Appendix S1. 2 and r^2 for the composite haplotype table

Setting aside for the moment the complications of double-counting, the composite haplotype table of Figure 1 can be treated as a regular 2 x 2 contingency table. A one degree-of-freedom χ^2 , designated $\chi^2(comp)$, can be calculated. If the number of ab haplotypes, $4n_{11} + 2n_{12} + 2n_{21} + n_{22}$ is given the designation M , then

$$
\chi^2 (comp) = \frac{4S(4S.M - 2n_a 2n_b)^2}{2n_a.(4S - 2n_a).2n_b.(4S - 2n_b)}
$$

$$
= \frac{4S(M.S - n_a n_b)^2}{n_a.(2S - n_a).n_b.(2S - n_b)}
$$

Gamete frequencies cannot be calculated in terms of just the n values of Figure 1, since the n_{22} parameter contains both $ab/$ – $-$ (coupling) and $a - / - b$ (repulsion) genotypes. The frequencies of these two types, which usually cannot be observed, may be given the designation n_{22c} and n_{22r} , where $n_{22c} + n_{22r} = n_{22}$. It is convenient to introduce the parameter $\alpha = (n_{22c} - n_{22r})/2$. Then the numbers of coupling and repulsion genotypes become $n_{22}/2 + \alpha$ and $n_{22}/2 - \alpha$ respectively. The gamete numbers are as shown in Table S1.

The one degree-of-freedom $\chi^2(hap)$, testing haplotypes from Table S1 is

$$
\chi^{2}(hap) = \frac{2S[2S(M/2 + \alpha) - n_{a}n_{b}]^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})}
$$

=
$$
\frac{2S(M.S - n_{a}n_{b})^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})} + \frac{2S(2N\alpha)^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})} + \alpha \text{ term}
$$

=
$$
\frac{1}{2}\chi^{2}(comp) + \frac{2S(2S\alpha)^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})} + \alpha \text{ term},
$$

from which

$$
\chi^{2}(comp) = 2\chi^{2}(hap) - \frac{4S(2S\alpha)^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})} - \alpha \text{ term}
$$

These terms allow calculation of the expectation of $\chi^2(comp)$, $E[\chi^2(comp)]$, over repeated sampling of S diploid individuals. The term in α has zero expectation. The regular 2 x 2 one degree-of-freedom $\chi^2(hap)$ has expectation 2S/(2S - 1) [20].

The term in α^2 is more difficult. The numerator of this term can be shown to have the expectation $(2S)^4 p_a(1-p_a) p_b(1-p_b)$, where p_a and p_b are gene frequencies at the a and b loci. The denominator similarly can be shown to have the expectation $(2S)^2(2S-1)^2p_a(1-p_a)p_b(1-p_b)$. Although there is a positive covariance between the numerator and denominator of this α^2 term, computer simulation has shown that the expectation of the ratio is extremely close to the ratio of expectations, which is $(2S)^{2}/(2S-1)^{2}$.

Overall, therefore,

$$
E[\chi^2(comp)] = 2 \cdot \frac{2S}{2S - 1} - \frac{(2S)^2}{(2S - 1)^2}
$$

$$
= 1 - \frac{1}{(2S - 1)^2}
$$
(1)

The χ^2 (comp) statistic thus has expectation very close to unity, and is less biased than the haploid χ^2 [20], [8]. Computer simulation also shows that the distribution of the χ^2 (comp) statistic is close to expectation in significance tests at the 5%, 1% and 0.1% levels. Results from 10^8 replicate samples of size $S = 32$ set up with zero LD are shown in Table S2. In each case the observed significance levels are closer to expectation for the composite χ^2 than for the χ^2 calculated from just the known gametes.

The above calculations have all been for 2×2 tables. They extend to $r \times c$ using the regular weighting for χ^2 , e.g. [17]

$$
\chi^2_{(r-1)(c-1)} = \sum_{i} \sum_{j} \frac{D_{ij}^2}{p_i(1-p_i)q_j(1-q_j)} \cdot (1-p_i)(1-q_j) \tag{2}
$$

Because the marginal totals for the composite table are just a multiple of 2 of the regular table, the same summation argument applies to both.

A similar expectation applies to r_c^2 as to $\chi^2(comp)$. For a 2 x 2 table, with observed total S:

$$
\chi^2 = S.r^2
$$

Because the weighting of contributions to χ^2 (*comp*) and r_c^2 are different, cf. equation (2) above versus equation (7) of the main text, there is no simple relationship between the two. However the expectations for the components of r_c^2 and χ^2 (*comp*) differ only by the factor S, and the overall expectation for r_c^2 is given from (1) as

$$
E[r_c^2] = \frac{1}{S} \left[1 - \frac{1}{(2S - 1)^2} \right] \tag{3}
$$

The validity of equations (2) and (3) can be tested by simulation. For the χ^2 (comp) calculation, a set of approximately 10¹⁰ simulations with $S = 32$ gave a mean value of 0.999741 \pm 0.000070 compared to expectation of $1 - 1/63^2 = 0.999748$. As pointed out in Table S2, the distribution is also very close to a χ^2 distribution.

			Total
\boldsymbol{a}	$2n_{11} + n_{12} + n_{21} + \frac{1}{2}n_{22} + \alpha$ $2n_{13} + n_{12} + n_{23} + \frac{1}{2}n_{22} - \alpha$ = $M/2 + \alpha$		n_a
		$2n_{31} + n_{21} + n_{32} + \frac{1}{2}n_{22} - \alpha$ $2n_{33} + n_{23} + n_{32} + \frac{1}{2}n_{22} + \alpha$ $2S - n_a$	
Total	$n_{\rm h}$	$2S-n_h$	25

Table S1 Numbers of the four haplotypes in terms of n values shown in Figure 1 and the parameter α giving the (unobservable) difference between coupling and repulsion genotypes.

Table S2 Observed and expected numbers of significant deviations from expectation from χ^2 values calculated from replicate sampling with $S = 32$ from an infinitely large population in linkage equilibrium.

		Significance level	
	5%	1%	0.1%
Observed (composite)	5,023,330	998,632	98,622
Observed (haploid)	5,061,141	958,095	80,383
Expected	5,000,000	1,000,000	100,000