Supplemental files

Figure S1. Diversity of carbon sources used by 88 *E. coli* and *Escherichia* clade strains. Twelve carbon sources enabled the growth of all 88 strains (common substrates), while 59 were able to grow on only a fraction of them (selective substrates). The strains are ordered by number of substrates they can catabolize. The carbon sources are ordered by number of strains able to grow on them.

Common substrates

Table S1. Phylo-group distribution of *E. coli* and *Escherichia* clade water-collection and selection of microcosm subsample

Table S2. List of primers used in the study for PCR O-typing. All *E. coli* strains were tested for 28 O-types by using the molecular O-group determination method [34]

Table S3. Physicochemical characteristics of water from vulnerability proxies

Table S4. Diversity 88 E. coli and Escherichia clade strains from the microcosm experiment

(A) waterbodies samples, (B) control samples

Table S5: Prevalence of virulence genes according to survival abilities of 58 *E. coli* and

 Escherichia clade strains isolated from the four waterbodies

Table S6. Predation by *Dictyostelium discoideum* of 88 *E. coli* and *Escherichia* clade strains according to origin and survival abilities

	oups of E	s of <i>E. coli</i> collection													
Water prof	Water profile (N/n ^a)		Total library (352)							Microcosm experiment (88)					
· · · ·		Α	B1	B2	D	Clade III	Clade V	Α	B1	B2	D	Clade III	Clade V		
1 (45/	1 (45/15)		39	1	2	0	0	1	13	0	1	0	0		
2 (39/	2 (39/13)		6	4	8	1	10	1	2	2	3	0	5		
3 (46/	3 (46/15)		20	1	3	0	0	7	7	0	1	0	0		
4 (34/	/15)	20	4	2	5	0	3	9	1	1	2	0	2		
Control (N/n ^a)	Α	B1	B2	D	Clade III	Clade V	Α	B1	B2	D	Clade III	Clade V		
Human (50 /15)	Medical center wastewater	28 + (2 ^c)	4	15	1	0	0	7 + (2 °)	1	5	0	0	0		
Bovine (138 /15)	Cowpats ^b	7	118	0	13	0	0	1	13	0	1	0	0		

Table S1. Phylo-group distribution of E. coli and Escherichia clade water-collection and selection of microcosm subsample

^a N: total number of collected strains, n number of randomly selected strains based on phylo-group distribution, ^b mix from dry and fresh cowpats, ^c *Escherichia* belonging to phylo-group A by the classical triplex Clermont method [4] but identified as phylo-group C [31,32].

Table S2. List of primers used in the study for PCR O-Typing. All *E. coli* strains were tested for 28 O-types by using the PCR-based O group determination method [34].

Primer designation	Primer sequence	Target	Size of PCR product (bp)	Reference
gndbis.f	5'-ATACCGACGACGCCGATCTG-3'			[34]
rfbO1.r	5'-CCAGAAATACACTTGGAGAC-3'	rfbO1	189	[34]
rfbO2a.r	5'-GTGACTATTTCGTTACAAGC-3'	rfbO2	274	[34]
rfbO4.r	5'-AGGGGCCATTTGACCCACTC-3'	rfbO4	193	[34]
rfbO6a.r	5'-AAATGAGCGCCCACCATTAC-3'	rfbO6	584	[34]
rfbO7.r	5'-CGAAGATCATCCACGATCCG-3'	rfb07	722	[34]
rfbO8a.r	5'-GAACAATATTGTAAGGTCGCC-3'	rfbO8	227	[33]
rfbO12.r	5'-GTGTCAAATGCCTGTCACCG-3'	rfbO12	239	[34]
rfbO15.r	5'-GTTTACGTTCCCACCTTATG-3'	rfbO15	486	[34]
rfbO16.r	5'-GGATCATTTATGCTGGTACG-3'	rfbO16	450	[34]
rfbO18.r	5'-GAAGATGGCTATAATGGTTG-3'	rfbO18	360	[34]
rfbO25a.r	5'-GAGATCCAAAAACAGTTTGTG-3'	rfbO25	313	[34]
rfbO25b.r	5'-TGCTATTCATTATGCGCAGC-3'	rfbO25	300	[33]
rfbO26.r	5'-GTATGAGCAAAATGGTGAGC-3'	rfbO26	329	[33]
rfbO40.r	5'- CAGGAAAGCCTCACTATTGG-3'	rfbO40	625	This study
rfbO45b.r	5'-TGCGAGTAGACTATCTCAAG-3'	rfbO45	436	[33]
rfbO55r	5'-AATTTAGGTCCGGCAGCAAG-3'	rfbO55	675	[33]
rfbO75.r	5'-GTAATAATGCTTGCGAAACC-3'	rfb075	419	[34]
rfbO78.r	5'-GCACTGCCATTGGTATTTACG-3'	rfb078	464	[33]
rfbO81.r	5'-GAGCAGTATATATTACTGGTG-3'	rfbO81	383	[33]
rfbO86.r	5'-CGTTGTTAATAATTCTGAATGCG-3'	rfbO86	361	[33]
rfbO88.r	5'-AAGGAAAAACGCTGGGAGAG-3'	rfb088	494	[33]
rfbO102.r	5'-TACCCATGATGGTACTGGTG-3'	rfbO102	480	[33]
rfbO103.r	5'-GAACTTGGATGGAAAGCCTG-3'	rfbO103	242	[33]
rfbO104.r	5'-TGGCTTAGGATACTTGCAGC-3'	rfbO104	410	[33]
rfbO111.r	5'-TTGAGTTCTGAGTGGGAAGG-3'	rfbO111	522	[33]
rfbO128.r	5'-AACTCGGAGAGTTCCCTATG-3'	rfbO128	319	[33]
rfbO150.r	5'-TAACGCTAGTGGCAGCAATG-3'	rfbO150	602	[33]
rfbO157.r	5'-TACGACAGAGAGTGTCTGAG-3'	rfbO157	672	[34]

Samp	ling site	T°C	рН	Conductivity	SiO₂	Mg ²⁺	Ca ²⁺	K⁺	Na⁺	Fe³⁺	${\rm NH_4}^+$	NO ₃ ⁻	NO ₂	HCO ₃	PO4 ³⁻	SO ₄ ²⁻	CI	DOM
				µS.cm⁻¹		mg.L ⁻¹												
Creek	Low flow period	14	8.13	345	12.3	3.55	47.5	1.8	13.45	0	0	12.9	0	112	0.14	29.7	22.3	0.1
water -	High flow period	13.5	7.57	557	7.14	3.25	36.05	4.45	9.45	0.1	0.1	13.75	0	68.3	0.21	33.3	20.6	nd
River		9.8	8.24	531	13.9	5.5	97	2.1	10.7	10	0.05	22.9	0.03	0.5	0.153	14.6	164	<0.5
Estuary	,	8.9	7.78	7500	7.1	165.8	136	52.2	1378	nd	0.05	26	0.31	0.5	0.307	377	2520	3.16

 Table S3. Physicochemical characteristics of water from vulnerability proxies

DOM: Dissolved Organic Matter, nd: not determined

Table S4. Diversity of 88 *E. coli* and *Escherichia* clade strains from the microcosmexperiment (A) waterbodies samples, (B) control samples

	E. coli phylo-		-		Epidemiological	
Sample site	aroup	uidA allele	O-type	Ν	type	Survival group *
	A1	uidA101	NT	1	FT24	S1
		uidA110	NT	1	ET50	S2
		uidA103	NT	1	ET49	S2
		uidA90	O150	1	ET47	S1
		uidA90	O150	1	ET47	S2
		uidA90	O150	1	ET48	S2
Type of water		uidA90	015	1	ET46	S1
contamination 1	B1	uidA90	015	2	ET46	* S3 ^(a)
		uidA40	O40	1	ET38	S2
		uidA2	O40	1	ET27	S2
		uidA5	NT	1	ET32	S2
		uidA2	NT	1	ET28	S1
		uidA2	NT	1	ET28	S2
	D	uidA2	NT	1	ET58	S2
	A ₀	nd	NT	1	ET15	S4
	D1	uidA30	07	1	ET36	S2
	DI	uidA30	NT	1	ET37	S4
	R2	uidA6	NT	1	ET54	S3
Type of water		uidA6	NT	1	ET53	S4
contamination 2		uidA91	NT	1	ET65	S2
	D	uidA65	NT	1	ET63	S4
		uidA13	O86	1	ET59	S3
		uidA111	NT	2	ET66	* S2 ^(a, b)
	Escherichia clade V	uidA111	NT	1	ET66	S3
		uidA111	NI	1	E166	S4
		uidA111	NI	1	E168	<u>S4</u>
		uidA77		1	E114	S1
	A ₀	uldA40		1	E112	S1
		uldA22		1	ET10	54
		uidAZ0	062	1	E10	52
	A ₁	uidA77 uidA2	012	1	ET18	54 S2
Type of water		uidA55	NT	1	ET41	<u>S3</u>
Type of water		uidA55	NT	1	ET40	S4
containination 5		uidA55	NT	1	ET42	S4
		uidA50	NT	1	ET39	S3
	B1	uidA23	NT	1	ET35	S2
		uidA23	NT	1	ET35	S4
		uidA5	NT	1	ET31	S2
		uidA2	NT	1	FT26	S3
	D	uidA32	NT	1	ET61	S3
	-	uidA2	NT	1	ET2	
		uidA2	O6a	1	ET1	S4
	A ₀	uidA16	NT	1	ET6	S3
		uidA20	O18	1	ET7	S4
		uidA40	O6a	1	ET11	S2
		uidA2	NT	1	ET17	S2
Type of water	A,	uidA2	O6a	1	ET16	S4
contamination 4	, ,	uidA20	NT	1	ET20	S3
Containination 4		uidA23	O6a	1	ET21	S2
	B1	uidA2	NT	1	ET25	S2
	B2	uidA80	NT	1	ET56	<u>S3</u>
	D	uidA42	018	1	ET62	S3
		ulaA14		1	E160 ET67	52
	Escherichia clade V	uidA111 uid∆111	NT	1	ET67	52 S4
			INI	I	L10/	04

(A)

Sample site	<i>E. coli</i> phylo- group	uidA allele	O-type	Ν	Epidemiological type	Survival group
		uidA40	O18	1	ET13	S4
	Δ.	uidA20	O102	1	ET9	S4
	r_0	uidA4	NT	1	ET4	S3
_		uidA3	NT	1	ET3	S2
_	Δ.	uidA77	NT	1	ET23	S1
Medical center		uidA77	NT	1	ET23	S4
waste water		uidA2	NT	1	ET19	S1
	B1	uidA2	NT	1	ET30	S1
-		uidA6	NT	1	ET55	S1
	B2	uidA1	04	1	ET52	S2
		uidA1	O6a	3	ET51	* S4 ^(a)
_	C	uidA4	O6a	1	ET57	S2
	C	uidA4	O6a	1	ET57	S3
	A ₀	uidA5	07	1	ET5	S3
_		uidA5	07	1	ET33	S3
		uidA5	07	2	ET33	* S4 ^(a)
		uidA5	NT	1	ET34	S2
		uidA55	NT	1	ET43	S2
Cowpats	B1	uidA55	NT	2	ET43	* S3 ^(a, b)
		uidA55	NT	2	ET44	* S2 ^(a, b)
		uidA55	NT	2	ET45	* S2 ^(b)
		uidA55	NT	1	ET45	S3
_		uidA2	NT	1	ET29	S2
-	D	uidA89	NT	1	ET64	S2

(B)

 A_0 and A_1 phylo-groups were distinguished as exhibiting (---) and (-+-) genotypes, respectively, as in [5]. C phylogroup was distinguished as in [32]. NT: O1, O2a, O4, O6a, O7, O8a, O12, O15, O16, O18, O25a, O25b, O26, O40, O45b, O55, O75, O78, O81, O86, O88, O102, O103, O104, O111, O128, O150 or O157 negative; N: number of strains. * Strains were differentiated on the basis of ^(a) phenotypic traits or ^(b) the antibiotic resistance profiles. nd: not determined. **Table S5:** Prevalence of virulence genes according to survival abilities of 58 *E. coli* and *Escherichia* clade strains isolated from the four waterbodies.

Gene		Presence in survival group							
	Description of the encoded protein	S1	S2	S 3	S 4				
	P. 0.0	(N= 6)	(N= 23)	(N= 14)	(N= 15)				
sfa/foc	S fimbrial adhesin D-E proteins/F1C fimbria proteins	-	-	2	1				
iroN	Iron-related siderophore receptor	-	1	4	2				
iutA	Ferric aerobactin receptor	-	1	3	1				
papC	PapC protein (formation of digalactoside-binding Pap pili)	1	1	3	-				
hlyC	Hemolysin C	-	-	-	1				
cnf1	Cytotoxic necrotizing factor 1	-	-	-	-				
fyuA	Yersinabactin receptor	2	3	5	4				
kspE	Capsular polysaccharide export system inner membrane protein	3	14	9	6				
ompT	Outer membrane protease	4	14	6	7				
afaD	Afimbrial adhesin D invasin	-	-	1	-				

N: total number of strains; -: not detected;

Table S6: Predation by *Dictyostelium discoideum* of 88 *E. coli* and *Escherichia* clade

 strains according to origin and survival abilities

	<i>E. coli</i> origin																
	Wat	Waterbodies (58 strains)							Control (30 strains)								
							Human Bo					Bo	ovine				
	N (%) S1 (n=58) (n=6)	Survival groups			Ν	Survival groups											
		S1 (n=6)	S2 (n=23)	S3 (n=14)	S4 (n=15)	(%) (n=30)	S1 (n=4)	S2 (n=3)	S3 (n=2)	S4 (n=6)	S1 (n=0)	S2 (n=8)	S3 (n=5)	S4 (n=2)			
Resistance to predation	39 (67.2)	3	14	12	10	14 (46.6)	3	3	2	3	0	2	1	0			

N: total number of strains