Appendix S1. χ^2 and r^2 for the composite haplotype table

Setting aside for the moment the complications of double-counting, the composite haplotype table of Figure 1 can be treated as a regular 2 x 2 contingency table. A one degree-of-freedom χ^2 , designated $\chi^2(comp)$, can be calculated. If the number of *ab* haplotypes, $4n_{11} + 2n_{12} + 2n_{21} + n_{22}$ is given the designation M, then

$$\chi^{2}(comp) = \frac{4S(4S.M - 2n_{a}2n_{b})^{2}}{2n_{a}.(4S - 2n_{a}).2n_{b}.(4S - 2n_{b})}$$
$$= \frac{4S(M.S - n_{a}n_{b})^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})}$$

Gamete frequencies cannot be calculated in terms of just the *n* values of Figure 1, since the n_{22} parameter contains both ab/-- (coupling) and a-/-b (repulsion) genotypes. The frequencies of these two types, which usually cannot be observed, may be given the designation n_{22c} and n_{22r} , where $n_{22c} + n_{22r} = n_{22}$. It is convenient to introduce the parameter $\alpha = (n_{22c} - n_{22r})/2$. Then the numbers of coupling and repulsion genotypes become $n_{22}/2 + \alpha$ and $n_{22}/2 - \alpha$ respectively. The gamete numbers are as shown in Table S1.

The one degree-of-freedom $\chi^2(hap)$, testing haplotypes from Table S1 is

$$\chi^{2}(hap) = \frac{2S[2S(M/2 + \alpha) - n_{a}n_{b}]^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})}$$

= $\frac{2S(M.S - n_{a}n_{b})^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})} + \frac{2S(2N\alpha)^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})} + \alpha$ term
= $\frac{1}{2}\chi^{2}(comp) + \frac{2S(2S\alpha)^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})} + \alpha$ term,

from which

$$\chi^{2}(comp) = 2\chi^{2}(hap) - \frac{4S(2S\alpha)^{2}}{n_{a}.(2S - n_{a}).n_{b}.(2S - n_{b})} - \alpha \text{ term}$$

These terms allow calculation of the expectation of $\chi^2(comp)$, $E[\chi^2(comp)]$, over repeated sampling of S diploid individuals. The term in α has zero expectation. The regular 2 x 2 one degree-of-freedom $\chi^2(hap)$ has expectation 2S/(2S - 1) [20].

The term in α^2 is more difficult. The numerator of this term can be shown to have the expectation $(2S)^4 p_a(1-p_a)p_b(1-p_b)$, where p_a and p_b are gene frequencies at the *a* and *b* loci. The denominator similarly can be shown to have the expectation $(2S)^2(2S-1)^2p_a(1-p_a)p_b(1-p_b)$. Although there is a positive covariance between the numerator and denominator of this α^2 term, computer simulation has shown that the expectation of the ratio is extremely close to the ratio of expectations, which is $(2S)^2/(2S-1)^2$.

Overall, therefore,

$$E[\chi^{2}(comp)] = 2 \cdot \frac{2S}{2S-1} - \frac{(2S)^{2}}{(2S-1)^{2}}$$
$$= 1 - \frac{1}{(2S-1)^{2}}$$
(1)

The $\chi^2(comp)$ statistic thus has expectation very close to unity, and is less biased than the haploid χ^2 [20], [8]. Computer simulation also shows that the distribution of the $\chi^2(comp)$ statistic is close to expectation in significance tests at the 5%, 1% and 0.1% levels. Results from 10⁸ replicate samples of size S = 32 set up with zero LD are shown in Table S2. In each case the observed significance levels are closer to expectation for the composite χ^2 than for the χ^2 calculated from just the known gametes.

The above calculations have all been for 2 x 2 tables. They extend to $r \ge c$ using the regular weighting for χ^2 , e.g. [17]

$$\chi^{2}_{(r-1)(c-1)} = \sum_{i} \sum_{j} \frac{D^{2}_{ij}}{p_{i}(1-p_{i})q_{j}(1-q_{j})} \cdot (1-p_{i})(1-q_{j})$$
(2)

Because the marginal totals for the composite table are just a multiple of 2 of the regular table, the same summation argument applies to both.

A similar expectation applies to r_c^2 as to $\chi^2(comp)$. For a 2 x 2 table, with observed total S:

$$\chi^2 = S.r^2$$

Because the weighting of contributions to $\chi^2(comp)$ and r_c^2 are different, cf. equation (2) above versus equation (7) of the main text, there is no simple relationship between the two. However the expectations for the components of r_c^2 and $\chi^2(comp)$ differ only by the factor S, and the overall expectation for r_c^2 is given from (1) as

$$E[r_c^2] = \frac{1}{S} \cdot \left[1 - \frac{1}{(2S-1)^2}\right]$$
(3)

The validity of equations (2) and (3) can be tested by simulation. For the $\chi^2(comp)$ calculation, a set of approximately 10^{10} simulations with S = 32 gave a mean value of 0.999741 ± 0.000070 compared to expectation of $1 - 1/63^2 = 0.999748$. As pointed out in Table S2, the distribution is also very close to a χ^2 distribution.

Table S1	Numbers of the four haplotypes in terms of n values shown in Figure 1 and the parameter			
α giving the (unobservable) difference between coupling and repulsion genotypes.				

	b	-	Total
a	$2n_{11} + n_{12} + n_{21} + \frac{1}{2}n_{22} + \alpha$ $= M/2 + \alpha$	$2n_{13} + n_{12} + n_{23} + \frac{1}{2}n_{22} - \alpha$	n_a
_	$2n_{31} + n_{21} + n_{32} + \frac{1}{2}n_{22} - \alpha$	$2n_{33} + n_{23} + n_{32} + \frac{1}{2}n_{22} + \alpha$	$2S - n_a$
Total	n_b	$2S - n_b$	2S

Table S2 Observed and expected numbers of significant deviations from expectation from χ^2 values calculated from replicate sampling with S = 32 from an infinitely large population in linkage equilibrium.

		Significance level	
	5%	1%	0.1%
Observed (composite)	5,023,330	998,632	98,622
Observed (haploid)	5,061,141	$958,\!095$	80,383
Expected	5,000,000	1,000,000	100,000