Supplemental material

Wheeler Color 2000 Α В cdc24 HACO Ň. vector N. GST GST-PAK1 GTP-Cdc42 GTP-Cdc42 20 kD -20 kD -Total Cdc42 Total Cdc42 20 kD -20 kD -WB: anti-HA Tubulin 50 kD -С D Wild-type + GAL-HA:: 11Th GOD 0611 1°C GTP-Cdc42 20 kD -GTP-Cdc42 20 kD -Total Cdc42 20 kD -Total Cdc42 20 kD -Tubulin 50 kD -WB: anti-HA

Atkins et al., http://www.jcb.org/cgi/content/full/jcb.201301090/DC1

Figure S1. Additional control experiments for CRIB pull-down assays. (A) Similar ability of GST-PAK1-CRIB to detect active Cdc42 as for GST-Ste20-CRIB (Fig. 1). Wild-type (wt) and *cdc24-4* cells were grown to early log phase, shifted to 37C° for 3 h, harvested, and subjected to the GST-CRIB pull-down assay using purified GST-PAK1-CRIB. (B) GST-Ste20-CRIB pulls down more *cdc42^{G60D}* than wild-type Cdc42. Wild-type cells were transformed with the indicated plasmids, grown to early log phase, and subjected to the GST-CRIB pull-down assay. (C) GST-Ste20-CRIB binds to dominant-active, but not dominantnegative, versions of Cdc42. Cells were transformed with the indicated plasmids, grown to early log phase, and subjected to the GST-CRIB pull-down assay. (D) Bem3 overexpression reduces global Cdc42 activity. Cells were transformed with the indicated plasmid, grown to early log phase, shifted to media containing galactose for 3 h, and subjected to the GST-CRIB pull-down assay. Vec, vector; WB, Western blot.

Figure S3. Localization of cytokinesis and cell separation proteins in *bem2-ts* cells. (A) Ace2-GFP localizes normally in *bem2-ts* cells undergoing mitotic exit. *MET3-CDC20 GFP-TUB1 SHS1-mCherry ACE2-GFP* ± *bem2-ts* cells were synchronized as in Fig. 3 E. Percent Ace2 nuclear indicates the percentage of cells displaying asymmetric nuclear localization of Ace2. (right) Montage of representative cells (a single focal plane is shown for clarity). Example is representative of two independent experiments. (B) Chs2-GFP localizes normally in *bem2-ts* cells undergoing mitotic exit. *MET3-CDC20 GFP-TUB1 SHS1-mCherry CHS2-GFP* ± *bem2-ts* cells were synchronized as in Fig. 3 E. Graph shows percentage of cells with the indicated spindle or septin morphology. Percent Chs2 neck indicates the percentage of cells showing Chs2-GFP localized to the bud neck. (right) Representative image of cells from 20 min after release (single focal plane for clarity). Example is representative of two independent experiments. (C) Chs3-GFP localizes normally in *bem2-ts* cells undergoing mitotic exit. *MET3-CDC20 GFP-TUB1 SHS1-mCherry CHS3-GFP* ± *bem2-ts* cells were synchronized as in Fig. 3 E. Graph shows percentage of cells with the indicated spindle or septin morphology. Percent Chs2 neck indicates spindle or septin morphology. Percent Chs3-GFP ± *bem2-ts* cells were synchronized as in Fig. 3 E. Graph shows percentage of cells with the indicated spindle or septin morphology. Percent Chs3-GFP ± *bem2-ts* cells were synchronized as in Fig. 3 E. Graph shows percentage of cells with the indicated spindle or septin morphology. Percent Chs3-GFP ± *bem2-ts* cells were synchronized as in Fig. 3 E. Graph shows percentage of cells with the indicated spindle or septim morphology. Percent Chs3-GFP ± *bem2-ts* cells were synchronized as in Fig. 3 E. Graph shows percentage of cells showing Chs3-GFP to bem2-ts cells cel

Table S1. Yeast strains used in this study

Strain	Relevant genotype	Source
PY3295	BY4741 his3Δ1 lev2Δ0 met15Δ0 ura3Δ0 MATa	Pellman permanent
D) (70.0 5		collections
PY/205	YEF4/3a S288c his3 leu2 frp1 ura3 MAla	E. Bi ^a
PY/206	YEF4/3a S288c his3 leu2 frp1 ura3 cdc24-4 MAla	E. Bi
PY/20/	BY4/41 cin1::natMX cin2::hygR GAL1-CLN3-kanR MAIa	This study
PY3665	BY4/41 bar1::kanR MAla	Pellman permanent collections
PY7208	BY4741 GALL-CDC20-kanR GFP-TUB1-URA3 MYO1-GFP-HIS3 MATa	This study
PY6573	BY4741 GALL-CDC20-kanR GFP-TUB1-URA3 SHS1-GFP-HIS3 MATa	This study
DLY13157	YEF473a BEM1-GFP-LEU2 Gic2(CRIB)-tdTomato-URA3 MATa/ $lpha$	Howell et al., 2012
PY7209	<i>cdc5-2::URA3</i> 5× backcross to BY4741 <i>MATa</i>	Yoshida et al., 2006
PY5220	cdc15-2 5x backcross to BY4741 MATa	Yoshida et al., 2006
PY6200	BY4741 cdc20-3::kanR MATa	C. Boone ^b
SY1108	BY4741 Bem3(1–500)-13myc-HIS3 cdc15-2 MATa	This study
SY940	BY4741 Bem3(1–500)-3HA-HIS3 cdc5-2::URA3 ΜΑΤα	This study
SY944	BY4741 Bem3(1–500)-3HA-HIS3 cdc15-2 MATa	This study
SY938	BY4741 Bem3(1–500)-3HA MATa	This study
PY6545	BY4741 hof1::his3MX6 [HOF1 CEN URA3] MATa	This study
PY5453	BY4741 myo1::his3MX6 [MYO1 CEN URA3] MATa	This study
PY5032	BY4741 cyk3::kanR MATa	Pellman permanent collections
PY7210	BY4741 MET3-CDC20-TRP1 GFP-TUB1-LEU2 SHS1-mCherry-hyaR MATa	This study
PY7211	BY4741 MET3-CDC20-TRP1 GFP-TUB1-LEU2 SHS1-mCherry-hyaR bem2-ts(#84)-HIS3 MATa	This study
PY7212	BY4741 MET3-CDC20-TRP1 GFP-TUB1-LEU2 SHS1-mCherry-hyaR MYO1-GFP-kanR MATa	This study
PY7213	BY4741 MET3-CDC20-TRP1 GFP-TUB1-LEU2 SHS1-mCherry-hvaR MYO1-GFP-kanR bem2-ts(#84)-HIS3 MATa	This study
PY7214	BY4741 MET3-CDC20-TRP1 GFP-TUB1-LEU2 SHS1-mCherry-hvaR IQG1-GFP-kanR MATa	This study
PY7215	BY4741 MET3-CDC20-TRP1 GFP-TUB1-LEU2 SHS1-mCherry-hvaR IQG1-GFP-kanR bem2-ts/#841-HIS3 MATa	This study
PY7216	BY4741 MET3-CDC20-TRP1 GFP-TUB1-LEU2 SHS1-mCherry-hvaR INN1-GFP-kanR MATa	This study
PY7217	BY4741 MET3-CDC20-TRP1 GFP-TUB1-LEU2 SHS1-mCherry-hvaR INN1-GFP-kanR bem2-ts/#841-HIS3 MATa	This study
PY7218	BY4741 MET3-CDC20-TRP1 SHS1-mCherry-hvaR IQG1-GFP-kanR MATa	This study
PY7219	BY4741 MET3-CDC20-TRP1 SHS1-mCherry-hyaR IQG1-GFP-kanR bem2-ts/#841-LEU2 MATa	This study
PY7220	BY4741 MFT3-CDC20-TRP1 SHS1-mCherry-hyaR INN1-GFP-kanR MATa	This study
PY7221	BY4741 MFT3-CDC20-TRP1 SHS1-mCherry-hyaR INN1-GFP-kanR bem2-ts(#841-JEU2 MATa	This study
PY7222	BY4741 MFT3-CDC20-TRP1 GFP-TUB1-IFU2 SHS1-mCherry-hyaR ste20::kanR MATa	This study
PY7223	BY4741 MFT3-CDC20-TRP1 GFP-TUB1-IFU2 SHS1-mCherry-byaR bem2-ts/#841-HIS3 ste20kapR MATa	This study
PY7224	BY4741 MET3-CDC20-TRP1 GEP-TUB1-IEU2 SHS1-mCherry-hyaR IQG1-kanR ste20:://IRA3 MATa	This study
PY7225	BY4741 MFT3-CDC20-TRP1 GFP-TUB1-IFU2 SHS1-mCherry-hyaR IQG1-kanR bem2-ts/#841-HIS3 ste20:/IRA3 MATa	This study
PY7226	BY4741 MFT3-CDC20-TRP1 GFP-TUB1-IFU2 SHS1-mCherry-hyaR CHS2-GFP-kanR MATa	This study
PY7227	BY47.41 MET3-CDC20.TRP1 GEP.TUB1.IEU2 SHS1-mCherry-byaR CHS2-GEP.kanR hem2-ts/#8.41-HIS3 MATa	This study
PY7228	BYA7A1 MET3-CDC20,TRP1 GEP.TUB1.IEU2 SHS1-mCherry.hvgR CHS3-GEP.kanR MATa	This study
PY7229	BY4741 MFT3-CDC20-TRP1 GFP-TUB1-IFU2 SHS1-mCherry-hyaR CHS3-GFP-kanR hem2-ts/#8/1-HIS3 MATa	This study
PY7230	BYA7A1 MET3-CDC20,TRP1 GEP.TUB1-IEU2 SHS1-mCherry-hyaR ACE2-GEP.LanR MATa	This study
PY7231	RYATA1 MET3/CDC20TRP1 GEPTIB1/EU2 SHS1-mCherryhvaR ACF2/GEPJanR ham2+1#8ALHIS3 MATa	This study
	5147 41 METO-CPC201761 1 OTT-100 1-1202 51 5 1-11 Citerry 1998 ACL2-SI 1-Kulik Delit2-15[#04]-FISS MAID	This slouy

^aUniversity of Pennsylvania, Philadelphia, PA. ^bUniversity of Toronto, Toronto, Ontario, Canada.

Table S2. Plasmids used in this study

Plasmid	Relevant features	Source
PB70	pRS316 URA3 CEN AmpR	Pellman perms
PB72	pRS415 LEU2 CEN AmpR	Pellman perms
PB158	2µ URA3	Pellman perms
PB3050	pRS415 GAL1-HA-CDC42 LEU2 CEN AmpR	This study
PB3051	pRS415 GAL1-HA-CDC42 ^{Q61L} LEU2 CEN AmpR	This study
PB3052	pRS415 GAL1-HA-CDC42 [™] LEU2 CEN AmpR	This study
PB3053	pRS415 GAL1-HA-CDC42 ^{G60D} LEU2 CEN AmpR	This study
PB3054	pRS415 HA-CDC42 LEU2 CEN AmpR	This study
PB3055	pRS415 HA-cdc42 ^{G60D} AmpR	This study
PB1622	pGEX-5X-1 GST AmpR	Pellman perms
PB3056	pGEX-5X-1 GST-STE20(332-411) AmpR	This study
PB3057	pRS415 MET3-HA-CDC42 CEN LEU2 AmpR	This study
PB3058	pRS415 MET3-HA-CDC42 ^{Q61L} CEN LEU2 AmpR	This study
YEp351-CDC24	CDC24 LEU2 2µ AmpR	D. Johnson ^a ; Richman et al., 1999
pAJ044	IQG1 2μ URA3	J. Heinisch ^ь ; Jendretzki et al., 2009
PB2680	GST-PAK1 AmpR	Y. Zheng ^c
E735	pRS316-HOF1 HOF1 CEN URA3 AmpR	E. Bi ^d ; Vallen et al.,2000
E1361-1	yIP211-GIC2-PBD-tdTomato-URA3 AmpR	E. Bi; Tong et al., 2007
pVD63	PKC1(HR1-C2)-GFP URA3 CEN AmpR	M. Cyert ^e ; Denis and Cyert, 2005
pMK187	GALS-BEM3-GFP CEN URA3 AmpR	M. Peter ^f ; Knaus et al., 2007
PB3063	pRS316 MYO1 CEN URA3 AmpR	This study
PB3064	pMET3-CDC20-TRP1 AmpR	F. Uhlmann ^g ; Uhlmann et al., 2000
PB3065	pDLB3138 bem2-ts(#84)::LEU2 integrative AmpR	This study
PB3066	bem2-ts(#84)::HIS3 integrative AmpR	This study
pEL45	ste20::URA3 integrative	M. Whiteway ^h ; Leberer et al., 1992

^aUniversity of Vermont, Burlington, VT. ^bUniversity of Osnabrück, Osnabrück, Germany. ^cCincinnati Children's Hospital, Cincinnati, OH. ^dUniversity of Pennsylvania, Philadelphia, PA. ^eStanford University, Stanford, CA. ^fETH Zurich, Zurich, Switzerland. ^gLondon Research Institute, London, England, UK. ^hConcordia University, Montreal, Quebec, Canada.

References

- Denis, V., and M.S. Cyert. 2005. Molecular analysis reveals localization of Saccharomyces cerevisiae protein kinase C to sites of polarized growth and Pkc1p targeting to the nucleus and mitotic spindle. Eukaryot. Cell. 4:36-45. http://dx.doi.org/10.1128/EC.4.1.36-45.2005
- Howell, A.S., M. Jin, C.F. Wu, T.R. Zyla, T.C. Elston, and D.J. Lew. 2012. Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell. 149:322-333. http://dx.doi.org/10.1016/j.cell.2012.03.012
- Jendretzki, A., I. Ciklic, R. Rodicio, H.P. Schmitz, and J.J. Heinisch. 2009. Cyk3 acts in actomyosin ring independent cytokinesis by recruiting Inn1 to the yeast bud neck. Mol. Genet. Genomics. 282:437-451. http://dx.doi.org/10.1007/s00438-009-0476-0
- Knaus, M., M.P. Pelli-Gulli, F. van Drogen, S. Springer, M. Jaquenoud, and M. Peter. 2007. Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. EMBO J. 26:4501-4513. http://dx.doi.org/10.1038/sj.emboj.7601873
- Leberer, E., D. Dignard, D. Harcus, D.Y. Thomas, and M. Whiteway. 1992. The protein kinase homologue Ste20p is required to link the yeast pheromone response Gprotein beta gamma subunits to downstream signalling components. EMBO J. 11:4815-4824.
- Richman, T.J., M.M. Sawyer, and D.I. Johnson. 1999. The Cdc42p GTPase is involved in a G2/M morphogenetic checkpoint regulating the apical-isotropic switch and nuclear division in yeast. J. Biol. Chem. 274:16861-16870. http://dx.doi.org/10.1074/jbc.274.24.16861
- Tong, Z., X.D. Gao, A.S. Howell, I. Bose, D.J. Lew, and E. Bi. 2007. Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein-mediated zone of inhibition. J. Cell Biol. 179:1375-1384. http://dx.doi.org/10.1083/jcb.200705160
- Uhlmann, F., D. Wernic, M.A. Poupart, E.V. Koonin, and K. Nasmyth. 2000. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell. 103:375-386. http://dx.doi.org/10.1016/S0092-8674(00)00130-6
- Vallen, E.A., J. Caviston, and E. Bi. 2000. Roles of Hof1p, Bni1p, Bnr1p, and myo1p in cytokinesis in Saccharomyces cerevisiae. Mol. Biol. Cell. 11:593-611.
- Yoshida, S., K. Kono, D.M. Lowery, S. Bartolini, M.B. Yaffe, Y. Ohya, and D. Pellman. 2006. Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science. 313:108-111. http://dx.doi.org/10.1126/science.1126747