Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery

Atsushi Sakuda^{1, 2}, Akitoshi Hayashi*¹, Masahiro Tatsumisago¹

¹ Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-

1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan

² Present address: Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka 1-8-31, Ikeda, Osaka, 563-8577, Japan

*To whom correspondence should be addressed. E-mail: hayashi@chem.osakafu-u.ac.jp

Supplementary Figure S3. Raman spectra of (a) uncompressed 75Li2S·25P2S5 glass power and 75Li2S·25P2S5 glassy pellets compressed at (b) 370 MPa and (c) 480 MPa.

Supplementary Figure S2. XRD patterns of $75Li_2S \cdot 25P_2S_5$ glass powders (a) before and (b) after compression at 370 MPa.

Supplementary Figure S3. Capacity retention of all-solid-state half cells using (a) SE-coated $LiCoO_2$ and (b) SE-coated graphite. Indium foil (a) and lithium-indium alloy (b) were used as counter electrodes, and the $80Li_2S\cdot 20P_2S_5$ glass was used as a solid electrolyte.