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SUPPLEMENTARY MATERIAL 

Several segmentation strategies are currently available. Some use the highly regular and 

easy-to-segment nucleus fluorescence (commonly stained by Hoechst 33342) as a primary 

segmentation, and morphologically expand the initial nucleus boundary until the cell boundary is 

determined. This process requires a lot of extra user interaction: the extra staining step and 

microscopy necessary to get nuclei images, and then the precise tuning and visual inspection of 

cell-cell boundaries that are found. Also, the extra steps and morphological calculations take 

extra time to complete, adding to the workload of technicians and hurting high throughput 

capability. The boundaries generated by these routines do not necessarily segment cells 

effectively and must often be followed by steerable filtering to identify thin protrusions coming 

from cells. Hence, researchers may default to the simpler and easier to understand segmentation 

methods that employ a straightforward threshold to images. 

ImageJ and CellProfiler (10, 11), two freely available imaging software packages, have a 

handful of built-in thresholding algorithms: the mixture of Gaussians (MoG) approach, Otsu’s 

method, and the Ridler-Calvard algorithm, for example. The MoG method treats the histogram of 

pixel intensities as a mixture of two or more Gaussian distributions and uses the expectation-

maximization algorithm to converge to a best fit. Then, either the parameters of the background 

distribution are used to calculate a threshold (done in this work), or an arbitrary factor that 

divides pixels based on their likelihood to be in one distribution or another is used 

(Supplementary Fig. S1 b). Otsu’s method uses the histogram of image intensities and divides 

images into two classes of pixels by finding a threshold that minimizes the in-class variance of 

each pixel intensity distribution. (Supplementary Fig. S1 c). The Ridler-Calvard algorithm also 
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treats the histogram of the pixel intensities as two classes like Otsu’s method, but instead of 

utilizing the variance, it finds the mean of each class and uses the average of the two means as a 

threshold once it converges (Supplementary Fig. S1 d). These methods work well in many cases, 

but for images of cellular fluorescence they break down against the inherent heterogeneity of cell 

signals and morphology. 

Spatial filtering is a technique that works well to distinguish nuclei by adjusting the 

histogram of pixel intensities to facilitate the use of a simple thresholding method. Two finite 

impulse response (FIR) spatial high pass filters were transcribed directly from the work of Price 

(24) to try and aid segmentation of cell images: a 5x5 (Supplementary Fig. S1 e) and 7x7 

(Supplementary Fig. S1 f). After the application of the FIR filters, the MoG method was used to 

segment each image. This approach slightly improved the boundaries around cells in comparison 

with straightforward thresholding, but some background noise is still included in the 

segmentation result nearby the brightest regions of the cell signal. The Marr-Hildreth (26) 

algorithm segments images by applying a Laplacian-of-a-Gaussian (LoG) filter to images and 

finding the zero crossing of the result. It can be implemented in two ways: a straightforward LoG 

filtering (Supplementary Fig. S1 i), or by applying a Gaussian spatial low pass filter 

(Supplementary Fig. S2) and then a Laplacian filter (12) (Supplementary Fig. S1 g).  

A more state-of-the-art method to segment images is the level set algorithm. It iteratively 

modifies a 3-D surface using the gradient and Laplacian of raw images before segmenting the 

resulting surface by its zero crossing (Supplementary Fig. S1 h). The initial surface can be 

initialized in several ways, but the result shown was initialized using the RC threshold and 

creating a binary image of -1’s and 1’s. This produced the best boundary result after 150 

iterations in comparison with other initializations and number of iterations (data not shown). The 
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graph cut method of segmenting images was too computationally expensive to run in Matlab. In 

particular, solving the eigenvalues and eigenvectors of a similarity graph causes the bottleneck 

for standard image sizes of about 120x120 pixels. 

Finally, standard edge detection was performed on images of cell fluorescence using the 

built-in Matlab function ‘edge’. The Sobel, Prewitt, Roberts and Canny edge detectors identified 

some parts of the cell boundary, but were insufficient to perform further measurements 

(Supplementary Fig. S1 i). 
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SUPPORTING MATERIAL FIGURE CAPTIONS 

Supplementary Figure S1. A comparison between the boundary accuracy of several 

segmentation strategies. 

a) A histogram of the intensity distribution in a typical fluorescent image of a NIH 3T3 

fibroblast is shown. The image (inset) was captured using τ = 100 ms and 1000 bins were used to 

construct the histogram. The boundary in the inset image was generated using our segmentation 

strategy. 

b) An intensity threshold calculated using the mixture of Gaussians (MoG) method is 

shown (vertical red line). This threshold segments the image by creating two classes of pixels: 

those higher than the threshold and those lower than it. A boundary has been drawn to illustrate 

the segmentation result by this method (inset). 

c) An intensity threshold calculated using Otsu’s method is shown (vertical red line). A 

boundary has been drawn to illustrate the segmentation result by this method (inset). 

d) An intensity threshold calculated using the Ridler-Calvard (RC) method is shown 

(vertical red line). A boundary has been drawn to illustrate the segmentation result by this 

method (inset).  

e) A 5 x 5 finite impulse response (FIR) spatial high pass filter was applied to the raw 

fluorescence image, and an intensity threshold was calculated using the mixture of Gaussians 

(MoG) method (vertical red line).  A boundary has been drawn to illustrate the segmentation 

result by this approach (inset).  

f) A 7 x 7 finite impulse response (FIR) spatial high pass filter was applied to the raw 

fluorescence image, and an intensity threshold was calculated using the mixture of Gaussians 
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(MoG) method (vertical red line).  A boundary has been drawn to illustrate the segmentation 

result by this approach (inset).  

g) The Marr-Hildreth method was applied to the raw fluorescence image. A spatial low 

pass filter result is filtered again by a Laplacian spatial high pass filter and the zero crossing of 

the result is used as the segmentation boundary. A boundary has been drawn to illustrate the 

segmentation result by this approach. 

h) Implementation of the level set algorithm to segment the image was performed using a 

square initial boundary and run for 150 iterations. The penalization coefficient of the gradient 

term in the algorithm was set to 1, and the penalization coefficient of the curvature term was set 

to 0.1% of the squared maximum raw image intensity. More iteration would refine the boundary 

for the brighter region of the cell image, but the process has already neglected the cell 

protrusions in the image and without further user interaction to tune the coefficients of the 

algorithm, the segmentation result will remain inaccurate.  

i) Standard edge detection was performed using the built-in Matlab function ‘edge’. From 

left to right, the results of Sobel, Prewitt, Roberts, Laplacian-of-a-Gaussian (LoG) and Canny 

filters are shown. 

 Supplementary Figure S2. Finding the scale of cells in images and designing a spatial 

filter. 

 a) Spatial filtering requires careful consideration of the length scale during filter design. 

For a spatial low pass filter, the approximate length scale of the cell was estimated by first 

segmenting images using only a MoG threshold (in red). The segmented area was treated as if it 

was a circle (in blue) and the radius was calculated. 
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 b) The approximated radius of the cell was used to determine the length scale of the 

spatial low pass filter. Low pass filters must contain elements that sum to 1 and should be 

radially symmetric; so, we employed a Gaussian filter. The sigma value for the Gaussian filter 

was set to 1/6
th

 of the radius value since about 96% of the Gaussian density lies within that range. 

A greater sigma value would flatten the filter and it would begin to approach the shape of a 

boxcar kernel at very high sigma. A lower sigma value would invalidate the calculation of the 

radius since contributions to the low pass result at the edge of the filter would be essentially zero. 

Finally, the elements of the filter in the corners were also set to zero by overlaying a flat disk of 

the same length scale on the Gaussian filter. This step avoided the small amount of bias for 

image elements located at the diagonals of the filter in the low pass result. 




