1 Supplemental Methods

 $\mathbf{2}$

3	Construction of deletion mutants and complemented strains. Gene deletion mutants
4	of <i>S. mutans</i> UA159 were constructed according to a method described elsewhere (1).
5	Briefly, erythromycin (Em ^r) or spectinomycin (Spc ^r) resistance gene without the
6	terminator was amplified by PCR from pResEmNot (2) or pSPC2310 (3) with specific
7	primers and cloned into pBluescript SK II (+) (yielding pBSSKEm ^r and pBSSKSpc ^r ,
8	respectively). The 5' and 3'-flanking regions of the target S. mutans gene were then
9	PCR-amplified from S. mutans genomic DNA with specific primers, and each fragment
10	was cloned into both ends of the Em ^r /Spc ^r gene to generate a gene cassette comprising
11	the Em ^r /Spc ^r gene with the flanking region of the target gene. After PCR amplification
12	of the whole gene, the PCR fragment was transformed into S. mutans. Mutants were
13	isolated by selection for erythromycin/spectinomycin resistance. The primers used are
14	listed in Table S1.
15	For genetic complementation, we constructed a DNA fragment in which the gene
16	containing the Em^r/Spc^r gene and the target gene was inserted into the <i>ftf</i> gene, which
17	encodes fructosyltransferase. First, the target gene and the 3'-terminal region of the <i>ftf</i>

18	gene (ftf-2) were amplified with specific primers, which resulted in the addition of an
19	extra eight or nine nucleotides for annealing. The target gene and ftf-2 were then fused.
20	The 5'-terminal region of the <i>ftf</i> gene (ftf-1) was cloned into pBSSKEm ^r /pBSSKSpc ^r ,
21	yielding pBSSKEm ^r ::ftf-1 and pBSSKSpc ^r ::ftf-1, respectively. Then, the fusion
22	fragment of the target gene and ftf-2 were cloned into pBSSKEm ^r ::ftf-1/
23	pBSSKSpc ^r ::ftf-1 downstream of the Em ^r /Spc ^r gene. Finally, the fragment for
24	complementation was amplified with specific primers and transformed into each
25	mutant, permitting insertion of the fragment into S. mutans chromosomal DNA by
26	homologous recombination. The complemented strains were isolated by selection for
27	erythromycin and spectinomycin resistance. Finally, the insertion of the Em ^r /Spc ^r and
28	target genes into the <i>ftf</i> gene was verified by PCR.
29	
30	Microarray analysis. Overnight cultures of S. mutans (10^8 cells) were inoculated into
31	10 ml of fresh TSB, which was, then cultured at 37°C with 5% CO ₂ . When the optical
32	density (OD) at 660 nm reached 0.3, nisin A (2 μ g/ml) or nukacin ISK-1 (4 μ g/ml) was
33	added to the medium. When the OD_{660} reached 0.5, the bacterial cells were pelleted by
34	centrifugation at 5,000 x g and 4°C for 5 min and stored at -80°C until needed. Total

 $\mathbf{2}$

35	RNA was extracted from the bacterial cells using a FastRNA Pro Blue Kit (MP
36	Biomedicals, Cleveland, OH, USA) according to the manufacturer's protocol. For
37	microarray analysis, cDNA was synthesised from 10 μ g of total RNA using a FairPlay
38	III Microarray Labeling Kit (Agilent Technologies, Santa Clara, CA, USA), according
39	to the manufacturer's instructions. The Agilent eArray platform was used to design a
40	microarray; 14,028 probes (60-mers) were designed for the 2,012 protein-coding genes
41	of S. mutans UA159 (up to seven probes per gene). For microarray analyses, test and
42	control cDNAs were labeled with Alexa Fluor® 555 and Alexa Fluor® 647 (Molecular
43	Probes Inc., OR, USA), respectively. The fluorescently labeled cDNA was purified
44	using the QIAquick PCR Purification Kit (QIAGEN Inc., CA, USA). The Alexa Fluor®
45	555-labeled and Alexa Fluor® 647-labeled DNAs were mixed and hybridised on an
46	array using a Hi-RPM Gene Expression Hybridization Kit (Agilent Technologies). The
47	arrays were then scanned with an Agilent scanner (Agilent Technologies), and data
48	extraction, filtering and normalisation were conducted using Feature Extraction
49	Software (Agilent Technologies), according to the manufacturer's instructions. The
50	experiments were performed as two biological replicates, and the expression data were
51	deposited in the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under

52 accession No. GSE44602. We considered greater than 3-fold changes with *P*-values of 53 < 0.05 to be significant.

54

55	Co-culture of S. mutans with S. warneri or L. lactis. Aliquots of overnight S. mutans,
56	S. warneri ISK-1, S. warneri ISK-1 ⁻ , L. lactis ATCC 11454 and L. lactis NZ9000
57	cultures were inoculated into TSB and grown to an OD_{660} of 0.5. For co-culture assays,
58	appropriate numbers of <i>S. mutans</i> (UA159 and the mutants: 5×10^6 cells) and <i>L. lactis</i>
59	(ATCC11454 or NZ9000: 5×10^6) or <i>S. mutans</i> (UA159 and the mutants: 2.5×10^5
60	cells) and <i>S. warneri</i> (ISK-1 or ISK-1 Δ pPI-1: 5 × 10 ⁶) cells were added to 5 ml of TSB
61	and grown at 37°C with 5% CO_2 for 8 h. The optimal ratios for the co-culture assays
62	were determined through preliminary experiments investigating the effects of various
63	ratios of L. lactis or S. warneri on S. mutans growth. The appropriate dilutions were
64	plated on TSA with or without 64 μ g/ml of bacitracin for the selection of <i>S. mutans</i> .
65	After 2 days, the numbers of CFUs on TSA plates with and without bacitracin were
66	determined, and the percentage of the population represented by the S. mutans strain
67	was calculated.

Supplemental Tables

Strain names	Inactivated Gene	Gene name	Features	References
	ID^1			
UA159	-	-	laboratry strain	(4)
TCS45	SMU.45-6	unassigned	hk ² -rr ³ deletion mutant, Em ^{r4}	This study
TCS1	SMU.486-7	liaSR	hk-rr deletion mutant, Em ^r	This study
TCS2	SMU.577-6	unassigned	hk-rr deletion mutant, Em ^r	This study
TCS3	SMU.659-60	nsrRS ⁵	hk-rr deletion mutant, Em ^r	This study
TCS4	SMU.928-7	relSR	hk-rr deletion mutant, Em ^r	This study
TCS5	SMU.1009-8	unassigned	hk-rr deletion mutant, Em ^r	This study
TCS6	SMU.1037-8	unassigned	hk-rr deletion mutant, Em ^r	This study
TCS7	SMU.1128-9	ciaRH	hk-rr deletion mutant, Em ^r	(5)
TCS8	SMU.1146-5	lcrRS ⁵	hk-rr deletion mutant, Em ^r	This study
TCS9	SMU.1516-7	vicK	hk deletion mutant, Em ^r	This study
TCS10	SMU.1548-9	unassigned	hk-rr deletion mutant, Em ^r	This study
TCS11	SMU.1815-4	unassigned	hk-rr deletion mutant, Em ^r	This study
TCS12	SMU.1916-7	comDE	hk-rr deletion mutant, Em ^r	This study
TCS13	SMU.1965-4	levRS	hk-rr deletion mutant, Em ^r	This study
TCS14	SMU.1924	gcrR	rr deletion mutant, Em ^r	This study
MM3105	SMU.659	nsrS	hk deletion mutant, Em ^r	This study
MM3098	SMU.1145	lcrS	hk deletion mutant, Em ^r	This study
MM3015	SMU.654	unassigned	ABC transporter deletion mutant, Emr	This study
MM3014	SMU.654-7	unassigned	ABC transporter deletion mutant, Em ^r	This study
MM3008	SMU.654+656	unassigned	ABC transporter deletion mutant, Em ^r , Spc ^r	This study
MM3019	SMU.658	nsrX ⁵	SMU.658 deletion mutant, Em ^r	This study
MM3081	SMU.658-660	nsrXRS	658-nsrRS deletion mutant, Em ^r	This study
MM3021	SMU.1148-50	lctFEG	ABC transporter deletion mutant, Em ^r	This study

Table S1. Strains used in this study

Strain names	complement	Gene name	Features	References
	Gene ID			
MM3106	SMU.659	nsrS	nsrS complement strain in MM3105, Em ^r , Spc ^{r6}	This study
MM3104	SMU.1145	lcrS	<i>lcrS</i> complement strain in MM3098, Em ^r , Spc ^r	This study
MM3055	SMU.658	nsrX	<i>nsrX</i> complement strain in MM3019, Em ^r , Spc ^r	This study
MM3074	SMU.658	nsrX	nsrX mplement strain in TCS3, Em ^r , Spc ^r	This study
MM3083	SMU.658	nsrX	<i>nsrX</i> complement strain in MM3081, Em ^r , Spc ^r	This study
Bacteriocin-producing strains		class	bacteriocins	References
Lactococcus lactis ATCC11454		Ι	nisin A	(6)
Lactococcus lactis NZ9000		-	nisin A non-producing	(7)
Staphylococcus warneri ISK-1		Ι	nukacin ISK-1	(8)
S. warneri ISK-1∆pPI-1		-	pPI-1 cured strain, nukacin ISK-1	(9)
Lactococcus lactis CNRZ481		Ι	lacticin 481	(10)
Enterococcus mundtii QU 2		IIa	munditicin	(11)
Streptococcus mutans UA159		IIb	mutacin IV	(12)
Lactococcus sp. QU 12		IIc	lactocyclicin Q	(13)
Lactococcus lactis QU 5		IId	lacticin Q	(14)

¹Gene IDs are from the GEO of the NCBI Database (http://www.ncbi.nlm.nhi.gov/geo/)

75 ² histidine kinase

³ response regulator

⁴ erythromycin resistance

 5 designated in this study

⁶ spectinomycin resistance

81 Table S2. Primers used in this study.

name of primers	purpose	forward	reverse
tcs45-46-up	SMU.45-6 deletion	aataccaagagtctgagc	cagtcgaggatcccatctaagactaacata
tcs45-46-dw	SMU.45-6 deletion	gctgacctagt aattattgatgaatcaggag	gagatgtttgcacatagt
tcs1-up	liaSR deletion	atccttatacaattgctgc	cagtcgaggatccgcgtataaaaaaatcatt
tcs1-dw	liaSR deletion	gctgacctagttttagtgccacaggacg	cctcatgatttttataaaaat
tcs2-up	SMU.577-6 deletion	ttaaatatttggttaaagagg	cagtcgaggatccaagtctctgaaataataa
tcs2-dw	SMU.577-6 deletion	gctgacctagtagaattgaatgctcatttg	ccttcagctttgagaatat
tcs3-up	nsrRS deletion	ttttccgattattcttccc	cagtcgaggat ttaccaaaatacgggtcat
tcs3-dw	nsrRS deletion	gctgacctagtttaccactggctaaaatgt	ctccacaggttcaccaa
tcs4-up	relSR deletion	ttgcacgtataaagaccaa	cagtcgaggatctgctcttcgtcttctgct
tcs4-dw	relSR deletion	gctgacctagtgatgccattacttttaagg	ccctcaaacttcttaataa
tcs5-up	SMU.1009-8 deletion	tttactcaactgctgcg	cagtcgaggatcaaccaagtaaattttttct
tcs5-dw	SMU.1009-8 deletion	gctgacctagtattgatcaaggaacacag	cgcattgatctagctatt
tcs6-up	SMU.1038-7 deletion	atttagaacaatgccggc	cagtcgaggattcttcaatttgtaaaatacgt
tcs6-dw	SMU.1038-7 deletion	gctgacctagttttattttaactgtaacgcta	gcgaaccggttatttctt
tcs7-up	ciaRH deletion	gtgagaattgggcttgga	cagtcgaggatctattatagcatgacttgg
tcs7-dw	ciaRH deletion	gctgacctagtctcgcctgcttgctaata	aaaatggccagtctgc
tcs8-up	lcrRS deletion	aatttaagcaaacgttga	cagtcgaggatcatgctgttacctcgata
tcs8-dw	lcrRS deletion	gctgacctagtttgaaagtgacgattgtc	attgactttgacggctga
tcs9-up	vicK deletion	cagccatgttccaattattatg	cagtcgaggataagggacttgattcaaaca
tcs9-dw	vicK deletion	gctgacctagt caatagtgaggaaggcga	aactagtatgagtaaaggc
tcs10-up	SMU.1548-9 deletion	tttctattattgtgacttttat	cagtcgaggat tccacataggataatagttt
tcs10-dw	SMU.1548-9 deletion	gctgacctagtacctgttttgcagaactg	caaggcgacatataaggc
tcs11-up	SMU.1815-4 deletion	gtcgtccgcatcaagatagtg	cagtcgaggatggatatgctttttcaataatt
tcs11-dw	SMU.1815-4 deletion	gctgacctagttacttctggttcagacaat	acacgagagaaatcaatga
tcs12-up	<i>comDE</i> deletion	ggtgtcgtcattcttcct	cagtcgaggataggttagctgattaacac
tcs12-dw	<i>comDE</i> deletion	gctgacctagttagaggaggcctattctc	ctatcagctgcgctgtta
tcs13-up	levRS deletion	tctcaatgctgaagtgga	cagtcgaggatctgccaccctgttaaatc
tcs13-dw	levRS deletion	gctgacctagtacctattggtcttgttgg	agcaacettaceetcate
tcs14-up	gcrR deletion	cacggacaagtcaagaga	cagtcgaggatggaaactccttacgttac
tcs14-dw	gcrR deletion	gctgacctagttaggtctgttgaagtggt	agcagcatcactgccaat

mm3105-up	nsrS deletion	tttttgtcgggacattcg	cagtegaggat ctaactgtegcaaaatact
mm3105-dw	nsrS deletion	gctgacctagttggtctaactattgcagaca	ttgggtctgattaataccat
mm3098-up	<i>lcrS</i> deletion	aacttctactataccagta	cagtcgaggatccaagccataaacaaaaat
mm3098-dw	lcrS deletion	gctgacctagtttgaaagtgacgattgtc	attgactttgacggctga
mm3015-up	SMU.654 deletion	taaacggccaatgccaag	cagtcgaggatcgctgtcctccttataga
mm3015-dw	SMU.654 deletion	gctgacctagtttcgttccttccctacac	ccaattataggcatccgt
mm3014-up	SMU.654-7deletion	taaacggccaatgccaag	cagtcgaggatcgctgtcctccttataga
mm3014-dw	SMU.654-7deletion	gctgacctagtgaatagaatttagaactgc	acttgagtaaaccataggg
mm3019-up	nsrX deletion	cgcagtcccactaacttt	cagtcgaggaagctgaaatcccgttagt
mm3019-dw	nsrX deletion	gctgacctagtgctttataccttgtcagta	tcatactcagacttggtc
mm3008-up	SMU.656 deletion	ttcaggagttgcgtaat	cagtcgaggatgccaaagtcagcacttta
mm3008-dw	SMU.656 deletion	gctgacctagttggtccattatgctcag	taatcccgcataaccgt
mm3081-up	nsrXRS deletion	cgcagtcccactaacttt	cagtcgaggaagctgaaatcccgttagt
mm3081-dw	nsrXRS deletion	gctgacctagttggtctaactattgcagaca	ttgggtctgattaataccat
mm3021-up	<i>lctFEG</i> deletion	gtttgacgatgtagtcgt	cagtcgaggattagccgtgcttttgcca
mm3021-dw	<i>lctFEG</i> deletion	gctgacctagtttagcagtcagtcagctt	aagcagcagcagatcgta
mm3050-up	levDFEG deletion	tcaaaagctttgactgtt	cagtcgaggatgaatacaccctactttctttt
mm3050-dw	levDFEG deletion	gctgacctagttcgttgatgattttgaag	ttaatcgtttacaactgct
Emr	erythromycin resistance gene	atcetegactggaagcaaacttaagagtgtgttgaca	actaggtcagcttatttcctcccgttaaa
Spcr	spectinomycin resistance gene	atcctcgactgatcgattttcgttcgtga	actaggtcagcttccaccattttttcaattt
ftf-comp	complementation	aagaaacaaagaaagctcatcatgtttcaac	cggccgcggttcgtcttgtttctctca
mm3106	nsrS complementation	taaggatccaactattgggcttgagcc	tctttgtttcttaacggaaatcattttatttcc
mm3104	lcrS complementation	ggatcctgacagttaagggcttg	tctttgtttcttacttgattataaacacttct
mm3055	nsrX complementation	tgggatccttatgatatgtgagggtc	tctttgtttcttattaccaaaatacgggtc

REFERENCES

85	1.	Kawada-Matsuo M, Shibata Y, Yamashita Y. 2009. Role of two component
86		signaling response regulators in acid tolerance of Streptococcus mutans. Oral
87		Microbiol. Immunol. 24: 173-176.
88	2.	Shiroza T, Kuramitsu HK. 1993. Construction of a model secretion system for
89		oral streptococci. Infect. Immun. 61:3745-3755.
90	3.	LeBlanc DJ, Lee LN, Inamine JM. 1991. Cloning and nucleotide base
91		sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant
92		from Enterococcus faecalis. Antimicrob. Agents Chemother. 35:1804-1810.
93		
94	4.	Murchison HH, Barrett JF, Cardineau GA, Curtiss R, 3rd. 1986.
95		Transformation of Streptococcus mutans with chromosomal and shuttle plasmid
96		(pYA629) DNAs. Infect. Immun. 54: 273-282.
97	5.	Mazda Y, Kawada-Matsuo M, Kanbara K, Oogai Y, Shibata Y, Yamashita Y,
98		Miyawaki S, Komatsuzawa H. 2012. Association of CiaRH with resistance of
99		Streptococcus mutans to antimicrobial peptides in biofilms. Mol. Oral Microbiol.
100		27: 124-135.
101	6.	Chandrapati S, O'Sullivan DJ. 2002. Characterization of the promoter regions

102		involved in galactose- and nisin-mediated induction of the nisA gene in
103		Lactococcus lactis ATCC 11454. Mol. Microbiol. 46:467-477.
104	7.	Islam MR, Nishie M, Nagao J, Zendo T, Keller S, Nakayama J, Kohda D,
105		Sahl HG, Sonomoto K. 2012. Ring A of nukacin ISK-1: a lipid II-binding motif
106		for type-A(II) lantibiotic. J. Am. Chem. Soc. 134:3687-3690.
107	8.	Sashihara T, Kimura H, Higuchi T, Adachi A, Matsusaki H, Sonomoto K,
108		Ishizaki A. 2000. A novel lantibiotic, nukacin ISK-1, of Staphylococcus warneri
109		ISK-1: cloning of the structural gene and identification of the structure. Biosci.
110		Biotechnol. Biochem. 64: 2420-2428.
111	9.	Aso Y, Koga H, Sashihara T, Nagao J, Kanemasa Y, Nakayama J, Sonomoto
112		K. 2005. Description of complete DNA sequence of two plasmids from the
113		nukacin ISK-1 producer, Staphylococcus warneri ISK-1. Plasmid 53:164-178.
114	10.	Rince A, Dufour A, Uguen P, Le Pennec JP, Haras D. 1997. Characterization
115		of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG
116		encode a putative ABC transporter involved in bacteriocin immunity. Appl.
117		Environ. Microbiol. 63: 4252-4260.
118	11.	Zendo T, Eungruttanagorn N, Fujioka S, Tashiro Y, Nomura K, Sera Y,

119		Kobayashi G, Nakayama J, Ishizaki A, Sonomoto K. 2005. Identification and
120		production of a bacteriocin from Enterococcus mundtii QU 2 isolated from
121		soybean. J. Appl. Microbiol. 99:1181-1190.
122	12.	Hossain MS, Biswas I. 2011. Mutacins from <i>Streptococcus mutans</i> UA159 are
123		active against multiple streptococcal species. Appl. Environ. Microbiol.
124		77: 2428-2434.
125	13.	Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, Sonomoto
126		K. 2009. Identification and characterization of lactocyclicin Q, a novel cyclic
127		bacteriocin produced by Lactococcus sp. strain QU 12. Appl. Environ. Microbiol.
128		75: 1552-1558.
129	14.	Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J,
130		Sonomoto K. 2007. Structural analysis and characterization of lacticin Q, a
131		novel bacteriocin belonging to a new family of unmodified bacteriocins of
132		gram-positive bacteria. Appl. Environ. Microbiol. 73:2871-2877.
133		