙[LRRL] (2.1) 

d[LRRL]/dt = k3∙[LR]∙[LR] - k4∙[LRRL]    (2.2) 

[R] = Rtot - [LR] - 2∙[LRRL]     (2.3) 

 

Parameters: k1=0.01; k2=0.1; k3=0.001; k4=0.1; Rtot=1000 (total amount of receptor molecules). 

 

According to the law of mass action, the association rate of two LRs to form an LRRL is proportional to the 

square of the concentration of LR. This step is the place where ultrasensitivity arises in this motif. The resulting 

steady-state LRRL vs. L response is a slightly sigmoid curve with Hill coefficient= 1.31 (panel B: blue curve). When 

plotted on a log-log scale, the response coefficient (measured by the slope) is as high as 2 for low concentrations of 

L (panel C). The Michaelis-Menten function serves as a reference response (gray curve). 
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Motif 3: Multistep Signaling 

 

 

 
 

In this multistep signaling example (panel A), kinase S regulates target protein R in two ways. S (i) directly activates 

R by phosphorylating R to Rp, and (ii) indirectly inhibits dephosphorylation of Rp to R by inhibiting the phosphatase 

Z. The phosphorylation and counterbalancing dephosphorylation processes can be described mathematically as 

follows: 

 

Equations:  d[Rp]/dt = k1∙[S]∙[R] - k2∙[Z]∙[Rp]  (3.1) 

[R] = Rtot - [Rp]    (3.2) 

[Z] = Zmax/(1+[S]/K)   (3.3) 

 

Parameters: k1=0.01; k2=0.01; K=1; Rtot=100 (total amount of dephosphorylated R and phosphorylated Rp); 

Zmax=100 (maximum amount of active phosphatase Z). 

 

By simultaneously activating phosphorylation directly and inhibiting dephosphorylation indirectly through 

inhibiting Z, S regulates Rp through coherently controlling the two reversible modification steps. The resulting 

steady-state Rp vs. S response is a sigmoid curve with Hill coefficient=1.88 (panel B: blue curve). Panel C shows the 

stimulus-response curve on a log-log scale. The Michaelis-Menten function serves as a reference response (gray 

curve).  
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Motif 4: Molecular Titration 

 

 

 
 

In this molecular titration example (panel A), ligand L reversibly binds either to cognate receptor R forming an 

active complex LR or to decoy receptor D forming an inactive complex LD. Thus D competes with R for L by titrating 

L away from R. The stimulus-response evaluated here is the steady-state level of LR vs. total L (free L and those in 

LR and LD complex). The competitive binding processes can be described mathematically as follows: 

 

Equations: d[LR]/dt = k1∙[L]∙[R] - k2∙[LR]   (4.1) 

d[LD]/dt = k3∙[L]∙[D] + k4∙[LD]   (4.2) 

[L] = Ltot - [LR] - [LD]    (4.3) 

[R] = Rtot - [LR]     (4.4) 

[D] = Dtot - [LD]     (4.5) 

 

Parameters: k1=0.01; k2=0.01; k3=1; k4=0.01; Rtot=1 (total amount of receptor including R and LR); Dtot=10 (total 

amount of decoy receptor including D and LD).  

 

The decoy receptor D exists in large excess compared with cognate receptor R and has a higher affinity for 

ligand L than R does. Thus when Ltot<Dtot, most of L molecules in the system will be sequestered by D to form 

inactive complex LD (panel B: cyan curve), with few free L molecules (panel B: green curve) left available for 

binding to R. As more L is added to the system and Ltot approaches a level comparable to Dtot, most D molecules 

would be used up by L by forming LD, with few free D molecules left (panel B: red curve). At that point any 

additional L molecules further added into the system will be almost all available for binding to R rather than being 

titrated away by D. This kinetic shift at the point where D is saturated by L would cause an abrupt increase in the 

level of free L and consequently LR, resulting in an ultrasensitive response for steady-state LR vs. Ltot (panel B: blue 

curve, Hill coefficient=5.89). The higher the binding affinity between L and the decoy receptor D, the higher the 

degree of ultrasensitivity. This effect is illustrated by varying k3, the association rate constant between L and D in 

the two bottom panels (panel C: linear scale, panel D: log-log scale). 
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Motif 5: Zero-order Covalent Modification Cycle 

 

 
 

Covalent modification cycle through protein phosphorylation and dephosphorylation is used in this model to 

illustrate the effect of zero-order ultrasensitivity (panel A). The processes of protein substrate S being 

phosphorylated by kinase KN into Sp and Sp being dephosphorylated by phosphatase PPT are described 

mathematically as follows:  

 

Equations: d[Sp]/dt = k1∙[KN]∙[S]/(Km1+[S]) - k2∙[PPT]∙[Sp]/(Km2+[Sp]) (5.1) 

[S] = Stot - [Sp]      (5.2) 

 

Parameters: k1=0.1; k2=0.1; Km1=1; Km2=1; [PPT]=1; Stot=10 (total amount of S and Sp). 

 

The concentration of PPT is constant, and that of KN is varied to change the phosphorylation rate. Panel B 

shows the basis of ultrasensitivity in this motif, where the dephosphorylation rate (red curve) and phosphorylation 

rate (blue curve) as functions of Sp (or S) concentration are plotted. Each blue curve is obtained at a particular KN 

concentration (which is indicated by the number next to the blue curve). Intersection points (solid black dots) 

between blue and red curves indicate equal phosphorylation and dephosphorylation rates, i.e., the steady state. 

Because Stot>>Km1=Km2, KN and PPT work at nearly saturated conditions for most concentrations of S and Sp, 

respectively, and the blue and red curves thus appear quite flat for the most part. As a result, when [KN] = [PPT] = 

1, the blue and red curves intersect very tightly, i.e., near their saturation zones. Because of this tight intersection, 

even a small increase or decrease in KN concentration, which either pushes up or down the blue curve, would 

cause a large swing of the intersection point horizontally. This behavior results in an abrupt change in the steady-

state Sp or S concentrations with respect to KN and thus an ultrasensitive response (panel C: green curve, Hill 

coefficient=3.8). The degree of saturation of the two converting enzymes KN and PPT by their substrates dictates 

the degree of ultrasensitivity. At Km1=Km2=0.2, where KN and PPT are further saturated, the response becomes 

much more ultrasensitive (panel C: blue curve, Hill coefficient=13.4). At Km1=Km2=5, KN and PPT are much less 

saturated, the response becomes much less ultrasensitive (panel C: red curve, Hill coefficient=1.68). Panel D shows 

the stimulus-response curves on a log-log scale. 
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Motif 6: Positive Feedback 

 

 

 
 

In this positive feedback example (panel A), a signaling protein X partners with a phosphorylated protein Yp to form 

an active kinase complex XYp. XYp can phosphorylate other free Y molecules, thus completing a positive auto-

catalysis loop. Z is a phosphatase that dephosphorylates Yp. These processes can be mathematically described as 

follows: 

 

Equations: d[XYp]/dt = k1∙[X]∙[Yp] - k2∙[XYp]     (6.1) 

d[Yp]/dt = - k1∙[X]∙[Yp] + k2∙[XYp] + k3∙[XYp]∙[Y] + k5∙[Y] – k4∙[Z]∙[Yp] (6.2) 

[Y] = Ytot – Yp - XYp      (6.3) 

 

Parameters: k1=0.1; k2=0.1; k3=0.1; k4=0.1; k5=0.01 (basal rate constant of phosophorylation independent of XYp); 

Ytot=100 (total amount of Y, Yp, and XYp); [Z]=10.  

 

Ultrasensitivity occurs because as X increases, the amount of Yp which partners with X also increases due 

to increased formation of XYp which autophosphorylates Y. This self-reinforcing cycle continues until a new steady 

state is reached. The steady-state XYp vs. X response appears as a threshold response (panel B: blue curve, Hill 

coefficient=1.14). However, on a log-log scale, the maximal local response coefficient, as measured by the slope, is 

close to 5 (panel C: blue curve), indicating strong ultrasensitivity. The Michaelis-Menten function serves as a 

reference response (gray curve). 


