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1st Editorial Decision 26 September 2012 

Thank you for the submission of your manuscript "Functional Genomics Identifies Five Distinct 
Molecular Subtypes with Clinical Relevance and Pathways for Growth Control in Epithelial Ovarian 
Cancer" to EMBO Molecular Medicine and please accept my apologies for the delayed reply. We 
have now received the reports from two the three referees whom we asked to review your 
manuscript and since the review process so far has been lengthy, we prefer to take a decision now 
and forward the third report if/when it comes in.  
 
You will see that the reviewers find the topic of your manuscript potentially interesting. However, 
they also raise significant concerns on the study, which should be addressed in a major revision of 
the manuscript.  
 
Importantly, both Reviewers highlight, in addition to a number of technical concerns, that more 
mechanistic insight should be provided concerning the pathways that differentiate the subsets. In 
addition, Reviewer #1 notes that more detailed clinical information has to be provided and that the 
cell line classification has to be improved.  
 
Given the balance of these evaluations, we feel that we can consider a revision of your manuscript if 
you can convincingly address the issues that have been raised within the time constraints outlined 
below.  
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However, we realize that addressing all of the referees' criticisms might require a lot of additional 
time and effort and be technically challenging. I am uncertain whether you will be able (or willing) 
to return a revised manuscript within the 3 months deadline and I would also understand your 
decision if you chose to rather seek rapid publication elsewhere at this stage.  
 
Should you decide to embark on such a revision, revised manuscripts should be submitted within 
three months of a request for revision. They will otherwise be treated as new submissions.  
 
Should you find that the requested revisions are not feasible within the constraints outlined here and 
choose, therefore, to submit your paper elsewhere, we would welcome a message to this effect.  
 
 

***** Reviewer's comments *****  
 

Referee #1 (Comments on Novelty/Model System):  

 

Insufficient details of the sample cohorts are included; The PA-1 cell line representing "Stem-A" 
was derived from human ovarian teratocarcinoma cells which is not EOC but a germ cell tumor 
(Zeuthen et al. Int J Cancer 1980).  

 

Referee #1 (General Remarks):  

 

This study presents a large meta-analysis of epithelial ovarian cancer (EOC) microarray datasets in 
which five molecular subtypes with different characteristics are identified. A collection of 16 
microarray datasets was used as a training set, and combined with a collection of 5 microarray 
datasets for validation. The successful clustering of multiple data sets is remarkable as a batch 
effects are common and approaches such as ComBat tend to remove not only batch effects, but also 
biological variation. Finally, a genome-wide shRNA screening method is utilized to identify 
subtype-related growth-promoting genes in selected molecular subtypes, and validated five genes as 
"Stem-A" related growth-promoting genes using PA1 cell line. A pathway analysis to suggest an 
association between mitochondrial metabolic pathways and "Stem-A" cell proliferation.  
Generally, the manuscript should be more realistic about the results and be put more clearly in the 
context of previous findings; there is a general tendency for overstating the findings that aims to 
convince the reader of the importance of the study. This is unnecessary. Throughout the Results 
section the logic of why certain choices were made or how to interpret certain results needs to be 
more clear. A lot of insider's knowledge is expected from the reader. The manuscript represents a 
large body of work with a potentially exciting end result - possible involvement of energy 
metabolism in a specific subset of EOC - but it leaves the reader with an a bit of an empty feeling as 
the end result is entirely speculative. The study would greatly benefit from an attempt to show that 
energy metabolism is what sets the StemA subset apart from the other subtypes. Without followup 
to this result, it remains unclear what the true contribution of this study is, specifically of the 
shRNA/siRNA screens.  

Detailed comments are described below.  

 

1. "Computation of entropy showed that 1,500 or more samples were required to capture the 
complexity and dynamicity of EOC (Suppl. Fig. 1B) (Ewens & Grant, 2001)." Fig 1B shows that 
about 500 samples is likely to capture the major entropy.  
2. As was reported by TCGA, serous ovarian carcinoma can be separated into four subgroups that 
were very similar to the serous ovarian carcinoma subgroups of Tothill et al. See also the review by 
David Bowtell in Nat Rev Cancer, 2010. These results should be acknowledged in the introduction. 
Supplemental Table 3 shows that the clusters reported here are again very similar to Tothill's. This 
similarity is recognized and the authors need to be careful not to overstate the novelty of the 
subgroups reported throughout the manuscript. For consistency, the authors should compare the 
names they propose for their subtypes to those proposed by Tothill (c1-c6) or TCGA 
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(differentiated/c4, mesenchymal/c1, immunoreactive/c2, proliferative/c5); they should strongly 
consider to use these previously proposed naming conventions for consistency.  
3. A breakdown of the subgroups by data set as well as by histology should be provided to allow full 
interpretation of the clustering results. The authors use not only high-grade serous types but also 
other histologic types that share few molecular similarities (Zorn et al. Clin Cancer Res 2005; 
Vaugen et al. Nat Rev Cancer 2011). Especially, most invasive mucinous ovarian cancers are 
metastases from the gastrointestinal tract to the ovary. Therefore, the authors have to be especially 
careful about the interpretation of the results when molecular subtypes are identified in EOC. 
Although the authors showed clinical information in Supplementary Fig. 2, the details of clinical 
information per subtype are unknown. More details of clinical information per subtype in the 
training and validation datasets should be provided as a Table.  
4. It should be briefly explained what the BinReg tool is and does. 78.8% classification accuracy of 
this approach seems low and unconvincing and it surprising that the core samples perform worse 
(78.5%) than non-core samples. It should be explained why the results of combined clustering of 
validation data set and training data set to find the subtype of samples in the validation data set, was 
used over the more conventional approach of using a classifier (in this case ClanC). Similarly, why 
were cell lines not classified (using ClanC or another classification method) but clustered. It is 
surprising to find cell lines of the class that resembles Tothill's c2, as the c2 class was related to 
tumor associated T-lymphocytes that are not part of any cell line model.  
5. An association between molecular subtypes and prognosis is observed and referred to in the 
discussion as well as the results. This result should be discussed in the context of covariates such as 
surgical status (or status of residual tissue), which is one of most important prognostic factor in EOC 
(deBois et al. Cancer 2009). Progression-free survival time (or time to recurrence) should be 
included. The Kaplan-Meier survival curves (Fig. 1B and Suppl. Fig. 3D) of training and validation 
sets suggest a difference in prognosis of "Stem-B" subtype, which includes many samples with non-
serous histologic types. This suggests that the outcome differences observed are due to the inclusion 
of different histologies.  
6. It is suggested that the EOC cell lines mimic the clinical outcome behavior of the primary tumor 
samples. Does this result hold up when only including serous tumors into the analysis, or are the 
differences observes due to different histologies and the inclusion of LMP cell lines.  
7. How were the 14 celllines used for shRNA screen selected? What was the histology of the 
celllines? The term 'shRNA copy number' was confusing as copy number is often used to reflect 
DNA dosage; similar for the terms deleted/amplified. What does it mean when an shRNA is 
depleted/amplified? Is the target gene than suggested to be a growth inhibitor/stimulator? Not all 
readers will understand these details.  
8. There should be more details on the implementation of the shRNA screen in the main text. For 
instance, details on how the 'shRNA copy number' is assessed on compared between different 
shRNAs and celllines would be helpful in interpreting the result. How many genes are targeted by 
the library and are the numbers of identified shRNAs/genes more than expected by random chance? 
How many genes were deleted/amplified in all celllines? Although the subtypes are a interesting 
characteristic of EOC, it is not clear why those genes that are different between sutbypes would be 
the most disease-relevant, rather than genes associated with all celllines. Figure 3B shows a heatmap 
of the identified shRNAs in each of the celllines and the data is likely (z-score) normalized. The 
effects of this normalization should be explained, as the normalization will force the data to show 
(visually attractive) differences.  
9. Why is the number of genes depleted in Stem-A (n=135) different from what is reported in the 
previous paragraph (n=88)? The PA-1 cell line representing "Stem-A" was derived from human 
ovarian teratocarcinoma cells which is not EOC but a germ cell tumor (Zeuthen et al. Int J Cancer 
1980). This is likely to have an impact on the results and suggests that the cellline classification will 
be able to classify any expression profile and is not EOC specific .  
10. The logic and flow of the "Validation of subtype-specific growth promoting genes" section is 
unclear. Was the HEYA8 cellline used a control in the t-test comparison? The identification of five 
genes as growth-promoting seems adequate, but is hard to interpret without better understanding 
what the control was.  
11. Were technical replicates performed for each cellline-shRNA expression array experiment? For 
any of such experiments, triplicates are adviced as a minimal number by any statistical model.  
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Minor comments  

 

1. Paragraph 1: The authors should provide the eligibility criteria in this study including quality 
control of expression data.  
2. Materials and Methods/Supplementary Table 11: The authors should describe source of 
information (for example GEO_ID) about the Duke Cohort dataset.  
3. Materials and Methods, paragraph 7: The authors should describe the name of cell lines precisely. 
Ex) Tyknu -> TYK-nu  
4. Supplementary Table 1: The column of "Genomic data" is unnecessary because the authors didn't 
use genomic data except expression data. Instead, the authors should add a column of 
"chemotherapy".  
 
 

 
Referee #3:  

 

The manuscript "Functional Genomics Identifies Five Distinct Molecular Subtypes with Clinical 
Relevance and Pathways for Growth Control in Epithelial Ovarian Cancer" by Tan, Huang and 
Miow et al. identified gene expression signatures associated with five subtypes of epithelial ovarian 
cancer (EOC). The authors analyzed the largest compilation of EOC expression profiles to date and 
defined molecular subgroups which display unique clinical outcome. The authors extend their EOC 
molecular subgroup expression profiles to traditional in vitro cell lines which allowed for their 
classification as clinically relevant models. Through the use of RNAi libraries, the authors identified 
genes that affect EOC sub-type specific tumor cell growth and suggest the biological pathways that 
may underlie these sub-type dependencies. The manuscript presents extensive data and analyses 
including an expression meta-analysis of a very large number of ovarian cancers, and genome-wide 
shRNA data for 14 ovarian cancer cell lines. However, some of the analyses could be improved, and 
many of the conclusions seem overstated.  
 

Major Concerns:  

 

1) The subtyping analyses at times seem to be circular. For example, tumor assignments were 
determined for external datasets by applying BinReg using a predictive model generated from the 
internal data. These results were compared to "true" subtypes determined by pooling the external 
data with 1,142 samples from the internal data. In both cases, the internal data will dominate the 
analysis and determine similar cluster assignments.  
 
Likewise, the internal data were divided into deciles with leave-10%-out determination of the cluster 
assignments; these assignments were then compared to the assignments using all the data. Again, the 
90% of the data used in both analyses will dominate the cluster assignments, which will necessarily 
overlap as a result. A better approach would seem to be to divide the data into, for example, 40%, 
40%, and 20%, then use each 40% independently to classify the 20%, and evaluate concordance.  
 
Similarly, the tumor data were used to determine a classification scheme for the cell lines, and the 
resultant subtype assignments were compared to assignments obtained from clustering of all the 
tumors and cell lines together. Again, the concordance of the results simply reflects the fact that 
substantially the same data were used to determine the clustering pattern in both analyses.  
 
2) I do not understand the justification or process for classifying cell lines based on two rounds of 
consensus clustering. It would seem that CLANC could just be applied based upon the original 
clustering results.  
 
3) On p. 13, "Importantly, our shRNA screens detected specificity in the shared pattern within a 
subtype in the depletion or amplification of shRNAs." Yet it is not clear that the depleted/amplified 
shRNAs were significant when p-values are corrected for multiple hypotheses. One straightforward 
way to validate the data (beyond the individual hairpins evaluated in single lines in the following 
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experiments) would be to compare the results to previously published genome-level shRNA screens 
in ovarian cancers, eg Cheung et al, PNAS 2011.  
 
Also, I would be interested to know the effect sizes of these hairpins (not just the ones explored in 
detail in following experiments). RIGER was applied using a KS statistic, which is valid but may 
highlight hairpins with small (though consistent) effect sizes.  
 
4) The biological evaluation of the "Stem-A specific growth promoting genes" is limited in scope. In 
particular, the GSEA results implicating pathways are suspect because they represent comparisons 
of individual cell lines. Moreover, the authors conclude that finding "Mitochondria Membrane" etc 
as restricted to the response of the Stem-A line to shRNA to the 5 genes suggests a link between 
these pathways and cell proliferation. Rather, these pathways are likely to reflect effects of toxicity: 
namely activation of apoptotic pathways and cell death. Moreover, the Discussion paragraph on 
these pathways is very speculative. We need much more mechanistic data before we can implicate 
these pathways as therapeutic targets, and would have to at least try drugs targeting these pathways 
on the cell lines before proposing them for clinical trials.  
 
5) The manuscript defines 5 molecular subtypes of EOC. How do these subtypes compare with the 4 
transcriptional subtypes described by the TCGA? Does your 5th subgroup subdivide a TCGA 
subtype, or does it represent a novel subtype?  
 
6) The clinical utility of the molecular subtypes is emphasized, but it is not clear to me that this is 
justified by the modest magnitude of difference in outcomes between the subtypes. Moreover, in the 
Discussion the authors state "we believe our classification represents a foundation for further 
development, particularly since ovarian cell lines can be assigned to unique ovarian tumor 
subtypes." It is not surprising that cell expression profiles could be so assigned-a random subtyping 
scheme would also seem to divide the cell lines. It would be more interesting if the subtypes 
predicted other characteristics of the cell lines that were similar to tumors, eg genetics. The authors 
mention anchorage-independent growth and growth rate, but these are not measured in tumors.  
 

Minor Concerns:  

 

1) On page 6, "Computation of entropy showed that 1,500 or more samples were required..." 
suggests that there is a clear cutoff at 1,500, but I see little change past 500.  
 
2) On page 7, "non-serous EOC appears to have a distinct molecular profile"-the data do not 
convincingly support this. Both the non-serous and (particularly) serous tumors appear to reside in 
several clusters, and no cluster contains only non-serous tumors.  
 
3) In Supp Fig 1, it would be useful to see a heatmap of all the data, arranged by dataset, to evaluate 
the effectiveness of ComBat.  
 
4) Supp Fig 2 is small and difficult to read. The equations in the Entropy analysis are also illegible 
in my copy.  
 
5) ss-GSEA of EOC samples resulted in numerous gene sets enriched for each subtype. On page 7 
the authors state, "Mes tumors correlated with metastases and TGFB-related pathways". Yet the Mes 
tumors were enriched for 177 gene sets/pathways. Is it correct to connect Mes tumor metastatsis to a 
single gene set if there are a multitude of gene sets enriched?  
 
 
 
1st Revision - authors' response 18 February 2013 

  



 

 

Referee #1 (Comments on Novelty/Model System):  

1. Insufficient details of the sample cohorts are included;  
 

In order to maximize the utility of the sample cohorts in this study, we have added clinical 
information including histology, debulking status, stage, grade, age, primary/metastasis, 
progression-free survival and overall survival for each sample of the datasets in Suppl. Tables 
15A and 15B. 

 
 
2. The PA-1 cell line representing "Stem-A" was derived from human ovarian teratocarcinoma cells, 
which is not EOC but a germ cell tumor (Zeuthen et al. Int J Cancer 1980).  
 

We agree with the referee that the PA-1 cell line was established from human ovarian 
teratocarcinoma not from epithelial ovarian carcinoma.  However, it is also clear that PA-1 
shares a common transcriptional signature with Stem-A EOCs; in particular, serous 
carcinoma.  Our classification of the cell line panel is purely based on the expression profile, 
without considering the histological origin of the cell line.   
 
Further, we noted that the 1,538 tumors included only one teratocarcinoma sample (in 
GSE2109) that was classified into the Stem-A subtype; this implies common molecular 
profiles between teratocarcinoma and Stem-A EOC in vivo.  Our findings thus suggest that 
the gene expression profiles can classify molecular phenotypes beyond what is apparent from 
histological origin. 
 
(Please note that this is further addressed on Page 11 of this rebuttal in response to comment 
9, part II.) 
 

Referee #1 (Specific Remarks):  
This study presents a large meta-analysis of epithelial ovarian cancer (EOC) microarray datasets in 
which five molecular subtypes with different characteristics are identified. A collection of 16 
microarray datasets was used as a training set, and combined with a collection of 5 microarray 
datasets for validation. The successful clustering of multiple data sets is remarkable as a batch effects 
are common and approaches such as ComBat tend to remove not only batch effects, but also 
biological variation.  

 
We agree with this Referee that biological variations might be affected when attempting to 
remove technical variation.  ComBat was used in the current analysis, since it showed the best 
precision, accuracy and overall performance among various algorithms to effectively adjust 
for batch effects while conserving meaningful variations (Chen et al, 2011).  However, the 
biological variation of the assembled data in the current study is apparent even in the post-
ComBat data, where we can see different molecular subgroups with distinct clinical 
characteristics exemplified by survival outcomes and age.  This finding indicates that 
biological variations of interest were conserved, as shown in Suppl. Figs. 1A and 1B.  We 
now included this description in the section “Molecular heterogeneity of epithelial ovarian 
cancer” of the “Results”. 
 
 

Finally, a genome-wide shRNA screening method is utilized to identify subtype-related growth-
promoting genes in selected molecular subtypes, and validated five genes as "Stem-A" related 
growth-promoting genes using PA1 cell line. A pathway analysis to suggest an association between 
mitochondrial metabolic pathways and "Stem-A" cell proliferation.  



 

 

 
Generally, the manuscript should be more realistic about the results and be put more clearly in the 
context of previous findings; there is a general tendency for overstating the findings that aims to 
convince the reader of the importance of the study. This is unnecessary. Throughout the Results 
section the logic of why certain choices were made or how to interpret certain results needs to be 
more clear. A lot of insider's knowledge is expected from the reader.  
 

We considered both Referees’ comments and carefully re-wrote the relevant parts in the 
“Introduction”, “Results” and “Discussion”.  First, we restated our findings more precisely, 
removing instances where we had overstated the results as much as we noted throughout the 
manuscript.  Second, we made a significant effort to clarify the logic in the design and 
interpretation of the experiments to render the manuscript understandable for non-experts.  
Finally, we added to the Supplemental Information more detailed descriptions of the 
bioinformatics approaches for expression microarray analyses and experimental 
methodologies for shRNA/siRNA screens. 
 

 
The manuscript represents a large body of work with a potentially exciting end result - possible 
involvement of energy metabolism in a specific subset of EOC - but it leaves the reader with an a bit 
of an empty feeling as the end result is entirely speculative. The study would greatly benefit from an 
attempt to show that energy metabolism is what sets the StemA subset apart from the other subtypes. 
Without follow-up to this result, it remains unclear what the true contribution of this study is, 
specifically of the shRNA/siRNA screens.  
 

As suggested by both Referees, we have included follow-up validation studies of our 
shRNA/siRNA screen.   
 
Initially, we observed that genes involved in mitochondrial oxidative phosphorylation were 
transcriptionally more active in Stem-A cell lines than in cell lines of the other molecular 
subtypes.  Selective down-regulation of oxidative phosphorylation-related genes was further 
observed in PA-1 with siTUBGCP4, siNAT10 or siGTF3C1.  Based on these observations, our 
initial hypothesis was that cells of the Stem-A subtype might rely on mitochondrial oxidative 
phosphorylation as a source of energy more than those of the other subtypes. 
 
During the course of the revision, however, we noted that transcriptional elevation of the 
genes for mitochondrial oxidative phosphorylation did not coincide with an actual activation 
in the oxygen consumption rate measured with the XF24 extracellular flux analyzer (Seahorse 
Bioscience, Billerica, MA) in cultured cells (image analysis based on the changes in 
carbonylcyanide-4- (trifluoromethoxy) -phenylhydrazone (FCCP)-uncoupled respiration).  
Moreover, suppression of mitochondrial membrane gene expression by siRNA treatment 
against TUBGCP4 or NAT10 was accompanied by the activation of apoptosis, as measured by 
cleavage of Caspase 3 and PARP in PA-1 cells (Suppl. Fig. 13C).  It is, therefore, more 
reasonable to conclude that suppression of the mitochondrial membrane gene expression 
implies an apoptotic state of the cell rather than decreased activity of mitochondrial 
metabolism (as suggested by Referee #3). 
 
Instead, we now find a significant increase in the expression of gene sets for microtubule-
associated complexes or -related processes in Stem-A clinical samples and cell lines (Fig. 4A; 
Suppl. Table 16).  Treatment with siTUBGCP4, a critical gene for tubulin nucleation, was 
also found to coincide with the down-regulation of microtubule-related genes (Suppl. Fig. 
13B).  Importantly, in vitro studies using drugs that interfere with microtubule polymerization 
revealed that the GI50 for vincristine and vinorelbine of the Stem-A cell lines was 
significantly lower than that for non-Stem-A cell lines (Fig. 4B).  Such a difference was not 
observed for paclitaxel (drug that stabilize microtubule), the current standard of care used in 
the treatment of ovarian cancer (Fig. 4B).  These observations imply that drugs interfering 



 

 

with the tubulin polymerization pathway could be considered to selectively treat Stem-A-type 
ovarian carcinoma.  In the revised version of the manuscript, we therefore focus on describing 
this identification of the connection between Stem-A and tubulin formation.  We modified the 
“Abstract”, “Results”, “Discussion” and “Materials and Methods” accordingly, and also 
added Suppl. Table 16.  
 
 

Detailed comments are described below.  
1. "Computation of entropy showed that 1,500 or more samples were required to capture the 
complexity and dynamicity of EOC (Suppl. Fig. 1B) (Ewens & Grant, 2001)." Fig 1B shows that 
about 500 samples is likely to capture the major entropy.  

 
We used the entropy plot to show that the number of samples employed for the analysis (n = 
1,538 in total) was necessary and sufficient to provide a robust molecular classification in 
ovarian carcinoma.  However, to address the comments from both Referees, we utilized a 
statistical power analysis to estimate the minimum sample size (Suppl. Fig. 2; Suppl. 
Materials and Methods).  
 
We sought to distinguish a given µSubtype-X from µNon-Subtype-X, using a two-sided t-test with 
significance set at α = 0.05.  Based on these parameters, we generated a power plot for each 
subtype.  The sample number required for segregation was then computed as Epi-A = 1,298, 
Epi-B = 1,119, Mes = 785, Stem-A = 620, and Stem-B = 1,665; these numbers would achieve 
a desirable power of greater than 0.8, which is a conventionally accepted level of statistical 
power (Fox & Mathers, 1997).  This result implies that our sample number of 1,538 is indeed 
appropriate for the molecular subtyping of ovarian carcinoma.  We presented the results of the 
statistical power analysis as Suppl. Fig. 2, and described this in the section “Molecular 
heterogeneity of epithelial ovarian cancer” of the “Results” and in the “Suppl. Materials and 
Methods”. 

 
 

2. As was reported by TCGA, serous ovarian carcinoma can be separated into four subgroups that 
were very similar to the serous ovarian carcinoma subgroups of Tothill et al. See also the review by 
David Bowtell in Nat Rev Cancer, 2010. These results should be acknowledged in the introduction. 
Supplemental Table 3 shows that the clusters reported here are again very similar to Tothill's. This 
similarity is recognized and the authors need to be careful not to overstate the novelty of the 
subgroups reported throughout the manuscript. For consistency, the authors should compare the 
names they propose for their subtypes to those proposed by Tothill (c1-c6) or TCGA 
(differentiated/c4, mesenchymal/c1, immunoreactive/c2, proliferative/c5); they should strongly 
consider to use these previously proposed naming conventions for consistency. 
 

Although we originally acknowledged the relevance of the two previous studies by Tothill et 
al. (Tothill et al, 2008) and by TCGA (The Cancer Genome Atlas Research Network, 2011) 
in the second paragraph of the Introduction, it is now clear that our original description lacked 
clarity in describing the relationships between the different molecular subtyping methods.  
The classifications made by TCGA and the present study were compared with that of Tothill 
et al. (Tothill et al, 2008) (Suppl. Table 3).  We now provide a scheme of the mutual 
relationships between the three molecular subtyping methods in Suppl. Fig. 3B.  This is also 
described in the section of “Molecular heterogeneity of epithelial ovarian cancer” in the 
“Results” section and in “Suppl. Text” of the revised manuscript.  It is important to note that 
the subtypes described by Tothill et al. or by TCGA (The Cancer Genome Atlas Research 
Network, 2011) do not show a one-to-one match with the subtypes established in our study 
(see the relationship among C2, C3 or C4/Immunoreactive or Differentiated/Epi-B or Epi-A).  
These differences in subtype classification may suggest a shared biological feature across 
these subgroups and hence may cause an imperfect distinction of the subtypes using 
predictive models.  We also noted that the TCGA molecular subtyping lacks the Stem-B/C6 



 

 

population, which is described in more detail in the response to the Major Comment #3 of 
Referee #1. 
 
To better describe the connection between our study and these two prior studies, we now 
describe our subtypes as follows: Epi-A/C3/Differentiated; Epi-B/C2/Immunoreactive or Epi-
B/C4/Differentiated; Mes/C1/Mesenchymal; Stem-A/C5/Proliferative, and Stem-B/C6 when 
these terms first appear in the revised manuscript.  However, because of the discrepancy 
among the subtyping schemes, we use our own terminology in further instances. 
 

 
3. A breakdown of the subgroups by data set as well as by histology should be provided to allow full 
interpretation of the clustering results. The authors use not only high-grade serous types but also other 
histologic types that share few molecular similarities (Zorn et al. Clin Cancer Res 2005; Vaugen et al. 
Nat Rev Cancer 2011). Especially, most invasive mucinous ovarian cancers are metastases from the 
gastrointestinal tract to the ovary. Therefore, the authors have to be especially careful about the 
interpretation of the results when molecular subtypes are identified in EOC. Although the authors 
showed clinical information in Supplementary Fig. 2, the details of clinical information per subtype 
are unknown. More details of clinical information per subtype in the training and validation datasets 
should be provided as a Table. 
 

In response to this comment, the breakdown of subtypes by dataset and by histology has been 
added in Suppl. Figs. 4A and 4B.  
 
TCGA subdivided high-grade serous cancers into four molecular subgroups, which lacked an 
identifiable Stem-B/C6 population, even when using all available histotypes (in the current 
study), or just the serous, endometrioid and serous LMP histologies (Tothill et al, 2008).  On 
the other hand, in our analyses, many of the histotypes other than serous cancers were 
classified into the Stem-B subtype (Suppl. Figs. 4B and 6A), although these non-serous 
tumors shared “few molecular similarities”.  Inclusion of the other histotypes, therefore, may 
allow the identification of a unique subgroup in serous carcinomas.  To see the effect of 
including the other histologies in our molecular classification (using a standard deviation cut-
off of 1.05), we examined the lists of genes that were most variably expressed across the 
samples as below.  

 
1) All samples used in the current study (n = 1,538) 
2) Serous carcinoma samples (n = 1,274)  
3) Samples with histotypes other than serous carcinoma (n = 264)  

 
These lists showed a significantly higher overlap between all 1,538 and 1,274 serous samples 
(1,116 overlapped/1,138 genes in total; 98.1%), than between all 1,538 and 264 of the other 
histology samples (1,089 overlapped/1,311 genes in total; 83.1%).  This difference in the gene 
lists indicates that the overall expression pattern with all 1,538 samples was influenced mainly 
by variation within the serous carcinoma samples but to a lesser extent than that within the 
other histological types.  The other histotypes might have been thus classified into the same 
molecular category as Stem-B, even though they exhibited distinct biological characteristics.  
However, it is also likely that the variation between serous and the other histologies 
contributed to the identification of the Stem-B subtype exhibiting less serous features.  In fact, 
the Stem-B/C6 subtype was identified from the analyses of multi-histotype ovarian cancers by 
Tothill et al. and by us, but not in the analysis of only high-grade serous ovarian cancer by 
TCGA, as mentioned previously.  This notion was also supported by the fact that the 
expression level of WT1 gene, a marker of serous adenocarcinoma of the ovary (Lawrenson & 
Gayther, 2009) was significantly lower in Stem-B tumors, irrespective of whether they were 
exhibiting other histotypes or were only serous ovarian carcinoma (Suppl. Fig. 5).  We now 
include this description in “Suppl. Text”. 
 



 

More detailed clinical information regarding the molecular subtype in the training and 
validation datasets are provided in Suppl. Tables 4A, 4B, 4C and 4D.  Moreover, clinical 
information for each sample in the training and validation datasets is given in the new Suppl. 
Tables 15A and 15B. 
 

 
4. It should be briefly explained what the BinReg tool is and does. 78.8% classification accuracy of 
this approach seems low and unconvincing and it surprising that the core samples perform worse 
(78.5%) than non-core samples.  
 

More details of the BinReg method have been added to the “Materials and Methods” in the 
section “Predictive modeling and validation by BinReg”.  We now also provide the URL links 
to the detailed descriptions by the original authors and to the software. 
 
In spite of recent progress in the development of statistical models for molecular subtyping 
with expression microarray data, there is still uncertainty about the reproducibility of the 
various classification algorithms because of the intrinsic nature of subtype identification 
where the true classification remains unknown (Haibe-Kains et al, 2012).  The concordance 
between pairs of different classifiers varied from 49-86% (median: 68%) in the molecular 
subtyping of 5,715 breast cancer samples derived from 36 independent datasets (Haibe-Kains 
et al, 2012).  Similarly, a concordance of 77.5% was observed between a centroid prediction 
and a k-means clustering in a breast cancer cohort with 412 samples (Calza et al, 2006), 
showing that the best methods achieve a concordance comparable to the 78.8% we observed 
in our study. 
 
By scrutinizing the discrepancy in the subtype classification, we noted high rates of 
discordant assignments in distinguishing Epi-A from Epi-B or Stem-B, and Epi-B from Mes 
(Suppl. Table 8).  This ambiguity may arise from shared biological properties between some 
of the subtypes; for example, all three Epi-A, Epi-B and Stem-B subtypes expressed epithelial 
markers, and many clinical samples with Epi-B or Mes subtype assignment expressed 
inflammatory cell markers (Fig. 1A; Suppl. Fig. 11A; Suppl. Text).  A similar overlap was 
indeed observed in a breast cancer cohort between luminal A and luminal B subtypes, which 
shared a nuclear expression of estrogen receptors (Calza et al, 2006).  In fact, 82% of 489 
ovarian cancer expression data of TCGA were assigned to more than one subtypes in a cross-
validation with ss-GSEA (Verhaak et al, 2013), implying there were transcriptionally 
overlapped features across the samples.  We believe that the observed discordance is due to 
similarity in the biological properties of the clinical samples.  We now include this description 
in the “Suppl. Text”. 
 
To define core samples in the analysis, we used gene sets that are the most variably expressed 
across the 1,538 samples, while the gene sets for BinReg were selected to distinguish a given 
subtype from the others in a supervised manner.  The gene components for each gene set were 
largely distinct, with a 9.8% overlap (116/1185 genes).  Moreover, the silhouette width for the 
genes with variable expression was not correlated with that for the BinReg subtype signatures 
(Spearman correlation rho = 0.0194 and p = 0.4612).  These findings are not inconsistent with 
our observation, in which the core samples were not always predicted as anticipated. 
 
 

It should be explained why the results of combined clustering of validation data set and training data 
set to find the subtype of samples in the validation data set, was used over the more conventional 
approach of using a classifier (in this case ClanC).  

 
In order to assess the accuracy of a predictor generated by BinReg or ClaNC, the “true” 
subtype must be known for a validation sample.  In the original manuscript, as a means of 
assigning a “true” subtype to the validation samples, we employed the combined clustering 



 

 

approach, in which the validation and training datasets were combined and subsequently 
clustered.  Independently, BinReg or ClaNC was used to predict a subtype status of a 
validation sample purely based on the expression data of the training dataset.  We then 
compared the subtype derived from the combined clustering with that from BinReg or ClaNC. 
 
Nevertheless, to avoid confusion, we removed the combined clustering part and hence the 
assessment of accuracy/concordance of the validation samples in the revised manuscript.  We 
instead present only the prediction results from BinReg and ClaNC (Suppl. Figs. 7D and 8D).  
To compare the similarity of the subtypes identified between the training and validation sets, 
we used clinicopathological features as well as the Spearman correlation analysis in the 
expression, and show the results in Fig. 1E, Suppl. Figs. 7D and 8D, and Suppl. Tables 4A, 
4C and 4D.  We now provide a detailed description in the “Predictive framework for EOC 
subtype classification” section of the “Results” in the revised manuscript. 
 

  
Similarly, why were cell lines not classified (using ClanC or another classification method) but 
clustered. 

 
In the original manuscript, we did not describe the reason why we employed the co-clustering 
method other than predictive models in classification of the panel of cell lines.  First, co-
clustering is a conventional method to classify cell lines into molecular subgroups with 
expression microarray data (Lowe et al, 2007; Perou et al, 1999; Prat et al, 2010; Virtanen et 
al, 2002).  Second, we in fact performed cell line classification based on the predictive models 
by ClaNC and BinReg, relying on subtype signatures from clinical samples.  The results were 
then compared with that obtained by the co-clustering method.  Taking advantage of 28 
biological replicate cell lines (Duke, Kyoto, and Singapore; see also “Cell line panel” in 
“Suppl. Materials and Methods”), we examined whether subtype assignment was consistent 
across the replicates. While consistency was 100% (28/28 cell lines) in the assignment by the 
co-clustering, both ClaNC and BinReg resulted in a less consistent subtyping (BinReg: 
67.9%; 19/28 cell lines, ClaNC: 67.9%; 19/28 cell lines, Suppl. Table 9).  Based on this 
observation, we decided to employ the co-clustering method instead of the predictive models.  
To make this clearer, we modified the description in the section of “Identification of 
representative cell lines for each subtype” in the “Results”, added a more detailed description 
in the figure legend for Suppl. Fig. 10A, in the “Suppl. Text”, and included Suppl. Table 9 in 
the revised manuscript to explain why we employed co-clustering over the other methods.  In 
addition to Figs. 2B and 2C, transcriptional similarity of a given subtype between the cell 
lines and the clinical samples was further confirmed with a Spearman correlation map 
analysis and the result obtained was added as Suppl. Fig. 10C. 
 
 

It is surprising to find cell lines of the class that resembles Tothill's c2, as the c2 class was related to 
tumor associated T-lymphocytes that are not part of any cell line model.  

 
We agree with the Referee that tumor-associated inflammatory cells, including T-
lymphocytes, are not part of any cell line model.  However, it is also true that Epi-B cell lines 
share transcriptional profiles with the Epi-B clinical tumor samples.  The similarity in the 
expression was confirmed with the BinReg analyses at gene and pathway levels in the original 
manuscript (Figs. 2B and 2C) and with the newly added Spearman correlation map in the 
revised manuscript (Suppl. Fig. 10C).  It is plausible that the similarity between cell lines and 
clinical samples is intrinsic to carcinoma cells and not to contaminating inflammatory cells, as 
supported by several lines of evidence: 1) The Epi-B subtype of clinical samples consists of 
Tothill’s C2 and C4, as illustrated in Suppl. Fig. 3B, as well as in the response to the comment 
#2. Tothill’s C4 is a tumor cluster with fewer infiltrating cells than C2 (Tothill et al, 2008); 
therefore, the Epi-B subtype in clinical samples is not solely characterized by inflammatory 
cell infiltration (Fig. 1A).  2) Epi-B tumors are characterized not only by the marker gene 



 

expression of inflammatory cells, such as major histocompatibility complex (MHC) class II 
genes (HLA-DMs, DOs, DPs, DQs and DRs), but also by gene sets for epithelial cells and 
interferon (IFN) pathways, such as IFN-downstream genes (Fig. 1A; Suppl. Figs. 11A and 
11B).  It is important to note that Epi-B cell lines also retain a similar expression pattern in 
these subsets of genes that include even MHC class II genes (Suppl. Figs. 11A and 11B).  
This ectopic expression of MHC class II genes in Epi-B cell lines may be induced through the 
IFN signaling pathway, since intrinsic inflammatory pathways in cancer cells (such as TNF-� 
and IFNs) can be activated by tumorigenic events.  Also, IFNs are reported to stimulate the 
expression of MHC genes in various cancer cells including ovarian cancer in vitro and in vivo 
(Boyer et al, 1989; Freedman et al, 2000; Mantovani et al, 2008).  We have now included 
these descriptions in the “Suppl. Text”. 
 
 

5. An association between molecular subtypes and prognosis is observed and referred to in the 
discussion as well as the results. This result should be discussed in the context of covariates such as 
surgical status (or status of residual tissue), which is one of most important prognostic factor in EOC 
(deBois et al. Cancer 2009). Progression-free survival time (or time to recurrence) should be included.  
 

We agree with the Referee that multiple parameters or status should be examined to robustly 
identify prognostic factors.  Table 1 reports the analysis of the different histological ovarian 
cancer types with age, stage, grade, metastasis and molecular subtype status for overall 
survival rate.  In response to this comment, we further performed four additional Cox 
hazardous regression analyses described below (Suppl. Table 5A). 
 
1) Serous cancer cases with age, stage, grade, metastasis and molecular subtype status based 

on the overall survival rate (OS) (Suppl. Table 5B)  
: The Stem-A or Epi-B subtype was found to be an independent prognostic factor from 

multiple clinical characteristics for serous ovarian cancer patients (Suppl. Table 5B). 
 

2) Serous cancer cases with age, stage, grade, metastasis status and molecular subtype status 
based on the progression-free survival rate (PFS) (Suppl. Table 5E). 
: The molecular subtype was not independently correlated with PFS for serous ovarian 

cancer (Suppl. Table 5E). 
 
3) All histology cancer cases with age, stage, grade, metastasis status, surgical status and 

molecular subtype status based on OS (Suppl. Table 5C). 
: The limited number of cases with complete information prevented us from identifying 

even the debulking status as an independent prognostic factor with statistical 
significance.  Similarly, none of the molecular subtypes was found as an independent 
prognostic factor (Suppl. Table 5C). 

 
4) All histology cancer cases with status for debulking surgery or molecular subtypes based 

on OS (Suppl. Table 5D). 
: When we examined only the debulking surgery status and the molecular subtype, Epi-B 

and Stem-A were found to be significant prognostic factors independent of the debulking 
status (Suppl. Table 5D).   

 
In summary, the Stem-A and Epi-B subtypes are consistently identified as prognostic factors 
that are independent of multiple clinical parameters and status, which include the status for 
surgery in the overall survival rate (Table 1; Suppl. Tables 5A, 5B, and 5D).  We now include 
these findings in the section of “Correlation of subtype with clinicopathological parameters” 
in “Results”, and provide detailed descriptions in the “Suppl. Text”. 
 
 



 

 

The Kaplan-Meier survival curves (Fig. 1B and Suppl. Fig. 3D) of training and validation sets suggest 
a difference in prognosis of "Stem-B" subtype, which includes many samples with non-serous 
histologic types.  This suggests that the outcome differences observed are due to the inclusion of 
different histologies. 
 

The Kaplan-Meier curves for the Stem-B subtype differed between the training and validation 
sets, while those curves for the other subtypes were consistent (Fig. 1B; Suppl. Figs. 7C, 7D, 
8B and 8D).  The small number of samples for Stem-B [n = 56 (BinReg) or 32 (ClaNC) 
samples with survival information] in the validation dataset might be responsible for this 
discrepancy.  However, we also found that the serous samples included in the Stem-B subtype 
have different overall survival rates between the training and validation datasets (data not 
shown), implying possible heterogeneity within the subtype.  We described this finding in the 
“Suppl. Text”. 
 

 
6. It is suggested that the EOC cell lines mimic the clinical outcome behavior of the primary tumor 
samples. Does this result hold up when only including serous tumors into the analysis, or are the 
differences observes due to different histologies and the inclusion of LMP cell lines.  
 

To address this comment, co-consensus clustering of the cell lines and the serous tumor 
samples was performed, and yielded a result that was highly concordant (137/142, 96.5%) 
with that of the original analysis.  We noted that the five discordant arrays included three 
biological replicates of TYK-nu cell line and one of its derivatives (TYK-nu CisR) (data not 
shown), which were originally grouped into Mes subtype but were clustered with Stem-A 
serous tumors when clustering with serous tumors only.  Nevertheless, this highly concordant 
assignment demonstrates the robustness of the co-clustering method and implies a very 
modest influence of the other histologies when included with serous tumor samples.  We 
described this observation in the “Suppl. Text”. 
 
The cell-line panel used in the study comprises a mix of histologies according to the publicly 
available descriptions (Suppl. Table 11).  To examine the influence of the original histology 
on the cell-line phenotyping, we selected the cell lines derived from serous carcinoma and 
correlated their in vitro properties with the molecular subtype.  Although the differences were 
reduced due to the limited number of the cell lines, a similar trend could still be observed with 
statistical significance, being exemplified by the fact that Epi-A and Epi-B cell lines retained 
lower colony forming abilities and a longer population doubling time (Fig. R1).  The Referee 
also suggested that we examine the possible effect by inclusion of LMP cell lines into the 
analysis.  However, we could not perform the experiment since our panel did not contain 
LMP cell lines (Suppl. Table 11). 
 

Figure R1: Cell-line phenotypes for each subtype with serous origin (p-value is computed by Mann-
Whitney test) 

 
 
 
 
7. How were the 14 cell lines used for shRNA screen selected? What was the histology of the cell 
lines? The term 'shRNA copy number' was confusing as copy number is often used to reflect DNA 



 

 

dosage; similar for the terms deleted/amplified. What does it mean when an shRNA is 
depleted/amplified? Is the target gene than suggested to be a growth inhibitor/stimulator? Not all 
readers will understand these details.  
 

The 14 cell lines were chosen based on the silhouette width for the subtype signature in order 
to use “more representative” cell lines for a given subtype.  We added a description of this in 
the section of “Genome-wide shRNA screens identified subtype-specific growth-promoting 
genes” in the “Results”.  The silhouette width of all cell lines was included in Suppl. Table 
11.   
 
We provided more detailed descriptions of the shRNA screening in “Introduction”, “Results” 
as well as “Materials and Methods” to clarify the terminology, the experimental procedures 
and the interpretations for the results obtained.  

 
 
8. There should be more details on the implementation of the shRNA screen in the main text. For 
instance, details on how the 'shRNA copy number' is assessed on compared between different 
shRNAs and cell lines would be helpful in interpreting the result. How many genes are targeted by the 
library and are the numbers of identified shRNAs/genes more than expected by random chance?  
 

We appreciate comments #7 and #8 for pointing weaknesses in our description of the shRNA 
experiments.  As mentioned in the response to comment #7, we now provide detailed 
explanations for the shRNA screens particularly regarding the terminology, library, 
experimental system, statistical method and interpretations in the “Introduction”, “Results” 
and “Materials and Methods”. 
 
The responses below answer the two specific questions:  
 
1) The TRC library used in this study contains 80,000 lentivirally expressing shRNAs, 

corresponding to 16,000 human genes.  
 
2) The subtype-specific essential genes were computed using RIGER software (Luo et al, 

2008), in which the q-values are computed by the Kolmogorov-Smirnov test based on 
1,000 permutations and subsequently adjusted by the Benjamini and Hochberg procedure 
(http://www.broadinstitute.org/cancer/software/GENE-E/; Suppl. Table 12).  The q-value 
(false discovery rate) for each gene indicates the probability of that particular gene being 
significantly amplified (increased copy number due to increased number of cells carrying 
this shRNA) or depleted as compared to what would occur by mere random chance.  Using 
the threshold with a stringent q-value (for example, q < 0.005), shRNAs targeting 409 
genes were then identified as significantly amplified or depleted more than that which 
would be expected by random chance (Suppl. Table 12).  To avoid confusion, we changed 
the name of "p-value" column to “false discovery rate q-value” in Suppl. Table 12 and 
provided more information about RIGER analysis in the “Materials and Methods” of the 
revised manuscript.  In addition, we provide the link to the RIGER software in “For more 
information”. 

 
 

How many genes were deleted/amplified in all cell lines? Although the subtypes are an interesting 
characteristic of EOC, it is not clear why those genes that are different between subtypes would be the 
most disease-relevant, rather than genes associated with all cell lines. 

 
We do agree with the Referee that it is important to identify “EOC common” molecular 
targets and that the shRNA screening approach can be also utilized for this purpose.  In fact, 
Cheung et al. performed large screens and identified PAX8 as a relevant molecule for the 
growth of ovarian cancer in a lineage-specific manner (Cheung et al, 2011).  



 

 

 
However, there is a technical reason that hampers our identification of “depleted” or 
“amplified” shRNA in all cell lines; that is, “depletion” or “amplification” of shRNAs was 
defined by relative abundance across the cell lines in our experimental system.  So, obtaining 
the EOC disease-relevant genes would require performing the assays using cell lines derived 
from tissues other than the ovary. The study by Cheung et al., based on a different 
experimental system, relied on a comparison between the screens of 25 ovarian cancer cell 
lines with those of 77 cancer cell lines derived from the other tissues.   
 
It is also important to point out that the main focus of the present study was to identify 
molecular targets for a subtype; therefore, EOC disease-relevant genes are beyond the scope 
of this study.  The relevance of such subtype-specific targets has been exemplified by ESR1 
(estrogen receptor �) for luminal-subtype breast cancers.  ESR1 has been used not only for 
diagnosis but also as a molecular target for therapeutics.  In the same vein, we hope that our 
study could contribute to the diagnostics and therapeutics associated with EOC through the 
identification of a potential molecular target for the Stem-A subtype.  We include these 
remarks in the “Introduction” and “Discussion” of the revised manuscript to emphasize the 
ultimate goal of the shRNA screen. 
 
 

Figure 3B shows a heatmap of the identified shRNAs in each of the celllines and the data is likely (z-
score) normalized. The effects of this normalization should be explained, as the normalization will 
force the data to show (visually attractive) differences. 
 

For the computation of differentially detected shRNA, the data was not z-score normalized.  
Using reads with a perfect match to the reference sequences (Sigma Aldrich, St Louis, MA), 
copy number was counted and normalized by the total number of reads in a sample and then 
rendered to RIGER analysis to find phenotype-specific, functionally relevant genes (Luo et al, 
2008).  As the Referee noted, the heatmap was plotted using gene normalization and 
centering, which is commonly performed to facilitate reading of the differences.  Although we 
described this analytical method in the section of “Statistical identification of the functionally 
relevant genes in the subtype-specific manner” of “Materials and Methods” in the original 
manuscript, the description has now also been added to the legend of Fig. 3B in the revised 
manuscript. 

 
 
9. Why is the number of genes depleted in Stem-A (n=135) different from what is reported in the 
previous paragraph (n=88)?  
 

The disparity in the numbers of genes depleted in Stem-A in both paragraphs is due to the 
differences in the significance thresholds that we applied in the RIGER analysis.  The initial 
number of 88 genes was obtained from the threshold at q = 0.005 and used for the heatmap 
presentation (Fig. 3B).  A q-value of 0.03 was used as the threshold for the second part of the 
analysis, arriving at 135 genes.  We provide more details in the section of “Validation of 
subtype-specific growth promoting genes” in the “Results” to clarify the differences in the 
number of genes identified by the shRNA screen. 
 
 

The PA-1 cell line representing "Stem-A" was derived from human ovarian teratocarcinoma cells, 
which is not EOC but a germ cell tumor (Zeuthen et al. Int J Cancer 1980). This is likely to have an 
impact on the results and suggests that the cell line classification will be able to classify any 
expression profile and is not EOC specific. 
 

This concern was already addressed on page 2 of this rebuttal in response to comment 2.  Our 
responses are repeated here. 



 

 

 
We agree with the Referee that the PA-1 cell line was established from human ovarian 
teratocarcinoma not from epithelial ovarian carcinoma.  However, it is also clear that PA-1 
shares a common transcriptional signature with Stem-A EOCs; in particular, serous 
carcinoma.  Our classification of the cell line panel is purely based on the expression profile, 
without considering the histological origin of the cell line.  
 
Further, we noted that the 1,538 samples included only one teratocarcinoma sample (in 
GSE2109) that was classified into the Stem-A subtype; this implies common molecular 
profiles between teratocarcinoma and Stem-A EOC in vivo.  Our findings thus suggest that 
the molecular classification might not be specific to EOCs as the Referee pointed out. 
 
Nevertheless, it is true that the different cell-of-origin could have an impact on the results.  To 
exclude this possible impact, we performed additional validation siRNA experiments using 
three more Stem-A cell lines (CH1, A2780 and OVCAR-3) with five more non-Stem-A cell 
lines (Epi-A: OVCA429 and PEO1, Mes: ovary1847, SKOV-3 and HEY), for which the 
information of the origin is presented in Suppl. Table 11.  We confirmed the reproducibility 
of the effect of siTUBGCP4 and siNAT10 on the set of cell lines, demonstrating that our 
finding is not limited to PA-1.  We present the new results as Fig. 3E in the revised 
manuscript and provide a detailed description in the “Validation of subtype-specific growth 
promoting genes” section in the “Results” section.  

 
 
10. The logic and flow of the "Validation of subtype-specific growth promoting genes" section is 
unclear. Was the HEYA8 cellline used a control in the t-test comparison? The identification of five 
genes as growth-promoting seems adequate, but is hard to interpret without better understanding what 
the control was.  
 

We appreciate this comment and have now carefully edited the logic and flow of the 
validation process in “Validation of subtype-specific growth promoting genes” in the 
“Results” in the revised manuscript to facilitate a better understanding. 
 
The primary aim of the validation was to identify the genes whose inhibition induced growth 
suppression in only Stem-A cells with a minimal effect on non-Stem-A cells.  Stem-A-
specific essential genes were identified as positive hits based on the following comparison 
using a Student t-test as well as based on ≥ 20% growth suppression of PA-1 cells (Fig. 3C):  
 
1) Comparison between the negative siRNA controls with silencing the gene of interest in 

PA-1 cells. 
 
2) Comparison between PA-1 with the reference cell line(s) in silencing the gene of interest. 

: The reference was HeyA8 at the 1st step, and HeyA8 and OVCA433 at the 2nd and 3rd 
steps during the process of validations. 

 
The HeyA8 cell line was hence utilized as a comparison in the identification of Stem-A-
specific genes for the 1st, 2nd and the 3rd steps during the process of validation (Fig. 3C).  In 
view of comments earlier by the Referee, we also performed an additional 4th step of the 
validation process, using three more Stem-A cell lines (CH1, A2780 and OVCAR-3), with 
five more non-Stem-A cell lines as references (Epi-A: OVCA429 and PEO1, Mes: 
ovary1847, SKOV-3 and HEY).  We provide these detailed descriptions in the section 
“Validation of subtype-specific growth promoting genes” of the “Results”, and in the 
“Materials and Methods” to clarify the experimental procedures. 
 

 



 

 

11. Were technical replicates performed for each cellline-shRNA expression array experiment? For 
any of such experiments, triplicates are adviced as a minimal number by any statistical model.  
 

We indeed performed triplicate experiments for expression microarray with siRNA 
transfections.  We had 58 gene expression arrays in total: 
3 replicates of reverse transfections x (5 siRNAs + 1 negative control) x 3 cell lines  
+ 4 replicates to bridge four microarray batches that correct the batch effect.   
 
We provide detailed descriptions in the “Suppl. Materials and Methods” to clarify the 
experimental procedures in the revised manuscript. 

 

Minor comments:  
1. Paragraph 1: The authors should provide the eligibility criteria in this study including quality 
control of expression data.  
 

In order for our study to have broader generalizations and larger sample size, reduced 
eligibility criteria were adopted (George, 1996).  To clarify, we included the eligibility criteria 
and methods of quality control of the expression data in “Materials and Methods”.  Female 
adult (age ≥20) patients with a clinical diagnosis of primary or metastatic ovarian carcinoma 
were included in our analysis with no restriction on race, pre-treatment history or medical 
condition, stage, grade, or histology of the disease. 
 
We checked the quality of Affymetrix-based expression profiling using Bioconductor 
AffyQCReport package (Gautier et al, 2004), and the criteria: average perfect-match (Neve et 
al) intensity, kernel density plot, GAPDH 3’:5’ ratio, β-actin 3’:5’ ratio, and center of 
intensity for positive and negative control.  All chips passed at least one of the criteria, and 
hence, none of the samples was discarded. 

 
  
2. Materials and Methods/Supplementary Table 11: The authors should describe source of 
information (for example GEO_ID) about the Duke Cohort dataset.  
 

The GEO_ID of the Duke cohort was included in Suppl. Table 15A (Suppl. Table 11 in 
original manuscript). 

 
 
3. Materials and Methods, paragraph 7: The authors should describe the name of cell lines precisely. 
Ex) Tyknu -> TYK-nu  
 

The names of the cell lines were amended by following to the names in the original paper as 
well as to the names used by the distributors, such as ATCC and Riken. 

 
 
4. Supplementary Table 1: The column of "Genomic data" is unnecessary because the authors didn't 
use genomic data except expression data. Instead, the authors should add a column of 
"chemotherapy".  
 

The column of genomic data in Suppl. Table 1 was removed.  However, due to a lack of 
information on the chemotherapy received by the patients, we did not include this column. 

 



 

 

Referee #3:  

The manuscript "Functional Genomics Identifies Five Distinct Molecular Subtypes with Clinical 
Relevance and Pathways for Growth Control in Epithelial Ovarian Cancer" by Tan, Huang and Miow 
et al. identified gene expression signatures associated with five subtypes of epithelial ovarian cancer 
(EOC). The authors analyzed the largest compilation of EOC expression profiles to date and defined 
molecular subgroups, which display unique clinical outcome. The authors extend their EOC 
molecular subgroup expression profiles to traditional in vitro cell lines, which allowed for their 
classification as clinically relevant models. Through the use of RNAi libraries, the authors identified 
genes that affect EOC sub-type specific tumor cell growth and suggest the biological pathways that 
may underlie these sub-type dependencies. The manuscript presents extensive data and analyses 
including an expression meta-analysis of a very large number of ovarian cancers, and genome-wide 
shRNA data for 14 ovarian cancer cell lines. However, some of the analyses could be improved, and 
many of the conclusions seem overstated.  
 

We thank the Referee for the comments.  We have removed overstatements as much as we 
could identify throughout the manuscript.  Concerns regarding the analyses are addressed one 
by one in the response to each comment as described below. 

 

Major Concerns:  
1) The subtyping analyses at times seem to be circular. For example, tumor assignments were 
determined for external datasets by applying BinReg using a predictive model generated from the 
internal data. These results were compared to "true" subtypes determined by pooling the external data 
with 1,142 samples from the internal data. In both cases, the internal data will dominate the analysis 
and determine similar cluster assignments.  
  

This has been addressed in our answer to Referee 1, question 4, part 2 on page 6.  Our 
responses are repeated here. 
 
In order to assess accuracy/concordance of a predictor generated by BinReg or ClaNC, the 
“true” subtype must be known for a validation sample.  In the original manuscript, as a means 
of assigning a “true” subtype to the external samples, we employed the combined clustering 
approach, in which the external and internal datasets were combined and subsequently 
clustered.  Independently, BinReg or ClaNC was performed to predict a subtype status of an 
external sample purely based on the expression data of the internal dataset.  We then 
compared the subtype derived from the combined clustering with that from BinReg or ClaNC. 
 
Nevertheless, to avoid confusion, we removed the combined clustering part and hence the 
assessment of accuracy/concordance of the external samples in the revised manuscript.  We 
instead present only the prediction results from BinReg and ClaNC (Suppl. Figs. 7D and 8D).  
To compare the similarity of the subtypes identified between the internal and external sets, we 
used clinicopathological features as well as the Spearman correlation analysis in the 
expression, and show the results in Fig. 1E, Suppl. Figs. 7D and 8D, and Suppl. Table 4A, 4C 
and 4D.  We now provide detailed description in “Predictive framework for EOC subtype 
classification” section of the “Results” in the revised manuscript. 
 
In the BinReg and ClaNC predictions, the internal data is used to generate a predictive model 
to assign any subtype to the external data.  The prediction is based on inherent structural 
similarity in the expression between the external and internal data.  It is important to note that 
the structure already exists within the external data and is not influenced by the internal data. 
 

 



 

 

Likewise, the internal data were divided into deciles with leave-10%-out determination of the cluster 
assignments; these assignments were then compared to the assignments using all the data. Again, 90% 
of the data used in both analyses will dominate the cluster assignments, which will necessarily overlap 
as a result. A better approach would seem to be to divide the data into, for example, 40%, 40%, and 
20%, then use each 40% independently to classify the 20%, and evaluate concordance.  
 

We performed a 10-fold or leave-10%-out cross-validation since it has been reported and well 
adopted as a methodology to evaluate predictors (Blum A, 1999; Kim, 2009; Konavi, 1995).   
 
Nevertheless, following the suggestion made by the Referee, we performed five random 40-
40-20 hold-out tests so as to provide additional assessments for the ClaNC and BinReg 
predictors.  Briefly, we randomly divided the data into sample sets made up of 40%, 40% and 
20% of the total 1,538 samples, denoted as training set A, training set B, and testing set.  To 
ensure a fair assessment, the division was such that each sample was used as a testing sample 
only once in the five random sets (Suppl. Materials and Methods).  The results achieved with 
ClaNC or BinReg predictors are similar to that of 10-fold cross validation, with concordance 
of an average 73.6% (ClaNC) or 74.0% (BinReg) as shown in Suppl. Fig. 9 in the revised 
manuscript.  This has been described in the “Predictive framework for EOC subtype 
classification” of the “Results” and detailed descriptions of the experimental procedure are 
included in the “Suppl. Materials and Methods”.  

 
 
Similarly, the tumor data were used to determine a classification scheme for the cell lines, and the 
resultant subtype assignments were compared to assignments obtained from clustering of all the 
tumors and cell lines together. Again, the concordance of the results simply reflects the fact that 
substantially the same data were used to determine the clustering pattern in both analyses.  
 

We evaluated the cell-line subtype derived from co-clustering by comparing similarity of the 
subtype between the cell lines and clinical samples.  Although we agree with the Referee that 
this process may look circular, it is important to point out that there are two distinct steps 
embedded in the process: first, identification of the cell-line subtype, and second, 
confirmation of the expression similarity of the subtype.  For the first step, the co-clustering 
method was employed (Suppl. Fig. 10A); for the second step, the BinReg and Spearman 
analysis was performed (Figs. 2B and 2C; Suppl. Fig. 10C).  Importantly, the BinReg or 
Spearman analysis do not largely rely on the same genes that were used for the co-clustering 
analysis (BinReg; 4.33% = 65 overlapped in total 1,502 genes, Spearman; 10.12% = 145 
overlapped in total 1,433 genes).  We include a description in the section “Cell line subtype 
identification by consensus clustering” in the “Suppl. Text” to make this point clearer. 
 

 
2) I do not understand the justification or process for classifying cell lines based on two rounds of 
consensus clustering. It would seem that CLANC could just be applied based upon the original 
clustering results.  
 

This has been addressed in our answer to Referee 1, on page 7. Our responses are repeated 
here. 
 
In the original manuscript, we did not describe the reason why we employed the co-clustering 
method other than predictive models in classification of the panel of cell lines.  First, co-
clustering is a conventional method to classify cell lines into molecular subgroups with 
expression microarray data (Lowe et al, 2007; Perou et al, 1999; Prat et al, 2010; Virtanen et 
al, 2002).  Second, we in fact performed cell line classification based on the predictive models 
by ClaNC and BinReg, relying on subtype signatures from clinical samples.  The results were 
then compared with that obtained by the co-clustering method.  Taking advantage of 28 
biological replicate cell lines (Duke, Kyoto, and Singapore; see also “Cell line panel” in 



 

“Suppl. Materials and Methods”), we examined whether subtype assignment was consistent 
across the replicates.  While consistency was 100% (28/28 cell lines) in the assignment by the 
co-clustering, both ClaNC and BinReg resulted in a less consistent subtyping (BinReg: 
67.9%; 19/28 cell lines, ClaNC: 67.9%; 19/28 cell lines; Suppl. Table 9).  Based on this 
observation, we decided to employ the co-clustering method instead of the predictive models.  
To make this clearer, we modified the description in the section of “Identification of 
representative cell lines for each subtype” in the “Results”, added a more detailed description 
in the figure legend for Suppl. Fig. 10A, in the “Suppl. Text” and included Suppl. Table 9 in 
the revised manuscript to explain why we employed co-clustering over the other methods.  In 
addition to Figs. 2B and 2C, transcriptional similarity of a given subtype between the cell 
lines and the clinical samples was further confirmed with a Spearman correlation map 
analysis and the result obtained was added as Suppl. Fig. 10C. 

 
 

3) On p. 13, "Importantly, our shRNA screens detected specificity in the shared pattern within a 
subtype in the depletion or amplification of shRNAs." Yet it is not clear that the depleted/amplified 
shRNAs were significant when p-values are corrected for multiple hypotheses. One straightforward 
way to validate the data (beyond the individual hairpins evaluated in single lines in the following 
experiments) would be to compare the results to previously published genome-level shRNA screens 
in ovarian cancers, eg Cheung et al, PNAS 2011. 
 

The q-value outputted by RIGER is already adjusted by the Benjamini and Hochberg 
procedure (http://www.broadinstitute.org/cancer/software/GENE-E, RIGER section).  We 
modified the column name ‘p-value’ to ‘false discovery rate q-value’ in Suppl. Table 12 and 
provided more information on the RIGER analysis in the “Materials and Methods” of the 
revised manuscript.  In addition, we provided the link to the RIGER software in “For more 
information”. 
 
We appreciate the Referee’s suggestion to compare the results in the current study with that in 
the previously published shRNA screens.  However, a comparison between Cheung et al. 
(2011) data and ours is not feasible because of the different experimental designs (at the 
endpoint of the screen, we compared the abundance of integrated shRNA sequences across 
the different molecular subtypes, while Cheung et al. (2011) compared the relative abundance 
to the initial shRNA pool across different cell line lineages).  The different detection 
platforms (next-generation sequencing versus microarray) also prohibit this comparison.  We, 
however, have now included this description in the “Suppl. Materials and Methods”.  It is 
important to note that we added further rigorous validations for TUBGCP4 and NAT10 with 
an increased number of cell lines (Figs. 3C and 3E). 
 
 

Also, I would be interested to know the effect sizes of these hairpins (not just the ones explored in 
detail in following experiments). RIGER was applied using a KS statistic, which is valid but may 
highlight hairpins with small (though consistent) effect sizes.  
 

As suggested by the Referee, we included the effect size (standardized copy number 
difference) of each hairpin in the Suppl. Table 12.  The effect size is reasonably large as the 
effect size is ≥ 0.7 or ≤ -0.7 (Cohen, 1988; Monk et al, 2012; Syrjanen & Syrjanen, 2013); the 
mean effect sizes of depleted hairpins were Epi-A = -0.9098; Mes = -0.7681, and Stem-A = -
0.7818, and those of amplified hairpins were: Epi-A = 0.8128, Mes = 0.8282, and Stem-A = 
0.7486 (Suppl. Fig. 12B). We now included these descriptions in “Genome-wide shRNA 
screens identified subtype-specific growth-promoting genes” section of the “Results” in the 
revised manuscript. 
 

 



 

4) The biological evaluation of the "Stem-A specific growth promoting genes" is limited in scope. In 
particular, the GSEA results implicating pathways are suspect because they represent comparisons of 
individual cell lines. Moreover, the authors conclude that finding "Mitochondria Membrane" etc as 
restricted to the response of the Stem-A line to shRNA to the 5 genes suggests a link between these 
pathways and cell proliferation. Rather, these pathways are likely to reflect effects of toxicity: namely 
activation of apoptotic pathways and cell death. Moreover, the Discussion paragraph on these 
pathways is very speculative. We need much more mechanistic data before we can implicate these 
pathways as therapeutic targets, and would have to at least try drugs targeting these pathways on the 
cell lines before proposing them for clinical trials.  

 
As suggested by the two Referees, we included follow-up validation studies of our 
shRNA/siRNA screen.  This has been addressed on page 3 in response to Referee 1 Specific 
comments.  Our responses are repeated here. 
 
Initially we observed that genes involved in mitochondrial oxidative phosphorylation were 
transcriptionally more active in Stem-A cell lines than in cell lines of the other molecular 
subtypes.  Selective down-regulation of oxidative phosphorylation-related genes was further 
observed in PA-1 with siTUBGCP4, siNAT10 or siGTF3C1.  Based on these observations, our 
initial hypothesis was that cells of the Stem-A subtype might rely on mitochondrial oxidative 
phosphorylation as a source of energy more than those of the other subtypes. 
 
During the course of the revision, however, we noted that transcriptional elevation of the 
genes for mitochondrial oxidative phosphorylation did not coincide with an actual activation 
in the oxygen consumption rate measured with the XF24 extracellular flux analyzer (Seahorse 
Bioscience, Billerica, MA) in cultured cells (image analysis based on the changes in 
carbonylcyanide-4- (trifluoromethoxy) -phenylhydrazone (FCCP)-uncoupled respiration).  
Moreover suppression of mitochondrial membrane gene expression by siRNA treatment 
against TUBGCP4 or NAT10 was accompanied by the activation of apoptosis, as measured by 
cleavage of Caspase 3 and PARP in PA-1 cells (Suppl. Fig. 13C).  It is, therefore, more 
reasonable to conclude that suppression of the mitochondrial membrane gene expression 
implies an apoptotic state of the cell rather than decreased activity of mitochondrial 
metabolism (as suggested by the Referee in this question above). 
 
Instead, we now find a significant increase in the expression of gene sets for microtubule-
associated complexes or -related processes in Stem-A clinical samples and cell lines (Fig. 4A; 
Suppl. Table 16).  Treatment with siTUBGCP4, a critical gene for tubulin nucleation, was 
also found to coincide with the down-regulation of microtubule-related genes (Suppl. Fig. 
13B).  Importantly, in vitro studies using drugs that interfere with microtubule polymerization 
revealed that the GI50 for vincristine and vinorelbine of the Stem-A cell lines was 
significantly lower than that for non-Stem-A cell lines (Fig. 4B).  Such a difference was not 
observed for paclitaxel (drug that stabilize microtubule), the current standard of care used in 
the treatment of ovarian cancer (Fig. 4B).  These observations imply that drugs interfering 
with the tubulin polymerization pathway could be considered to selectively treat Stem-A-type 
ovarian carcinoma.  In the revised version of the manuscript, we therefore focus on describing 
this identification of the connection between Stem-A and tubulin formation.  We modified the 
“Abstract”, “Results”, “Discussion” and “Materials and Methods” accordingly, and also 
added Suppl. Table 16.  
 

 
5) The manuscript defines 5 molecular subtypes of EOC. How do these subtypes compare with the 4 
transcriptional subtypes described by the TCGA? Does your 5th subgroup subdivide a TCGA 
subtype, or does it represent a novel subtype?  

 
This question was already answered earlier on page 4.  Our responses are repeated here.  
Although we originally acknowledged the relevance of the two previous studies by Tothill et 



 

 

al. (Tothill et al, 2008) and by TCGA (The Cancer Genome Atlas Research Network, 2011) 
in the second paragraph of the Introduction, it is now clear that our original description lacked 
clarity in describing the relationships between the different molecular subtyping methods.  
The classification made by TCGA and the present study were compared with that of Tothill et 
al. (Tothill et al, 2008) (Suppl. Table 3).  We now provide a scheme of the mutual 
relationships between the three molecular subtyping methods in Suppl. Figure 3B.  This is 
also described in the section of “Molecular heterogeneity of epithelial ovarian cancer” in the 
“Results” section and in “Suppl. Text” of the revised manuscript.  It is important to note that 
the subtypes described by Tothill et al. or by TCGA (The Cancer Genome Atlas Research 
Network, 2011) do not show a one-to-one match with the subtypes established in our study 
(see the relationship among C2, C3 or C4/Immunoreactive or Differentiated/Epi-B or Epi-A).  
These differences in subtype classification may suggest a shared biological feature across 
these subgroups and hence may cause an imperfect distinction of the subtypes using 
predictive models.  We also noted that the TCGA molecular subtyping lacks the Stem-B/C6 
population, which is described in more detail in the response to the Major Comment #3 of 
Referee #1. 
 
To better describe the connection between our study and these two prior studies, we now 
describe our subtypes as follows: Epi-A/C3/Differentiated; Epi-B/C2/Immunoreactive or Epi-
B/C4/Differentiated; Mes/C1/Mesenchymal; Stem-A/C5/Proliferative, and Stem-B/C6 when 
these terms first appear in the revised manuscript.  However, because of the discrepancy 
among the subtyping schemes, we use our own terminology in further instances. 

 
TCGA subdivided high-grade serous cancers into four molecular subgroups, which lacked a 
Stem-B/C6 population that could be identified with making use of all available histotypes (in 
the current study), or of serous, endometrioid and serous LMP histologies (Tothill et al, 
2008).  It is likely that the variation between serous and the other histologies contributed to 
the identification of the Stem-B subtype exhibiting a “less serous” feature.  This notion was 
supported by the fact that the expression level of WT1 gene, a marker of serous 
adenocarcinoma of the ovary (Lawrenson & Gayther, 2009), was significantly lower in Stem-
B tumors not only with all of the ovarian cancer samples but also with serous ovarian cancers 
(Suppl. Fig. 5).  Therefore, we believe that the Stem-B subtype represents a novel subtype in 
serous ovarian cancer.   
 
  

6) The clinical utility of the molecular subtypes is emphasized, but it is not clear to me that this is 
justified by the modest magnitude of difference in outcomes between the subtypes.  
 

We agree with the Referee that the magnitude is modest in Kaplan-Meier or Cox hazardous 
regression analyses of the molecular subtype.  However, the multivariate Cox regression on 
the molecular subtype, with known prognostic factors for ovarian cancer (age, stage, grade, 
metastatic state and surgical status), indeed indicates that at least Epi-B and Stem-A subtypes 
are robust prognostic factors for patients with ovarian carcinoma.  This is particularly the case 
for serous carcinoma, in that it is independent of the other clinical parameters and status 
(Table 1; Suppl. Table 5A).  We now include these findings in “Correlation of subtype with 
clinicopathological parameters” in the “Results”, and also provided detailed descriptions in 
the “Suppl. Text”. 

 
 
Moreover, in the Discussion the authors state "we believe our classification represents a foundation 
for further development, particularly since ovarian cell lines can be assigned to unique ovarian tumor 
subtypes." It is not surprising that cell expression profiles could be so assigned-a random subtyping 
scheme would also seem to divide the cell lines.  

 



 

 

To ensure the cell-line subtype was not derived from any random assignment, we assessed the 
validity of cell-line subtypes with Silhouette analysis in the original manuscript (Fig. 2A).  
SigClust was additionally performed in the revised manuscript, since it allows us to establish 
the significance of clustering using Monte Carlo simulations and provides a p-value for the 
clustering operation between two sets of points (Fig. 2A) (Liu et al, 2008).  Both analyses 
revealed that cell line subtyping was statistically significant; therefore, it did not originate by 
a random scheme.  We now included the additional SigClust analysis in Fig. 2A and also in 
“Identification of representative cell lines for each subtype” of the “Results”. 
 
 

It would be more interesting if the subtypes predicted other characteristics of the cell lines that were 
similar to tumors, eg genetics. The authors mention anchorage-independent growth and growth rate, 
but these are not measured in tumors. 

 
We agree with the Referee that each subtype may also be distinguished by specific genome 
alteration patterns shared with their counterpart clinical tumors.  Since the transcriptome and 
the functional genetic screens were our main focus, such an Omics study is beyond the scope 
of the current study.  Following the suggestion, however, we are currently assembling a 
database including genomic alterations, miRNA, and methylation patterns for the panel of the 
cell lines.  We are hoping to obtain significant results in the coming months to be part of a 
follow-up study. 
 

Minor Concerns:  
1) On page 6, "Computation of entropy showed that 1,500 or more samples were required..." suggests 
that there is a clear cutoff at 1,500, but I see little change past 500.  
 

This comment has already been addressed on page 4.  Our responses are repeated here.  We 
used the entropy plot to show that the number of samples employed for the analysis (n = 
1,538 in total) was necessary and sufficient to provide a robust molecular classification in 
ovarian carcinoma.  However, to address the comments from both Referees, we utilized a 
statistical power analysis to estimate the minimum sample size (Suppl. Fig. 2; Suppl. 
Materials and Methods).  
 
We sought to distinguish a given µSubtype-X from µNon-Subtype-X, using a two-sided t-test, with 
significance set at α = 0.05.  Based on these parameters, we generated a power plot for each 
subtype.  The sample number required for segregation was then computed as Epi-A = 1,298, 
Epi-B = 1,119, Mes = 785, Stem-A = 620, and Stem-B = 1,665; these numbers would achieve 
a desirable power of greater than 0.8, which is a conventionally accepted level of statistical 
power (Fox & Mathers, 1997).  This result implies that our sample number of 1,538 is indeed 
appropriate for the molecular subtyping of ovarian carcinoma.  We presented the results of the 
statistical power analysis as Suppl. Fig. 2, and described this in the section “Molecular 
heterogeneity of epithelial ovarian cancer” of the “Results” and in the “Suppl. Materials and 
Methods”. 
 

 
2) On page 7, "non-serous EOC appears to have a distinct molecular profile"-the data do not 
convincingly support this. Both the non-serous and (particularly) serous tumors appear to reside in 
several clusters, and no cluster contains only non-serous tumors.  
 

We agree with the Referee that non-serous tumors also reside in the other molecular subtypes, 
and that there are serous tumors in the Stem-B subtype.  It is now stated that the majority of 
non-serous EOC were significantly found in Stem-B (Fisher Exact test, p = 8.0x10-59; Suppl. 
Figs. 4B and 6A; Suppl. Tables 4A and 4B), and might imply “less serous” features of the 



 

 

Stem-B subtype, as mentioned in the response to comment #5 from Referee #3 and comment 
#3 of Referee #1.  Although the distinct molecular profiles to some extent reflect the 
biological nature of the tumors, it does not necessarily suggest any mechanism.  Therefore, 
we removed the sentence: “As such, non-serous EOC appears to have a distinct molecular 
profile, suggesting different carcinogenic or progression mechanisms.” from the “Correlation 
of subtype with clinicopathological parameters” in the “Results” of the revised manuscript.  

 
 
3) In Supp Fig 1, it would be useful to see a heatmap of all the data, arranged by dataset, to evaluate 
the effectiveness of ComBat.  
 

To address this comment, we plotted the heatmap of all the data, arranged by dataset, before 
and after ComBat, as suggested by the Referee.  The new figure is added as Suppl. Figure 1A. 

 
 
4) Supp Fig 2 is small and difficult to read. The equations in the Entropy analysis are also illegible in 
my copy.  
 

We enlarged the figures and text in Suppl. Fig. 2 (Suppl. Fig. 6 in the revised manuscript).  
As we replaced the Entropy plot with the Power plot for Suppl. Fig. 1B (Suppl. Fig. 2 in the 
revised manuscript), the equations for the Entropy analysis are no longer shown in the revised 
manuscript.   

 
 
5) ss-GSEA of EOC samples resulted in numerous gene sets enriched for each subtype. On page 7 the 
authors state, "Mes tumors correlated with metastases and TGFB-related pathways". Yet the Mes 
tumors were enriched for 177 gene sets/pathways. Is it correct to connect Mes tumor metastatsis to a 
single gene set if there are a multitude of gene sets enriched? 
 

There are ~28 unique Metastasis-related and ~17 TGFβ-related gene sets in the Molecular 
Signatures Database version 3.  Out of these gene sets, three metastasis-related 
(hypergeometric probability density function, p = 0.0287) and four TGFβ-related 
(hypergeometric probability density function, p = 7.1 x 10-4) gene sets are enriched in the Mes 
subtype.  We believe our description was correct; however, at the same time, many gene sets, 
such as the curated genes from complex expression data, are often difficult to interpret.  We 
therefore did not include the p-value computed for the hypergeometric probability density 
function analyses in the revised manuscript. 
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2nd Editorial Decision 19 March 2013 

Thank you for the submission of your revised manuscript to EMBO Molecular Medicine. We have 
now received the enclosed reports from the referees that were asked to re-assess it. As you will see, 
the reviewers are now globally supportive and I am pleased to inform you that we will be able to 
accept your manuscript pending the following final amendments:  
 
- please modify the text as suggested by both referees as they do still find many overstatements and 
discrepancies.  
 
- please provide the supplementary tables as excel files or, alternatively, combine all tables and 
supplemental information into one single PDF file (see below). 
 
- please provide individual figure files (see below). You may want to rearrange the different panels 
to maximize space in order to provide bigger panels (all labels are small-when the figures will be 
reduced to fit in the published paper, labels will be unreadable.)  
 
- next generation sequencing dataset also needs to be deposited in database and an accession number 
provided.  
 
- please provide an ethical statement for the use of clinical samples (see our author's guidelines for 
help)  
 
I look forward to reading a new revised version of your manuscript as soon as possible.  
 
 

***** Reviewer's comments *****  
 

Referee #1 (General Remarks):  

 

This resubmitted manuscript is a major improvement over the initial submission. The additional 
experiments performed, such as including more cell lines for shRNA screens, add greater robustness 
to the results. A tendency for overstatements and discrepancies/incompleteness in figures has been 
retained and these should be corrected.  
- In troduction: 'However, due to varied samples sizes and analytical criteria, reported subtypes of 
EOC differ'. The three largest and most prominent studies in this field (Tothill, TCGA, Verhaak) 
show remarkable overlap between the transcriptional subtypes identified. This does not implicate 
there is no room for further refinement, but the similarities in literature are not properly 
acknowledged.  
- The TCGA data set (which represents a third of the total data set) is not referenced in the 
'Molecular heterogeneity of epithelial ovarian cancer' section  
- Figure 1C - not possible to distinguish cell lines from tumor samples. What is 'other'? It is unclear 
how these samples were dealt with in the subsequent analyses such as survival analysis?  
- The limitations of meta-analysis should be taken into consideration. Clinical information is based 
on diagnosis of each dataset and there is a possibility that diagnosis criteria varied in different 
studies. Especially, the authors should deal with pathological information carefully (histologic type 
and grade) because these information is not based on central pathological review. Therefore, the 
authors must bear in mind that combined data includes pathologically misdiagnosed samples.  
- Although the study is focused on epithelial ovarian cancer, the distribution of four major histologic 
types (serous, endometrioid, clear cell, mucinous) in this microarray meta-analysis is not 
representative from what is observed clinically. This discrepancy seems to influence the results.  
- "We also noted that the TCGA molecular subtyping lacked a Stem-B/C6 population (Suppl. Fig. 
3B; Suppl. Text)." This seems an unnecessary comment as only high-grade serous ovarian cancer 
samples were included in TCGA. The use of the word 'lacking' implies that the analysis performed 
in TCGA was incomplete. "Stem-B" is basically composed of non-serous samples.  
- "Using 260 samples from the validation set (GSE19829 [n = 28], GSE30311 [n = 47] and 
GSE26712 [n = 185]) for which patient outcome information was supplied (Konstantinopoulos et al, 
2010), the Kaplan-Meier analysis on the BinReg-predicted molecular subtypes revealed a similar 
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pattern of patient prognoses with that of the original consensus clustering analysis (p = 0.0372 by 
the log-rank test; Fig. 1B; Suppl. Fig. 7D)." This description is not proper. Stem-B subtype showed 
good prognosis in the training set (Fig.1B) but poor prognosis in the validation set (Suppl. Fig. 7D).  
- "The ss-GSEA analysis of 1,538 samples using 6,898 gene sets (GSEA databases Suppl. Table 6) 
revealed a subtype-specific enrichment of 207 gene sets (Fig. 1C; Suppl. Table 7)". Unfortunately, 
reader will not be able to obtain useful information in Fig.1C because there are no annotations about 
pathway.  
- "This was performed using microarrays of representative samples for each subtype." To understand 
the result easily, the authors should add the number of core samples. It should be explained why the 
classification accuracy of the core samples was worse than that of non-core samples.  
- Table 1: The authors described sample size as "Total n=537" in Table 1 (Page 41). However, total 
number of samples described in each clinical variable is "539".  
- The pathway/ssGSEA analysis of cell lines seems a bit redundant, as by the nature of the 
comparison to tumor sample profiles, it seems logical that the associated pathways are highly 
similar.  
- The concept of RNAi screens and synthetic lethality is based on the presence of genomic variation 
that creates cancer specific vulnerabilities. The use of various cell lines as a model for epithelial 
ovarian carcinoma, including PA-1, would be particularly useful when these are shown to 
genomically resemble ovarian carcinoma, harboring (like the majority of ovarian cancer) TP53 
mutations and a vastly reorganized genome, with amplifications typical for ovarian cancer such as 
MYC, MECOM, Cyclin E1, and so forth. The Cell Line Encyclopedia data set may be of help to the 
authors; at least A2780, OVCAR-3 and SKOV3 are available there. PA-1 is acknowledged as 
originating from a teratocarcinoma but at a strange position. It would make sense to either describe 
this at first mention, or in the discussion section.  
- 'Of note, a previous study of 489 samples could not correlate their molecular classification with 
patient overall survival (The Cancer Genome Atlas Research Network, 2011)'. As noted above the 
TCGA sample cohort includes only serous cases and is therefore not comparable to the current 
study. Moreover, later studies using the same TCGA data set (PMID 23257362) showed strong 
associations with outcome.  
- 'The development of a decision tree model,17 utilizing the Stem-A and Epi-B predictors, might be 
a promising application to triage approximately half of the serous EOC patients for outcome 
prediction.' This is extremely speculative as no alternative therapeutic modalities are available for 
worse performing cases. Moreover, it is not clear that the classification system from this study 
outperforms that of previously reported classifiers (PMIDs 22203759, 22505474, and again 
23257362).  
- The authors note that microtubule stabilizers such as paclitaxel and docetaxel are commonly used 
in the treatment of ovarian cancer. Does their meta-data set have the clinical annotation to show that 
these drugs are particularly effective in their Stem-A class? Detailed drug information is available 
from TCGA.  
 
 
 
 
 
 
Referee #3 (Comments on Novelty/Model System):  
 

The inadequacies of in vitro models were addressed in the manuscript.  

 

Referee #3 (General Remarks):  
 

The authors have addressed most of my concerns. The remaining concerns are relatively minor:  
 
1) Some overstatement/misstatement of results remain. For example:  
a. The authors state that (Page 12, 1st paragraph), "Epi-A and Epi-B cell lines had longer population 
doubling times and decreased colony-forming ability, corresponding to the less aggressive behavior 
of clinical tumors. Overall these cell lines can serve as good experimental models for each 
molecular subtype." Those interpretations appear to be over stated. While in vitro proliferation rates 
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and anchorage independent growth can correlate with in vivo tumor behavior this language should 
softened to reflect the experimental findings directly.  
b. First line on page 10: please remove "precisely" in "precisely dissects ovarian serous carcinoma 
heterogeneity".  
c. Page 14: "Relying on a stringent criterion (>= 20% growth suppression..."-20% does not seem so 
stringent! Please just rephrase.  
d. Page 16: "For the first time, using a genome-wide shRNA screen, we revealed that subtype-
matched cell lines have distinct molecular pathways." I would change "revealed" to "found" and 
"molecular pathways" to "vulnerabilities".  
e. Later on page 16, the words "unequivocally" and "inevitable" seem unnecessary overstatements.  
f. Similarly, on page 17, "confirmed by shared cell functions" is strong and could be changed to 
"further supported by shared cell functions."  
2) While the overall trends can be discerned, the resolution of Fig. 2B is too low to properly 
evaluate the data. Particularly the "Clinical sample probability" and "AUC" panels. The resolution 
on Supp Fig 1a is also too low.  
 
 
 
2nd Revision - authors' response 03 April 2013 

We would like to thank the Editor for being able to accept our revised manuscript entitled 
“Functional Genomics Identifies Five Distinct Molecular Subtypes with Clinical Relevance and 
Pathways for Growth Control in Epithelial Ovarian Cancer”.  We are also very grateful to the 
Referees for their support of the revised version of our study. We have further revised the 
manuscript according to the suggestions by the Editor and the Referees as follows:  

- Please modify the text as suggested by both referees as they do find still too many overstatements 
and discrepancies. 

 We have modified the manuscript accordingly as suggested by both Referees so as to remove 
overstatements and discrepancies. 

 

- please provide the supplementary tables as excel files or, alternatively, combine all tables and 
supplemental information into one single PDF file (see below) 

 We now upload supplementary tables as an Excel file (*.xls). 

 

- Please provide individual figure files (see below). You may want to rearrange the different panels 
to maximize space in order to provide bigger panels (all labels are small-when the figures will be 
reduced to fit in the published paper, labels will be unreadable.) 

 According to the guidelines, the figures have been formatted with a resolution of 300 dpi. 

 

- next generation sequencing dataset also needs to be deposited in database and an accession 
number provided. 

 We have deposited the dataset for next-generation sequencing analysis of the shRNA screen 
at Gene Expression Omnibus (GEO), with the accession number GSE45420. 

 

- please provide an ethical statement for the use of clinical samples (see our author's guidelines for 
help) 

 Our ethical statement for the use of clinical samples is given here:  

 All publicly available datasets were included at the time of the study (April 2010), and 
compiled with an Oslo cohort dataset (Ben Davidson and Jahn Nesland), obtained under the 
ethics approval from the Health Region of South-Eastern Norway (# 04300).  

 The statement was included in the section of “Acknowledgements”. 
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We appreciate the effort of the Referees, and have further addressed the points raised by the 
Referees in this second revised manuscript. The replies to the Referees are enclosed in point-by-
point form. 

 
 

Referee #1 

This resubmitted manuscript is a major improvement over the initial submission. The additional 
experiments performed, such as including more cell lines for shRNA screens, add greater robustness 
to the results. A tendency for overstatements and discrepancies/incompleteness in figures has been 
retained and these should be corrected. 

 

- Introduction: 'However, due to varied samples sizes and analytical criteria, reported subtypes of 
EOC differ'. The three largest and most prominent studies in this field (Tothill, TCGA, Verhaak) 
show remarkable overlap between the transcriptional subtypes identified. This does not implicate 
there is no room for further refinement, but the similarities in literature are not properly 
acknowledged. 

 We have modified the sentence on Page 5 of the manuscript such that the similarity of 
subtypes is properly acknowledged. The sentence was modified to “However, due to varied 
samples sizes and analytical criteria, the reported subtypes of EOC were similar but not 
completely the same…”. 

 

- The TCGA data set (which represents a third of the total data set) is not referenced in the 
'Molecular heterogeneity of epithelial ovarian cancer' section 

 Even in the original manuscript, the TCGA paper was referenced in the section of “Molecular  
heterogeniety of epithelial ovarian cancer”. Nevertheless, to acknowledge the size of TCGA 
data, we added the description of “Among the 16 datasets, TCGA data was the largest in the 
sample number (n = 406; 26.4% of all samples).” into the section of “Molecular 
heterogeniety of epithelial ovarian cancer” on Page 7. 

 

- Figure 1C - not possible to distinguish cell lines from tumour samples. What is 'other'? It is 
unclear how these samples were dealt with in the subsequent analyses such as survival analysis? 

 Fig. 1C is a result from ss-GSEA using the data of all 1,538 clinical samples without any cell 
lines. The co-clustering analysis of clinical samples with cell lines is shown in Suppl. Fig. 
10A.  Since we did not include any cell-line arrays for the initial consensus clustering 
analysis shown in Fig. 1A, we added the description of “Also note that none of cultured cell-
line data was included in this analysis.” in the Figure Legend of Fig. 1A to avoid unnecessary 
confusion.   

 “Other” was used to indicate the unclassified samples not grouped in any of the five subtypes 
in the initial consensus clustering analysis in Fig. 1A. They were not included in following 
statistical analyses for characterization of the molecular subtypes.  We have defined what 
“other” means in the figure legends for Figs. 1C and 1D, and Suppl. Figs. 4, 8C and 9. We 
have also amended the description in the section of “Consensus clustering” in “Materials and 
Methods” to clearly describe how “other” samples were dealt with in following analyses. 

 

- The limitations of meta-analysis should be taken into consideration. Clinical information is based 
on diagnosis of each dataset and there is a possibility that diagnosis criteria varied in different 
studies. Especially, the authors should deal with pathological information carefully (histologic type 
and grade) because these information is not based on central pathological review. Therefore, the 
authors must bear in mind that combined data includes pathologically misdiagnosed samples. 

 We thank the Referee for pointing out a caveat and limitation of meta-analysis. As the 
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Referee mentions, the clinicopathological information obtained with each dataset was neither 
standardized nor centrally reviewed across the datasets; therefore, there might be 
pathologically misdiagnosed samples included. This might have some potential impact on the 
Stem-B subgroup since we identified this subgroup as a group exhibiting “less serous” 
features. We have added the description into the “Result” section of “Correlation of subtype 
with clinicopathological parameters” in the main text as well as into the section of 
“Designation of molecular subtypes” in the “Suppl. Text” accordingly. 

 

- Although the study is focused on epithelial ovarian cancer, the distribution of four major histologic 
types (serous, endometrioid, clear cell, mucinous) in this microarray meta-analysis is not 
representative from what is observed clinically. This discrepancy seems to influence the results. 

 The distribution of histologies in our compiled data was serous (82.8%), mucinous (1.8%), 
clear cell (1.6%), endometrioid (6.2%), and low-malignant potential (LMP) (4.0%), in 
contrast to the actual incidence rates of serous (55~65%), mucinous (~3%), clear cell (~5%), 
endometrioid (~10%), and LMP (15~20%) (Soslow, 2008; Jelovac et al. 2011 and Acs, 
2005). We agree with the Referee that this discrepancy in the histological distribution may 
influence the clustering results. To some extent, we indeed discussed this influence already in 
the section of “Designation of molecular subtypes” in “Suppl. Text” of the first revised 
manuscript. Nevertheless, we have now also included this notion in the section of “Molecular 
heterogeneity of epithelial ovarian cancer” in “Results” of the main text. 

 

References: 

Soslow RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol. 2008 
Apr;27(2):161-74.  

Jelovac D, Armstrong DK. Recent progress in the diagnosis and treatment of ovarian cancer. CA 
Cancer J Clin. 2011 May-Jun;61(3):183-203. 

Acs G. Serous and mucinous borderline (low malignant potential) tumors of the ovary. Am J Clin 
Pathol. 2005 Jun;123 Suppl:S13-57. 

 

 

- "We also noted that the TCGA molecular subtyping lacked a Stem-B/C6 population (Suppl. Fig. 
3B; Suppl. Text)." This seems an unnecessary comment as only high-grade serous ovarian cancer 
samples were included in TCGA. The use of the word 'lacking' implies that the analysis performed in 
TCGA was incomplete. "Stem-B" is basically composed of non-serous samples. 

 As suggested by the Referee, we have rephrased the sentence on Page 9 to “We also noted 
that TCGA molecular subtyping did not include a Stem-B/C6 population". 

 

- "Using 260 samples from the validation set (GSE19829 [n = 28], GSE30311 [n = 47] and 
GSE26712 [n = 185]) for which patient outcome information was supplied (Konstantinopoulos et 
al, 2010), the Kaplan-Meier analysis on the BinReg-predicted molecular subtypes revealed a similar 
pattern of patient prognoses with that of the original consensus clustering analysis (p = 0.0372 by 
the log-rank test; Fig. 1B; Suppl. Fig. 7D)." This description is not proper. Stem-B subtype showed 
good prognosis in the training set (Fig.1B) but poor prognosis in the validation set (Suppl. Fig. 7D). 

 As the Referee noted, the similarity of the patient outcomes between the training and 
validation sets was observed in the subtypes except for Stem-B. We already discussed the 
discrepancy of Stem-B tumours in the section of “Designation of molecular subtypes” in 
“Suppl. Text” of the first revised manuscript. Nevertheless, we have now included this notion 
in the “Results” section of “Predictive framework for EOC subtype classification” and also 
modified the description in the Figure Legends for Suppl. Figs. 7D and 8D. 

 

- "The ss-GSEA analysis of 1,538 samples using 6,898 gene sets (GSEA databases Suppl. Table 6) 
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revealed a subtype-specific enrichment of 207 gene sets (Fig. 1C; Suppl. Table 7)". Unfortunately, 
reader will not be able to obtain useful information in Fig.1C because there are no annotations 
about pathway. 

 We have modified Fig. 1C by additionally annotating several pathways that we mentioned in 
the manuscript. To maintain consistency, we also annotated the pathways in Fig. 2C. 

 

- "This was performed using microarrays of representative samples for each subtype." To 
understand the result easily, the authors should add the number of core samples. It should be 
explained why the classification accuracy of the core samples was worse than that of non-core 
samples. 

 The number of core samples (n = 50 per subtype) and the remaining samples not used in 
building predictive model (n = 1,413) were added to the “Predictive framework for EOC 
subtype classification” section on Page 10 in the main text. We also explained the possible 
reason why the classification accuracy of the core samples was worse than that of non-core 
samples in the “Classification accuracy of the core samples and of non-core samples” in the 
“Suppl. Text”.  

 

- Table 1: The authors described sample size as "Total n=537" in Table 1 (Page 41). However, total 
number of samples described in each clinical variable is "539". 

 We thank the Referee for indicating this typo. The number has been change to n = 539 in 
Table 1. 

 

- The pathway/ssGSEA analysis of cell lines seems a bit redundant, as by the nature of the 
comparison to tumour sample profiles, it seems logical that the associated pathways are highly 
similar. 

 We believe that the results from the pathway analyses (Fig. 2C) are able to support the 
expression similarity between clinical tumour and cell-line subtypes by indicating biological 
interpretations and, as such, we kept it in the revised manuscript though it may seem a bit 
redundant. 

 

- The concept of RNAi screens and synthetic lethality is based on the presence of genomic variation 
that creates cancer specific vulnerabilities. The use of various cell lines as a model for epithelial 
ovarian carcinoma, including PA-1, would be particularly useful when these are shown to 
genomically resemble ovarian carcinoma, harbouring (like the majority of ovarian cancer) TP53 
mutations and a vastly reorganized genome, with amplifications typical for ovarian cancer such as 
MYC, MECOM, Cyclin E1, and so forth. The Cell Line Encyclopaedia data set may be of help to the 
authors; at least A2780, OVCAR-3 and SKOV3 are available there. PA-1 is acknowledged as 
originating from a teratocarcinoma but at a strange position. It would make sense to either describe 
this at first mention, or in the discussion section. 

 We appreciate the Referee’s suggestion. Following this, we performed statistical analysis 
using genomic information from TCGA and Cancer Cell Line Encyclopaedia (CCLE).  

First, information of genomic aberrations of copy number changes (63 amplified genes 
including MYC, MECOM and CCNE1, 50 genes with deletion such as RB1 and NF1) and 
somatic mutations (8,431 genes exemplified by TP53, BRCA1) observed in serous ovarian 
cancer were collected from TCGA database. For somatic mutations, Fisher exact test 
identified 11 genes as exhibiting subtype-selective enrichment in clinical tumours. The genes 
include TP53 (less frequently mutated in Stem-A; p = 0.009), FAT3 (less frequently mutated 
in Mes; p = 0.0193) and SPTB (more frequently mutated in Epi-B; p = 0.0009). 

Second, the genomic alteration data of the ovarian cancer cell lines, where we have subtype 
information (4 Epi-A, 1 Epi-B, 9 Mes, 7 Stem-A and 2 Stem-B; n = 23), was extracted from 
CCLE. Subsequently, we compared the genomic aberration pattern across the subtypes 
between TCGA clinical samples and CCLE cell lines. Due to the limited number of the cell 
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lines, however, only two genes (MIER2 and APBA3) were identified to be less frequently 
deleted in Mes subtype (p = 0.0189 and p = 0.0072, respectively) with difficulty in 
understanding this biological significance.  

As we mentioned in the first Rebuttal letter, we are currently assembling a database including 
genomic alterations, miRNA, and methylation patterns for the panel of cell lines. We are 
hoping to obtain significant results in the coming months to be part of a follow-up study. 
Thus, these findings are not reported in the current manuscript. 

 The acknowledgement of PA-1 being a teratocarcinoma line was moved to the first time it is 
mentioned in the Results section of “Genome-wide shRNA screens identified subtype-
specific growth-promoting genes” on Page 12 as suggested by the Referee. 

 

- 'Of note, a previous study of 489 samples could not correlate their molecular classification with 
patient overall survival (The Cancer Genome Atlas Research Network, 2011)'. As noted above the 
TCGA sample cohort includes only serous cases and is therefore not comparable to the current 
study. Moreover, later studies using the same TCGA data set (PMID 23257362) showed strong 
associations with outcome. 

 First, by the sentence, we simply indicated the fact that TCGA researchers observed no 
correlation between patient outcomes (overall survival: OS) and the TCGA subtypes in their 
cohort. Importantly, the cohort showed no correlation with the patient OS based on our 
subtyping scheme unlike the other cohorts (Fig. R2; please note that only high-grade serous 
samples were included for fair comparison). This implies TCGA cohort contained ‘different’ 
patient populations to some extent from those of the other cohorts. Therefore, we described 
as ‘This is perhaps derived from an inevitable bias internal to the cohort’ in the original 
manuscript.  

Second, we should mention one important point that the TCGA paper mentioned by the 
Referee (PMID 23257362) was not published at the time we submitted our manuscript to 
EMBO Molecular Medicine. In the paper, Verhaak et al. utilized “CLOVAR (Classification 
of Ovarian Cancer) subtype” that was a refined subtype signature from the original TCGA 
scheme. By CLOVAR subtype, the authors indeed observed two associations between the 
subtypes and outcomes as this Referee mentioned:  

1) It is important to point out that the strong association in OS was observed with the 
populations, in which the vast majority was derived from the other cohorts than TCGA 
(64 patients from TCGA cohort and 815 patients from 6 published studies) (p < 0.0001 in 
Fig. 2B of PMID 23257362).  

2) A significant difference in recurrence-free survival (RFS) was also observed between 
patients in the TCGA cohort whose tumor samples expressed either the immunoreactive 
or the mesenchymal signature (p = 0.037 in Suppl. Fig. 2 of PMID 23257362).  

Considering there is similarity between our subtyping scheme with the ones by Tothill and 
TCGA, the correlation by CLOVAR subtyping seemingly indicates that the OS can be 
correlated with any of the three molecular subtyping strategies with the data from many 
cohorts but not from the TCGA cohort.  

Based on this, we have added the description of “although a more recent study correlated two 
TCGA subtypes with relapse-free survival using the same cohort”. 
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Fig. R2: Overall survival of (A) TCGA and (B) cohort other than TCGA (high-grade serous samples 
only) by the proposed molecular subtyping. Colour code: Epi-A, dark green; Epi-B, light green; 
Mes, red; Stem-A, blue; Stem-B, purple. P-values were computed by log-rank test. 

 

- 'The development of a decision tree model, utilizing the Stem-A and Epi-B predictors, might be a 
promising application to triage approximately half of the serous EOC patients for outcome 
prediction.' This is extremely speculative as no alternative therapeutic modalities are available for 
worse performing cases. Moreover, it is not clear that the classification system from this study 
outperforms that of previously reported classifiers (PMIDs 22203759, 22505474, and again 
23257362). 

 By the sentence we meant to simply discuss the possibility of using the subtype signatures 
with our scheme to build a predictive model for patient outcomes. We did not intend to 
indicate our molecular subtyping was immediately applicable for that particular purpose with 
the current condition. Nevertheless, so as to avoid having too speculative discussion as 
indicted by the Referee, we have removed the sentences of “To date, the incorporation of 
molecular subtype prediction into clinical decisions has not been realized. The development 
of a decision tree model, utilizing the Stem-A and Epi-B predictors, might be a promising 
application to triage approximately half of the serous EOC patients for outcome prediction.” 
from the “Discussion” of the second revised manuscript. 

 

- The authors note that microtubule stabilizers such as paclitaxel and docetaxel are commonly used 
in the treatment of ovarian cancer. Does their meta-data set have the clinical annotation to show 
that these drugs are particularly effective in their Stem-A class? Detailed drug information is 
available from TCGA. 

 We thank the Referee for this suggestion. We have examined the information pertaining to 
clinical response to chemotherapeutic drugs from TCGA database (n = 526). In the database, 
there were 158 patients treated with adujuvant regimens including paclitaxel or docetaxel. A 
Fisher exact test revealed no statistically significant difference between Stem-A and the other 
subtypes in the response (p = 0.1215; Fig. R3), although there is a trend, in which Stem-A 
seems to have more complete response. Since the difference was not statistically significant, 
we do not include this observation in the revised manuscript. 
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Fig. R3: Contingency plot of clinical response to mitotic inhibitors (paclitaxel and docetaxel) for 
Stem-A (n = 32) and Non-Stem-A subtypes (n = 126). Frequency is on the y-axis. The p-value 
shown is computed by Fisher exact test. Abbreviation: Stem-A, Stem-like A; CR, complete 
response; PR, partial response; SD, stable disease; PD, progressive disease.  

 

 

 

Referee #3 (Comments on Novelty/Model System): 

 

The inadequacies of in vitro models were addressed in the manuscript. 

 

Referee #3 (General Remarks): 

 

The authors have addressed most of my concerns. The remaining concerns are relatively minor: 

1) Some overstatement/misstatement of results remain. For example: 

a. The authors state that (Page 12, 1st paragraph), "Epi-A and Epi-B cell lines had longer 
population doubling times and decreased colony-forming ability, corresponding to the less 
aggressive behaviour of clinical tumours. Overall these cell lines can serve as good experimental 
models for each molecular subtype." Those interpretations appear to be over stated. While in vitro 
proliferation rates and anchorage independent growth can correlate with in vivo tumour behaviour 
this language should softened to reflect the experimental findings directly. 

 We have changed the sentence on Page 12 to “Epi-A and Epi-B cell lines had longer 
population doubling times and decreased colony-forming ability, which may reflect the less 
aggressive behaviour of clinical tumours. Overall these cell lines can serve as good 
experimental models for each molecular subtype.” 

 

b. First line on page 10: please remove "precisely" in "precisely dissects ovarian serous carcinoma 
heterogeneity". 

 We have removed “precisely” of the sentence on Page 10 as suggested by the Referee. 

 

c. Page 14: "Relying on a stringent criterion (>= 20% growth suppression..."-20% does not seem so 
stringent! Please just rephrase. 

 We have rephrased the sentence on Page 14 as suggested by the Referee to “Relying on 
criterion of >= 20% growth suppression …” 

 

d. Page 16: "For the first time, using a genome-wide shRNA screen, we revealed that subtype-
matched cell lines have distinct molecular pathways." I would change "revealed" to "found" and 
"molecular pathways" to "vulnerabilities". 
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 As suggested by the Referee, we have revised the sentence on Page 16 to “For the first time, 
using a genome-wide shRNA screen, we found that subtype-matched cell lines have distinct 
vulnerabilities” 

 

e. Later on page 16, the words "unequivocally" and "inevitable" seem unnecessary overstatements. 

 We have removed the words “unequivocally” and “inevitable” from page 16 so as not to 
overstate our findings. 

 

f. Similarly, on page 17, "confirmed by shared cell functions" is strong and could be changed to 
"further supported by shared cell functions." 

 We have replaced the sentence as suggested by the Referee on page 17. 

 

2) While the overall trends can be discerned, the resolution of Fig. 2B is too low to properly 
evaluate the data. Particularly the "Clinical sample probability" and "AUC" panels. The resolution 
on Supp Fig 1a is also too low. 

 We have enlarged the size of our figures and increased the resolution of all the figures from 
96 dpi to 300 dpi. 

 
 
 
 




