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finite element analysis software package COMSOL Multiphysics. The simulated 3D geometries 
were built based on top- and cross-sectional SEM images. The numerical calculations were 

performed by meshing these geometries with 218550 and 302087 elements for 1.2 and 3.1-m-
tall Ge crystals, respectively. An initial hydrostatic expansion in the Ge pillar was considered, 
which was equal to 0.20%, as derived from the difference in the thermal expansion coefficients of 
Si and Ge for a step in temperature of ~ 500°C38. The different lattice parameters of Ge and Si 
and thermal expansion result in lattice strain in the form of convex bowing. The calculations 
provided all 6 components of the displacement gradient tensor, Jij (i, j = x, y, z), which were 

used to compute the displacement field u = (ux,uy,uz) using boundary conditions and reference 
points r0

39: 

ሻܚሺܝ ൌ ൫ݑ௫, ,௬ݑ ௭൯ݑ ൌ ૙ሻܚሺܝ ൅ ܬ ∙ ൥
ݔ െ ଴ݔ
ݕ െ ଴ݕ
ݖ െ ଴ݖ

൩ ,                    (1) 

where the displacement gradient tensor J is expressed by: 
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In (6)  and  represent the symmetric and antisymmetric (rotation) tensors, respectively: 
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The magnitude of displacement field u and three components of the strain tensor (xx,xz,zz) in 

the median vertical plane of 1.2 and 3.1-m-tall Ge crystals are plotted in Fig. S11. Zero dis-
placement was defined at the SiGe boundary (z = 0). Since the Ge crystals shrink during the 
cooling process after growth, the highest total displacements are at the top of the crystals. To find 

the bending of crystal planes we calculate the asymmetrical tensor, since the components ij 

(x,y,z) represent the angles of rotation of the elementary unit cell. Ge crystals have fourfold 

symmetry, xz = yz, and therefore we need to calculate only the yz (x,y,z) components. These 
values represent small local rotation angles of lattice planes around the x-axis at the point (x,y,z).  
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S5-B. Tall crystals 

For tall Ge crystals we determine the net tilt by measuring the deviations of the peak position 
from the nominal value (i.e. 100% relaxed Ge with no tilt) in the (Qx,Qz) and (Qy,Qz) planes by 
using the following formulas (see Fig. S16): 

          tan ߯௬ ൌ ܳ௬ ܳ௭⁄ ,                                    (5) 

                       ߯௫ ൌ ߮ െ ߮଴,              (6) 

          tan߮ ൌ ܳ௫ ܳ௭⁄ ,                                    (7) 

          tan߮଴ ൌ √݄ଶ ൅ ݇ଶ ݈⁄ .                                  (8) 
 

For isolated Ge crystals we measured the net tilt at different positions along their height. Since 
the thickness of the crystal is still comparatively small with respect to the penetration depth of X- 
rays in Ge, the X-rays practically shine through. Hence, the sharp peak stemming from the tall Ge 
crystal is superimposed on a weaker broad peak attributed to the tensile-strained material in the 
trenches (Figs. S17b, c). We repeated this procedure for the three Ge crystals depicted in Fig. 
S17a. Since the position of the sharp peak in the (Qx,Qz) and (Qy,Qz) planes changes from crystal 
to crystal (Fig. S17b, c), each crystal has its own distinct net tilt. 

 

S6. Resolution function 

The instrumental resolution function in reciprocal space mapping is determined by the resolution 
area AE. This is a measure of the angular space illuminated by the incident beam and of the 
angular acceptance of the detector, whose shape depends on the position in reciprocal space40. In 
case of using a pixel detector one of the limiting factors is the pixel size which in our case was ~ 

ee = 0.003 °/pixel (10” per pixel).  

The second limiting factor is the beam divergence. The beam focused by a Fresnel zone plate 
exhibits quite a large divergence due to geometrical limitations of the experimental set up (Fig. 
S18a). The investigated sample is irradiated by a conically shaped beam focused onto the sample. 
The scattered beam defocuses, and the response on the pixel detector is visible as a disc (see Fig. 
S18b). The angular size of the disc on the pixel detector defines the beam divergence and thus the 
resolution within the incidence angle for both in-plane (e.g. Qx, Qz) and out-of-plane (Qy) 

directions. The angular diameter of the disc was ei = 0.08° in our experiment. Basically, the 

beam divergence ei and the detector resolution ee define a 3D window in reciprocal space, 

which has the shape of a disc with diameter ~ Kei = 810-3 Å-1 and height Kee = 410-4 Å-1, 
where K is the modulus of the scattering vector. This disk is oriented perpendicular to the 
incident beam, as shown in Fig. S18c. The measured signal is then a convolution of the window 
function with the scattered intensity.  

However, since the resolution in the RSM is also limited by the measurement step, the real di-

mensions of the resolution window depicted in Fig. S18d by a rectangular box are 810-3 Å-1 and 

110-3 Å-1, respectively.  
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(Qz = 610-5 Å-1). The width of the dynamical diffraction curve for a Ge crystal has to be 
considered in the Laue geometry since the crystal is irradiated through its sidewalls. The width of 

the Laue diffraction curve for a Ge(115) reflection for a plane wave at 11 keV is ~ 10’’ (Qx = 

410-4 Å-1) for a crystal with the thickness of ~ 1.5 m. Since the extinction length in the Laue 

geometry for Ge(115) is ~ 25 m, much larger than the crystal size, the diffraction can be 

considered as kinematical and therefore Qx = 2/(1.5 m) = 410-4 Å-1. If we now compare the 

size of our disc-shaped resolution function with the theoretical widths of diffraction curves, it is 
clear that the resolution function will dominate even if the scattered signal comes from a perfect 
crystal. Such a situation was observed also in our RSMs where the Si substrate peak has disc 
shape. Similarly, the diffraction signal stemming from the Ge crystal exhibits a shape in the form 
of a thin disc, overlapped with a broad, weak signal from Ge deposited in the trenches, see Fig. 
S18d. The cross-sections along the Qx and Qz directions through the (115) peak stemming from 

the Ge crystal have FWHM ~ 110-3 Å-1. Similar values are also obtained for the Si peak. The 
theoretical peak width for Ge (along Qx due to high aspect ratio) is only slightly smaller than the 
height of the window disc. Since the disc height in reciprocal space is almost equal to the 
theoretical diffraction width of a defect-free crystal, this proves that defects do not contribute to 
the diffraction signal in our RSMs. The Ge crystals can therefore be considered defect free. 
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Supplementary movie legends 
 

Supplementary movie 1 | Evolution of the 3D reciprocal space map (RSM) around Si(115) and 
Ge(115) Bragg reflections (e.g. projections (Qx,Qz) - upper left corner, (Qy,Qx) - upper right 
corner, and (Qy,Qz) - lower left corner) during scanning a nanofocused X-ray beam across an 

array of four 1.2-m-tall Ge crystals (corresponding to Fig. 1a and d). The contour plot in the 
lower right corner represents the total scattered intensity from four crystals around the Ge(115) 
peak for all incidence angles. Steps along the x- and y-directions (“pix”, “piy”) are 400 and 200 
nm, respectively. At each position a 3D RSM is built from a collection of 2D detector images 
obtained by rocking the incidence angle. 
   

Supplementary movie 2 | Evolution of the 3D RSM around the Ge(115) reflection as a 

nanofocused X-ray beam explores the array of four 1.2-m-tall Ge crystals of Fig. 1a and d. The 
3D RSM is cut perpendicular to the Qx and Qy directions in order to reveal its internal structure. 
     

Supplementary movie 3 | Similar to Supplementary Movie 1, but for an array of four 3.1-m-
tall Ge crystals (corresponding to Fig. 1b and e). 
  

Supplementary movie 4 | Similar to Supplementary Movie 2, but for an array of four 3.1-m-
tall Ge crystals (corresponding to Fig. 1b and e). 
  

Supplementary movie 5 | In order to probe the crystalline properties of a single Ge crystal by 
scanning X-ray nanodiffraction, neighbour crystals are removed inside a scanning electron 
microscope (SEM) by micro-macromanipulators that are driven by high-precision (x,y,z) piezo-

stages. The movie shows the removal of a 11-m-tall Ge crystal inside a scanning electron 

microscope by a micromanipulator. The field of view is ~ 3032 m. 
 

Supplementary movie 6 | Evolution of the 3D reciprocal space map (RSM) around Ge(115) 
Bragg reflection (e.g. projections (Qx,Qz) - upper left corner, (Qy,Qx) - upper right corner, and 

(Qy,Qz) - lower left corner) during scanning a nanofocused X-ray beam across the 11-m-tall Ge 
crystal (corresponding to Fig. 3a). 
  

Supplementary movie 7 | Evolution of the 3D RSM around the Ge(115) reflection as a 

nanofocused X-ray beam scans the 11-m-tall Ge crystal of Fig. 3a. The 3D RSM is cut 
perpendicular to the Qy direction in order to reveal its internal structure.     

 
 
 
 

 


