SUPPORTING INFORMATION

Competitive Binding of Natural Amphiphiles with Graphene Derivatives

Slaven Radic¹, Nicholas K. Geitner¹, Ramakrishna Podila¹, Aleksandr Käkinen^{2,3}, Pengyu Chen^{1,4}, Pu Chun Ke^{1,*} and Feng Ding^{1,*}

¹Department of Physics and Astronomy, COMSET, Clemson University, Clemson, South Carolina 29634, United States

²Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia

³Department of Chemical and Materials Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia

⁴Microsystems Technology and Science Laboratory, University of Michigan, Ann Arbor, Michigan 48109, United States

*E-mail: fding@clemson.edu (F.D.); pcke11@clemson.edu (P.C.K.).

Figure S1. The high-energy normal mode of the graphene oxide nanosheet. The simulations were done with the nanosheet alone. (a) At T~0.67 kcal/mol· k_B , the fluctuation of the potential energy indicated excitation of a higher-energy normal mode. (b) The snapshots of the nanosheet in the high-energy state illustrated the twisted normal mode.

Figure S2. Raman spectra of graphene oxide before and after incubation with algal exudates. The absence of any shift in the 2D-band (\sim 2730 cm⁻¹) suggests that the interaction between graphene oxide and exudates was weaker compared to graphene and exudates.

Figure S3. Palmitic acids (purple) were observed to bind to each other before their adsorption onto the nanosheet in one of the simulations.