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Supplemental Text 

Designation of molecular subtypes 

The Epithelial-A (Epi-A/Differentiated/C3) and Epithelial-B (Epi-B/Immunoreactive/C2) 

tumour clusters expressed epithelial cell markers, such as CDH1 (E-cadherin), EPCAM, 

various keratin genes (KRTs) and CD24. The Mesenchymal (Mes/Mesenchymal/C1) tumour 

subtype predominantly expressed fibroblastic/mesenchymal genes, such as PDGFRA, 

VCAM1, ZEB1, TWIST1, and extracellular matrix genes, including collagen and FN1. The 

Stem-like-A (Stem-A/Proliferative/C5) and Stem-like-B (Stem-B/C6) tumour clusters did not 

share many gene markers, but expressed typical markers for epithelial stem cells: LGR5 and 

PROM1 (CD133), respectively (Fodde, 2009). Stem-A tumours also expressed more MYCN, 

NCAM, CDH2 (N-cadherin) and proliferation-related genes, suggesting neural characteristics. 

Epi-B and Mes tumours expressed inflammatory genes, such as multiple interferon down-

stream genes, MHC class II genes and immunoglobulin genes (Fig. 1A; Suppl. Table 2; 

Suppl. Figs. 11A and 11B). The proportion of each subtype in all 1,538 samples was 8.8% for 

Epi-A (n = 135), 25.5% for Epi-B (n = 392), 26.7% for Mes (n = 412), 20.5% for Stem-A (n 

= 315), and 12.3% for Stem-B (n = 189); 6.2% remained unclassified (n = 95).  

 We noted that three datasets (GSE10971, GSE14407 and GSE18520) contained 78 

samples taken by laser capture microscopy that were highly enriched for carcinoma cells by 

maximum elimination of contaminating stroma. The distribution of each subtype was 

consistent with that of the entire collection (Epi-A, 7.7%; Epi-B, 25.6%; Mes, 21.8%; Stem-

A, 20.5%; Stem-B, 3.8%; and unclassified, 20.5% in 78 samples), implying that the subtypes 

are intrinsic to cancer cells, and not dependent on stromal cells. 

 A comparison of the subgrouping scheme in the current study with that of previous 

classifications by Tothill et al. (Tothill et al, 2008) or by The Cancer Genome Atlas (TCGA) 

(The Cancer Genome Atlas Research Network, 2011) revealed that the Stem-B/C6 subtype 

was identified from the analyses of multi-histotype ovarian cancers by Tothill et al. and by us 

but not by TCGA in their analysis of only high-grade serous ovarian cancer (Suppl. Fig. 3B). 

On the other hand, in our analyses, most of the histotypes other than serous cancers were 
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classified into the Stem-B subtype (Suppl. Figs. 4B and 6A); although, these non-serous 

tumours shared “few molecular similarities”. The inclusion of the other histotypes, therefore, 

may allow the identification of a unique subgroup in serous carcinomas. To see the effect of 

including the other histologies in our molecular classification (using a standard deviation cut-

off of 1.05), we examined the lists of genes that were most variably expressed across the 

samples: 1) all samples used in the current study (n = 1,538), 2) serous carcinoma samples (n 

= 1,274) and 3) samples with histotypes other than serous carcinoma (n = 264). These lists 

showed a significantly higher overlap between all 1,538 and 1,274 serous samples (1,116 

overlapped/1,138 genes in total; 98.1%), than between all 1,538 and 264 of the other 

histology samples (1,089 overlapped/1,311 genes in total; 83.1%). This difference in the gene 

lists indicates that the overall expression pattern with all 1,538 samples was influenced 

mainly by variation within the serous cancer samples, but to a lesser extent than that within 

the other histological types. The other histotypes might have been thus classified into the 

same molecular category as Stem-B, even though they exhibited distinct biological 

characteristics. The clinicopathological information obtained with each dataset was neither 

standardised nor centrally reviewed across the datasets; therefore, it is possible that 

pathologically misdiagnosed samples were included. However, it is also likely that the 

variation between serous and the other histologies contributed to the identification of the 

Stem-B subtype exhibiting “less serous” features. This notion was also supported by the fact 

that the expression level of WT1 gene, a marker of serous adenocarcinoma of the ovary 

(Lawrenson & Gayther, 2009) was significantly lower in Stem-B tumours, irrespective of 

whether they were exhibiting other histotypes or were only serous ovarian carcinoma (Suppl. 

Fig. 5).  

 The Kaplan-Meier curves for the Stem-B subtype differed between the training and 

validation sets, while those curves for the other subtypes were consistent (Fig. 1B; Suppl. 

Figs. 7C, 7D, 8B and 8D). The small number of samples for Stem-B (n = 56 [BinReg] or 32 

[ClaNC] samples with survival information) in the validation dataset might be responsible for 

this discrepancy. However, we also found that the serous samples included in the Stem-B 
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subtype have different overall survival rates between the training and validation datasets, 

implying possible heterogeneity within the subtype.  

 

Discordance of molecular subtype prediction 

Despite recent progress in the development of statistical models for cancer molecular 

subtyping with expression microarray data, there is still uncertainty about the reproducibility 

of these various classification algorithms because of the intrinsic nature of subtype 

identification where the true classification remains unknown (Haibe-Kains et al, 2012). 

Previously, Haibe-Kains et al. showed that the concordance between pairs of different 

classifiers varied from 49-86% (median: 68%) in the molecular subtyping of 5,715 breast 

cancer samples derived from 36 independent datasets (Haibe-Kains et al, 2012). Similarly, a 

concordance of 77.5% was observed between a centroid prediction and a k-means clustering 

in a breast cancer cohort with 412 samples (Calza et al, 2006), showing that the best methods 

achieve a concordance comparable to the 78.8% we observed in our study. By scrutinising the 

discrepancy in the subtype classification, we noted high rates of discordant assignments in 

distinguishing Epi-A from Epi-B or Stem-B, and Epi-B from Mes (Suppl. Table 8). This 

ambiguity may arise from shared biological properties between some of the subtypes; for 

example, all three Epi-A, Epi-B and Stem-B subtypes expressed epithelial markers, and many 

clinical samples with Epi-B or Mes subtype assignment expressed inflammatory cell markers 

(Fig. 1A; Suppl. Fig. 11A). A similar overlap was indeed observed in a breast cancer cohort 

between luminal A and luminal B subtypes, which shared a nuclear expression of oestrogen 

receptors (Calza et al, 2006). In fact, 82% of 489 ovarian cancer expression data of TCGA 

were assigned to more than one subtype in a cross-validation with ss-GSEA (Verhaak et al, 

2013), implying there were transcriptionally overlapped features across the samples. We 

believe that the observed discordance is due to similarity in the biological properties of the 

clinical samples. 

 

Classification accuracy of core and non-core samples 
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The classification accuracy of core samples was worse than non-core samples (Fig. 1D) 

primarily due to the difference in gene sets used for defining core samples, and the gene sets 

used to define subtype by BinReg. The gene components for each gene set were largely 

distinct, with a 9.8% overlap (116/1185 genes).  Moreover, the silhouette width for the genes 

with variable expression was not correlated with that for the BinReg subtype signatures 

(Spearman correlation rho = 0.0194 and p = 0.4612).  These findings are not inconsistent with 

our observation, in which the core samples were not always predicted as anticipated. 

 

Association of molecular subtypes with patient outcomes 

In addition to Table 1, which outlines the analysis of all histological ovarian cancer cases with 

age, stage, grade, metastasis status and molecular subtype status for overall survival rate, we 

further performed four additional Cox hazardous regression analyses (Suppl. Table 5A) as 

described below:  

1) Serous cancer cases with age, stage, grade, metastasis and molecular subtype status, based 

on the overall survival rate (OS) (Suppl. Table 5B).  

: The Stem-A or Epi-B subtype was found to be an independent prognostic factor from 

multiple clinical characteristics for serous ovarian cancer patients. 

2) Serous cancer cases with age, stage, grade, metastasis status and molecular subtype status, 

based on the progression-free survival rate (PFS) (Suppl. Table 5E). 

: The molecular subtype was not independently correlated with PFS for serous ovarian 

cancer. 

3) All histology cancer cases with age, stage, grade, metastasis status, surgical status and 

molecular subtype status, based on OS (Suppl. Table 5C). 

: The limited number of cases with complete information prevented us from identifying 

even the debulking status as an independent prognostic factor with statistical 

significance. Similarly, none of the molecular subtype was found as an independent 

prognostic factor. 
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4) All histology cancer cases with status for debulking surgery or molecular subtypes, based 

on OS (Suppl. Table 5D). 

: When we examined only the debulking surgery status and the molecular subtype, Epi-B 

and Stem-A were found to be significant prognostic factors independent of the debulking 

status.  

 In summary, the Stem-A and Epi-B subtypes are consistently identified as prognostic 

factors that are independent of multiple clinical parameters and status, which include the 

status for surgery in the overall survival rate (Table 1; Suppl. Tables 5A, 5B and 5D).  

 

Cell line subtype identification by consensus clustering 

Four independent datasets of ovarian cancer cell lines from Duke University (42 cell lines), 

Kyoto University (37 cell lines), National University of Singapore (34 cell lines) and 

Lawrence Berkeley National Laboratory (29 cell lines) were analysed (Guan et al, 2007; 

Matsumura et al, 2011). The data for a total of 142 cell lines were compiled and analysed 

with the data of 1,142 core clinical samples in consensus clustering, without considering the 

histological origin of the cell line. Realising that the identified subclass labelling for cell lines 

did not fully capture the pattern of clinical samples, this labelling was then used as a tentative 

assignment for cell line subtypes for subsequent clustering analysis. After identification of the 

subtype-specific marker genes using the "cell-line only" expression data with SAM and ROC 

(Tusher et al, 2001), a consensus clustering was again performed relying on the selected gene 

sets (Suppl. Fig. 10A). The approach of the co-clustering analysis (Lowe et al, 2007; Perou et 

al, 1999; Prat et al, 2010; Virtanen et al, 2002) yielded a stable subtype classification for the 

cell lines with reasonable similarity to that of the clinical samples (Suppl. Fig. 10C), and 

achieved a 100% consistency in subtype classification for biological replicates of 28 cell lines 

that originated from the same source (Suppl. Table 9). This is in contrast to the approach of 

predicting the cell line subtype with BinReg or ClaNC, where the consistency in subtype 

classification was 67.9% (19/28 cell lines) amongst the biological replicates (Suppl. Table 9). 

Based on this observation, co-clustering was adopted instead of a prediction approach for 
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subtype assignment of the ovarian cancer cell lines. We performed a silhouette analysis and a 

SigClust (Liu et al, 2008) to confirm the validity of the cell line subtypes (Fig. 2A). In 

addition, to confirm the expression similarity between cell lines and clinical samples for each 

subtype, Spearman correlation map was constructed to measure the closeness in gene 

expression between the cell lines and clinical samples (Suppl. Fig. 10C). Furthermore, 

BinReg was adopted to validate the subtype assignment of the cell lines (Fig. 2B) (Gatza et al, 

2010).  

 A co-consensus clustering of the cell lines and the serous tumour samples was 

performed, and yielded a result that was highly concordant (137/142, 96.5%) with that of the 

original analysis. We noted that the five discordant arrays included three biological replicates 

of the TYK-nu cell line and one of its derivatives (TYK-nu CisR) (data not shown), which 

were originally grouped into the Mes subtype but were clustered with Stem-A serous tumours 

when clustering with serous tumours only. Nevertheless, this highly concordant assignment 

demonstrates the robustness of the co-clustering method and implies a very modest influence 

of the other histologies when included with serous tumour samples.  

 

Identification of Epi-B cell lines 

Since Epi-B clinical samples were characterised by contaminating inflammatory-cell gene 

expression, it seemed difficult to identify Epi-B cell line counterparts. Nevertheless, the 

identified Epi-B cell lines indeed shared transcriptional profiles with the Epi-B clinical 

tumour samples. The similarity in the expression was confirmed with the BinReg analyses at 

gene and pathway levels (Figs. 2B and 2C), as well as with the Spearman correlation map 

(Suppl. Fig. 10C). It is plausible that the similarity between cell lines and clinical samples is 

intrinsic to tumour cells and not to contaminating inflammatory cells, as supported by several 

lines of evidence: 1) The Epi-B subtype of clinical samples consists of C2 and C4 according 

to the classification of Tothill and colleagues, as illustrated in Suppl. Fig. 3B (Tothill et al, 

2008). C4 is a tumour cluster with fewer infiltrating cells than C2; therefore, the Epi-B 

subtype in clinical samples is not solely characterised by inflammatory cell infiltration (Fig. 
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1A). 2) Epi-B tumours are characterised not only by the marker gene expression of 

inflammatory cells, such as major histocompatibility complex (MHC) class II genes (HLA-

DMs, DOs, DPs, DQs and DRs), but also by gene sets for epithelial cells and interferon (IFN) 

pathways, such as IFN-downstream genes (Fig. 1A; Suppl. Figs. 11A and 11B). It is 

important to note that Epi-B cell lines also retained a similar expression pattern in these 

subsets of genes that include even MHC class II genes (Suppl. Figs. 11A and 11B). This 

ectopic expression of MHC class II genes in Epi-B cell lines may be induced through the IFN 

signalling pathway, since intrinsic inflammatory pathways in cancer cells (such as TNF-α and 

IFNs) can be activated by tumorigenic events. Also, IFNs are reported to stimulate the 

expression of MHC genes in various cancer cells, including ovarian cancer in vitro and in 

vivo (Boyer et al, 1989; Freedman et al, 2000; Mantovani et al, 2008). 

 

Pathways affected in silencing PA-1-specific genes 

The ss-GSEA revealed the pathways affected by targeting each of the five PA-1 relevant 

genes in PA-1, OVCA433 and HeyA8. All siRNA transfections produced significant and 

appropriate silencing of the genes with 67.3-92.6% (median 83.9%) efficacy (Suppl. Fig. 

13A). A total of 534 pathways were commonly altered across the three cell lines (Suppl. Fig. 

13B; Suppl. Table 14). GTF3C1 knockdown coincided with the down-regulation of the gene 

set Reactome RNA Polymerase III Transcription in all three cell lines pertaining to the 

function of GTF3C1 as a regulatory component of RNA polymerase III transcription 

machinery (Kovelman & Roeder, 1992). Similarly, as one of the components required for 

microtubule nucleation (Fava et al, 1999; Moritz et al, 1995; Moritz et al, 1998), TUBGCP4 

knockdown resulted in down-regulation of the Microtubule gene set in the transcriptome. 

Common pathways for NAT10, BLOC1S1 and LRRC59 are listed in Suppl. Table 14. Thus, 

these examples indicate that this approach can connect a gene with a pathway as expected 

from the biological function of the gene. 
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Supplemental Figure 

 

Suppl. Fig. 1. Removing the batch effect of combined expression microarray data for 

epithelial ovarian cancer. 

A. Heatmaps showing the effect of ComBat standardisation. The samples were aligned 

according to 16 RMA-normalised, independent ovarian cancer gene expression data 

(GSE3149, GSE9891, GSE2109, TCGA, Oslo cohort, GSE6008, E-MEXP-935, GSE10971, 

GSE14001, GSE14407, GSE14764, GSE18520, GSE19352, E-MEX-P1085, GSE15578, and 

GSE12172). Combined gene expression heatmaps of 22,215 probes available on the U133A 

platform before (left panel) and after (right panel) ComBat standardisation. B. Effect of 

ComBat standardisation in principle component analysis (PCA) of 16 independent cohorts. 

Left panel. Prior to ComBat standardisation, the combined ovarian cancer gene expression 

data showed technical variations. Right panel. After ComBat standardisation of the same data, 

the technical variations were eliminated.  
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Suppl. Fig. 2. Statistical power plots. 

Statistical power plots to distinguish one subtype from the others. The statistical power 

computation is based on the results of a t-test, with a significance level α = 0.05, and on the 

assumption that subtype distribution is the same throughout different population sizes. 

Sample mean was treated as population mean. Arrows indicate the number of samples 

required to attain a statistical power of 0.8 for distinguishing amongst molecular subtypes. 

The required number of samples was approximated by fitting a cubic polynomial equation 

with Graphpad robust fit function. x-axis is the number of samples; y-axis is statistical power. 

Abbreviations: Epi-A; Epithelial-A, Epi-B; Epithelial-B, Mes; Mesenchymal, Stem-A; Stem-

like-A, Stem-B; Stem-like-B. 
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Suppl. Fig. 3. Additional information for the proposed ovarian cancer molecular 

subtype.  

A. Silhouette plot. Clinical samples positive for the silhouette width (SW) in each subtype:	  

Epi-A, 74.8% (101/135); Epi-B, 80.4% (315/392); Mes, 78.9% (325/412); Stem-A, 81.3% 

(256/315); and Stem-B, 76.7% (145/189). SigClust (Liu et al, 2008) p-values indicative of 

significance of clustering are shown to the right of the silhouette plot. B. Comparison of the 

proposed molecular subtype with previously published subtyping schemes for epithelial 

ovarian cancer by Tothill et al. (Tothill et al, 2008) and The Cancer Genome Atlas (TCGA) 

(The Cancer Genome Atlas Research Network, 2011). Note that Epi-B subtype carries an 

immunoreactive and a differentiated component, and also that TCGA molecular subtyping 

lacks Stem-B/C6 population. Abbreviations: Epi-A; Epithelial-A, Epi-B; Epithelial-B, Mes; 

Mesenchymal, Stem-A; Stem-like-A, Stem-B; Stem-like-B. 

 

 



	  

13	  
	  

 

Suppl. Fig. 4. Subtype distribution 

Subtype distribution by cohorts (A) and histologies (B). X-axis is the cohort or histology, and 

y-axis is the frequency. “Other” indicates the unclassified samples not grouped in any of the 

five subtypes in the initial consensus clustering analysis in Fig. 1A. Colour code: Epi-A, dark 

green; Epi-B, light green; Mes, red; Stem-A, blue; Stem-B, purple; Other, grey. 

Abbreviations: Epi-A; Epithelial-A, Epi-B; Epithelial-B, Mes; Mesenchymal, Stem-A; Stem-

like-A, Stem-B; Stem-like-B. 
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Suppl. Fig. 5. WT1 gene expression of ovarian cancer subtype. 

Left panel. Dot plots of subtypes for the gene expression level of WT1, a serous histology 

marker, in clinical ovarian cancer samples comprising serous, endometrioid, mucinous, clear 

cell and other histologies. Right panel. Dot plot of subtypes for WT1 gene expression level in 

serous ovarian cancers only. Colour code: Epi-A, dark green; Epi-B, light green; Mes, red; 

Stem-A, blue; Stem-B, purple. Abbreviations: Epi-A; Epithelial-A, Epi-B; Epithelial-B, Mes; 

Mesenchymal, Stem-A; Stem-like-A, Stem-B; Stem-like-B. 
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Suppl. Fig. 6. Clinicopathological characterisation of molecular subtypes. 

A. Histograms showing the relationship between expression subtypes with the histotypes (left 

panel), age distribution (middle panel, where the mean age in years is shown underneath) and 

primary or metastasised tumours (right panel). Definition of metastasised tumour follows the 

original description in the literature (Anglesio et al, 2008; Bowen et al, 2009; Tone et al, 

2008; Tothill et al, 2008). B. Kaplan-Meier survival analyses stratified by clinical stage. Note 

that patients with stage I or II Stem-A ovarian carcinomas have worse outcome, with 

statistical significance. Epi-A and Epi-B subtypes show better prognoses overall, but Stem-B 

cancers are no longer benign at advanced stages. C. Prognostic feature of subtypes in serous 

ovarian carcinomas without low malignant potential (LMP) (= high-grade serous EOCs). A 

total of 863 samples in this category were analysed (Epi-A; 63, Epi-B; 258, Mes; 280, Stem-

A; 217, and Stem-B; 45 samples). Kaplan-Meier analyses of EOCs with all available 

histotypes (upper panel) and with high-grade serous histotype (lower panel) are shown. Note 

that the molecular sub-classification further dissects heterogeneity of high-grade serous EOCs 

in patient prognosis. D. Distribution of molecular subtypes in ovarian serous tumours. The 

overview frequency distribution as a percentage for ovarian cancer subtypes as LMP, low-
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grade and high-grade serous ovarian carcinomas. x-axis is the subtype or histological type, 

whereas y-axis is either the frequency or frequency as a percentage. Colour code: Epi-A, dark 

green; Epi-B, light green; Mes, red; Stem-A, blue; Stem-B, purple. Abbreviations: Epi-A; 

Epithelial-A, Epi-B; Epithelial-B, Mes; Mesenchymal, Stem-A; Stem-like-A, Stem-B; Stem-

like-B. 
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Suppl. Fig. 7. A diagnostic method to predict ovarian cancer subtype based on a Binary 

Regression model.  

A. Scheme of diagnostic subtype prediction based on a Binary Regression (BinReg) model. 

For each subtype, 50 clinical samples with the highest silhouette values in Suppl. Fig. 3A 

were subdivided into training sets A and B, and predictive models were generated based on 

the results of the gene expression arrays of training set A. Multiple tests of predictions from 

training set A to training set B determined the best condition to perform a BinReg. The 

defined condition (Suppl. Materials and Methods) was used to predict the status of the 

remaining samples and the samples with unknown status for the subtype. B. Generation of 

subtype predictors. Upper panels. Gene expression heatmaps for subtype predictor. 

Expression of predictor genes: red = high; blue = low. Bar = 25 samples were used to 

generate the subtype signature. Middle panel. Heatmap for predicted probabilities of subtype 

status of leave-one-out cross-validation (LOO-CV) analysis. Lower panel. Heatmap for 

predicted probabilities of subtype status of training set B samples. Overall concordance 

(comparing the subtype assignment by consensus clustering against that predicted by BinReg) 

is shown. C. Kaplan-Meier analysis of the predicted subtype of samples not used in predictor 
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generation. The concordant samples with survival information (n = 811) were plotted 

according to the predicted subtypes. p-value was computed by the log-rank test. D. Kaplan-

Meier analysis of 260 validation samples for which patient outcome information was supplied 

with predicted subtypes by BinReg. p-value was computed by the log-rank test. Note that the 

similarity of the patient outcomes between the training and validation sets was observed in the 

subtypes except for Stem-B (Fig. 1B,; Suppl. Figs. 7C and 8D). Abbreviations: Epi-A; 

Epithelial-A, Epi-B; Epithelial-B, Mes; Mesenchymal, Stem-A; Stem-like-A, Stem-B; Stem-

like-B. 
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Suppl. Fig. 8. Diagnostic subtype prediction by SAM/ROC/ClaNC. 

A. Gene expression heatmap of subtype-specific genes. Clinical samples with positive 

silhouette width (SW) values (Suppl. Fig. 3A) are aligned according to their subtype. Red = 

high, green = low expression. The subtype-specific genes were identified using significance 

analysis of microarrays (SAM) (false discovery rate; FDR q = 0%) and receiver operating 

characteristic (ROC) analysis (> 0.78) (Tusher et al, 2001). B. Left panels. Scheme of 10-fold 

cross-validation. We performed a 10-fold cross-validation analysis, in which we generated the 

expression signatures of 90% samples, predicted the subtype status of the remaining 10% of 

the samples with the signatures by classification to nearest centroids (ClaNC), and repeated 

these predictions 10 times (Dabney, 2006; Subramanian & Simon, 2011). Data from 1,538 

epithelial ovarian cancer (EOC) samples were randomly subdivided into 10 blocks of 154 or 

153 samples. Using data from 9 blocks (90% samples) (total 1,384 or 1,385 samples) as 

training data, subtype identification and subsequent gene selection were performed with 

consensus clustering (CC), silhouette analysis (SA), SAM and ROC. The remaining block 

(10% samples) was used as a validation set and the subtype of each sample was predicted by 

ClaNC. We repeated this process 10 times, combined predictions and performed Kaplan-

Meier survival analysis. Right panels. An example of cross-validation (Experiment #2). Gene 
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expression heatmaps (red = high, green = low expression) and Kaplan-Meier survival analysis 

of the combined result at the final stage are shown. C. Concordance of the ClaNC prediction 

with the subtype status derived from consensus clustering. Coloured bar = subtype status 

prediction of a sample. Samples are aligned according to the subtype classification by CC and 

SW. Deep colour = positive SW; pale colour = samples classified to a subtype but negative 

SW. Concordance was computed by comparing the subtype assignment by CC of 1,538 

clinical samples against the predicted subtype by ClaNC. The number in parentheses indicates 

the accuracy of the prediction against core samples. This 10-fold cross-validation showed an 

overall concordance of 72.4% for 1,538 samples. “Other” indicates the unclassified samples 

not grouped in any of the five subtypes in the initial consensus clustering analysis in Fig. 1A. 

D. Left panel. Heatmap of Spearman correlation Rho of the training data subtype (n = 1,538) 

and subtype predicted by ClaNC in the validation set comprising five independent datasets 

(GSE19829 [n = 28], GSE20565 [n = 95], GSE30311 [n = 67], GSE26712 [n = 185] and 

GSE27651 [n = 43]; total n = 418). Correlation of gene expression is computed based on the 

subtype signature (SAM false discovery rate = 0, and ROC = 0.78). Yellow indicates a 

perfect correlation (Rho = 1) whereas black indicates no correlation (Rho = 0). Right panel. 

Kaplan-Meier plot of subtype predicted by ClaNC in the validation set. p-value shown is 

computed by log-rank test. Note the similarity of the patient outcomes between the training 

and validation sets observed in the subtypes except for Stem-B (Fig. 1B; Suppl. Figs. 7C and 

7D). Abbreviations: Epi-A; Epithelial-A, Epi-B; Epithelial-B, Mes; Mesenchymal, Stem-A; 

Stem-like-A, Stem-B; Stem-like-B.  
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Suppl. Fig. 9. Three-way split cross-validation using BinReg and ClaNC 

Five sets of three-way split cross-validations for subtype classifiers by BinReg and ClaNC 

using the dataset with 1,538 clinical samples are shown. The data was divided into five 

random sets of: training set A, (40%, n = 615); training set B, (40%, n = 615) and a testing set 

(20%, n = 308), such that each sample was used in the testing set exactly once to ensure 

balance. The classifier was subsequently built using training set A or B, and then used to 

predict the testing set. The five 40-40-20 cross-validation sets are aligned as columns. The top 

coloured bar represents the subtypes identified in consensus clustering, followed by subtype 

prediction by BinReg using training set A, training set B (Upper panel), and then ClaNC 

prediction using training set A, and training set B (Lower panel). The percentage underneath 

each coloured bar is the overall concordance between the predicted subtype and the consensus 

clustering subtype. The number in parentheses is the percentage concordance of the core 

samples. Average overall concordance of each classifier is given at the bottom right of each 

panel. “Other” indicates the unclassified samples not grouped in any of the five subtypes in 

the initial consensus clustering analysis in Fig. 1A. Colour code: Epi-A, dark green; Epi-B, 

light green; Mes, red; Stem-A, blue; Stem-B, purple; Other, grey. Abbreviations: Epi-A; 
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Epithelial-A, Epi-B; Epithelial-B, Mes; Mesenchymal, Stem-A; Stem-like-A, Stem-B; Stem-

like-B. 
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Suppl. Fig. 10. Identification of cell line subtype status.  

A. A schematic presentation of subtype classification of cell lines by consensus clustering 

(CC). To identify the cell-line counterparts of ovarian tumours, data for a total of 142 cell 

lines (Duke: GSE25429 [n = 42], Kyoto: GSE29175 [n = 37], National Laboratory: E-

TABM-254 [n = 29] and Singapore: GSE28724 [n = 34]; 60 cell lines were redundant in their 

names) were analysed together with 1,142 core tumour samples in CC using the same gene 

set from Suppl. Fig. 8A. Co-clustering subdivided the cell lines into 7 clusters (G1: 21, G5: 

23, Epi-A: 1, Epi-B: 12, Mes: 33, Stem-A: 24 and Stem-B: 28 cell lines) and, of those 

clusters, two (G1 and G5) predominantly comprised cell lines. Because the expression 

signature for in vitro cultured ovarian cell-line subtype might not be exactly matched with 

that of clinical tumours, we performed an additional round of CC purely relying on the re-

selected cell-line classifiers based on the first-time subgrouping result (data not shown). This 

two-time consensus clustering finally yielded five subtypes for the cell lines (Epi-A: 29, Epi-

B: 10, Mes: 34, Stem-A: 42 and Stem-B: 27 cell lines) that were unambiguously supported by 
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similarity matrices and the silhouette values (Fig. 2A). Upper coloured bars = subtype status 

of clinical samples after the first CC. Middle black bars = position of the cell line sample with 

clinical tumour samples in the first clustering analysis. Lower coloured bars = cell line 

classes. Pale triangles = relationship between the first and the second classifications. B. Cell 

line names in the classification. Data sources of cell lines are Duke University (D), Kyoto 

University (K), National University of Singapore (S) and Lawrence Berkeley National 

Laboratory (N). Many cell lines in the Kyoto and Singapore collections are derived from the 

Duke collection, while the National Laboratory collection is totally independent of the Kyoto, 

Duke and Singapore collections. Cell lines with a negative silhouette width in Fig. 2A are 

shown in grey font. The cell-line classification was confirmed across the different cohorts. 

Note that the Kyoto data included duplicated arrays for the HEY cell line. Also note that the 

two-round CC method provides consistent subtype assignments for the biological replicates 

across the 28 cell lines derived from the same source (Duke, Kyoto, and Singapore). C. 

Heatmap of Spearman correlation Rho of the clinical tumour subtype (n = 1,538) and ovarian 

cancer cell line subtype (n = 142). Correlation of gene expression is computed based on the 

subtype signature (SAM false discovery rate = 0, and ROC = 0.82) from ovarian cancer cell 

lines. Yellow indicates a perfect correlation (Rho = 1) whereas black indicates no correlation 

(Rho = 0). Abbreviations: Epi-A; Epithelial-A, Epi-B; Epithelial-B, Mes; Mesenchymal, 

Stem-A; Stem-like-A, Stem-B; Stem-like-B. 
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Suppl. Fig. 11. Surface marker and interferon signature of Epi-B cell lines. 

A. Upper panel. Enrichment scores for epithelial cell markers of the five ovarian carcinoma 

subtypes for clinical samples and cell lines. The gene set was derived from expression 

microarrays of ovarian cancer cell lines with CDH1 and CDH2 immunohistochemistry 

staining pattern (SAM false discovery rate = 0, ROC = 0.85), consisting of known epithelial 

cell markers including DDR1, KRT8, KRT18, CDH1, CDH3, CLDN3, CLDN4, and EPCAM. 

Lower panel. Enrichment scores for MHC class IIs (comprising genes such as HLA-DM, DO, 

DP, DQ, and DR) for the five molecular subtypes in ovarian carcinoma. B. Average 

enrichment score of interferon signatures found in MSigDb v3.0 (Suppl. Table 6) and Gatza 

et al. (Gatza et al, 2010) of ovarian carcinoma subtype. For A and B panels, the left panel 

contains a dot plot of the clinical samples, whereas the right panel contains a dot plot of the 

cell lines. The p-value underneath each dot plot provides the significance level of 

distinguishing Epi-B from the others and is computed with Mann-Whitney U-test. Colour 

code: Epi-A, dark green; Epi-B, light green; Mes, red; Stem-A, blue; Stem-B, purple. 

Abbreviations: Epi-A; Epithelial-A, Epi-B; Epithelial-B, Mes; Mesenchymal, Stem-A; Stem-

like-A, Stem-B; Stem-like-B. 
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Suppl. Fig. 12. Subtype-specific amplified or depleted hairpins.  

A. Subtype-specific cell growth-relevant genes. Heatmaps of centred and normalised copy 

numbers of 14 cell lines for the whole hairpins (57,168 hairpins) retrieved after next-

generation sequencing analysis. The results are compiled from two independent screens. 

Quadruplicates of three cell lines (OVCA433 [Epi-A], HeyA8 [Mes] and PA-1 [Stem-A]) 

were assayed in the initial screen, while the other screen regarded one experimental replicate 

of 14 different cell lines (4 Epi-A: OVCA429, OVCAR-8, OVCA433, PEO1; 5 Mes: 

ovary1847, HEY, HeyA8, HeyC2, SKOV-3; and 5 Stem-A: A2780, CH1, PA-1, SKOV-4, 

SKOV-6). The cell lines were sorted according to their subtypes (Epi-A, Mes then Stem-A), 

whereas the hairpin copy numbers were sorted according to hairpin score in the RIGER 

analysis (Luo et al, 2008), with which binary comparisons were performed for each subtype 

to obtain subtype-specific cell growth determinant genes. Note that a clear genome-wide 

distinctive pattern of hairpins across subtypes was detected. The relatively amplified hairpins 

(red) putatively target the genes that have suppressive effects on cell growth under 

conventional culture conditions, while genes targeted by the relatively depleted shRNAs 
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(green) may have growth-promoting effects on cells with a given subtype. Red = higher; 

green = lower copy number counts. B. Effect-size distribution of the subtype-specific 

amplified or depleted hairpins from the three binary comparisons. x-axis is the effect size, y-

axis is the frequency. Abbreviations: Epi-A; Epithelial-A, Mes; Mesenchymal, Stem-A; 

Stem-like-A. 
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Suppl. Fig. 13. Pathways affected by silencing PA-1-specific genes. 

A. Left panel. A scheme of the pathway analysis after silencing each PA-1-specific gene in 

OVCA433, HeyA8 and PA-1 cells using siRNA. Right panel. Effect of silencing each of the 

five PA-1 genes on the relative gene expression in the three cell lines (OVCA433, HeyA8, 

PA-1). Bar plots indicate the expression of genes of interest with Non-Targeting siRNA 

(negative control) (white bar), silencing a gene of interest (si“Gene”; black bar), averaged 

expression of house-keeping genes (ACTB, B2M, GAPDH, HPRT1, PGK1, PGK2, PPP1CA, 

RPL13A, TBP, TFRC) with Non-Targeting Pool siRNA (negative control) (light grey bar) and 

silencing a gene of interest (dark grey bar). Error bar indicates SEM of triplicate experiments. 

B. Common pathways in response to knockdown of the five PA-1 genes. Heatmaps show the 

relative change in pathway activities of ss-GSEA scores (si“Gene” versus siNon-Targeting 

negative control). Positions of Reactome of RNA polymerase and Microtubule are indicated to 

the right. Red = increased activity; green = decreased activity. The bar on top of the heatmap 

indicates triplicates or quadruplicates of OVCA433, HeyA8 and PA-1 cells. Green = 

OVCA433 (Epi-A), Red = HeyA8 (Mes), Blue = PA-1 (Stem-A). C. Detection of apoptotic 

activity initiated by the five PA-1 gene knockdowns. The five PA-1 selective genes were 

silenced individually by siRNA in OVCA433, HeyA8 and PA-1 and examined for the 
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presence of apoptotic activity by immunoblotting for cleaved PARP and Caspase 3. Arrows 

indicate cleavage of PARP and Caspase 3. Suppression of LRRC59, NAT10, GTF3C1 and 

TUBGCP4 was linked with the induction of apoptosis only in PA-1 cells, albeit a slight 

apoptotic response was also detected using the siRNA negative control in PA-1. 

Abbreviations: Epi-A; Epithelial-A, Mes; Mesenchymal, Stem-A; Stem-like-A. 
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Supplemental Tables 

Please refer to the Excel file. 
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Supplemental Materials and Methods 

Principal component analysis 

Principal component analysis (PCA) was performed on the combined dataset before and after 

ComBat standardisation to ensure analysis on the combined dataset was not biased by the 

presence of technical variations derived from non-biological effects. Expression data of all 

the probes were used to calculate the principal components, and then the first three principal 

components comprising less than ~97% variance were visualised in the 3-dimensional scatter 

plot by Matlab (ver. 7.8.0).  

 

Statistical power analysis 

Statistical power is the probability of rejecting the null hypothesis when the alternative 

hypothesis is true. A statistical power analysis for distinguishing among the subtypes was 

performed as follows: First, we computed the subtype distribution of the 1,538 ovarian 

carcinoma [Epi-A: 135 (8.8%), Epi-B: 392 (25.5%), Mes: 412 (26.8%), Stem-A: 315 

(20.5%), Stem-B: 189 (12.3%), unclassified (5.9%)]. Second, for each gene, we estimated the 

population mean of a subtype (µsubtype) and the population mean of other subtypes (µother-

subtype). Last, we computed the statistical power for two-sided t-test using Matlab for each 

gene, with significance set at α = 0.05. We repeated the procedure for the different number of 

samples assuming that the subtype distribution is consistent. The statistical power plot for 

each subtype is given in Suppl. Fig. 2. 

 

Predictive modelling and validation by BinReg 

The BinReg parameters determined from training sets A and B for molecular subtype 

predictive modelling are given in Suppl. Table 17. 

 

Predictive modelling and validation by ClaNC 

Silhouette analysis was performed using Matlab (ver. 7.8.0) to identify core samples that best 

represent their subtypes with a positive silhouette width. Significance analysis of microarrays 
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(SAM) and receiver operating characteristic (ROC) analysis were applied to determine the 

marker genes for each subtype and to assess their capability for distinguishing one subtype 

from the others (Tusher et al, 2001). A false discovery rate of zero and area under the curve 

(Pejovic et al, 2009) threshold of >0.78 (up-regulated in the subtype) or <0.22 (down-

regulated in the subtype) were used to filter out non-significant genes for SAM and for ROC, 

respectively. Based on these marker genes, we applied classification of microarrays to nearest 

centroids (ClaNC) to generate signatures for each subtype, and subsequently the subtype 

predictive model of the clinical samples (Dabney, 2006). In order to validate the subtype 

prediction, we adopted for a 10-fold cross-validation to provide a sufficient estimation of the 

predictive model performance. In the 10-fold cross-validation, the 1,538 epithelial ovarian 

cancer samples were randomly partitioned into 10 sets, each comprising 153-154 samples 

(Subramanian & Simon, 2011). One set was used as a validation set (to be predicted), 

whereas the other 9 sets (1,384 or 1,385 samples) were used to build the predictive model. 

This process was repeated 10 times such that each set was used as the validation set exactly 

once. This method minimised bias introduced by the sample order and distribution when 

assessing the predictive model. Subtype predictions of all the validation sets were combined 

and compared against the subtype assignment by consensus clustering on all of the 1,538 

samples. 

 

Three-way split cross-validation using BinReg and ClaNC 

To provide additional assessment on BinReg and ClaNC for ovarian cancer molecular 

subtype predictors, we performed five random 40-40-20 cross-validations using the two 

methods, where two mutually exclusive sets comprising 40% (n = 615) of the 1,538 ovarian 

cancer samples were used as either training set A or B to model a predictor, and the remaining 

20% (n = 308) of the samples not in training sets A and B were used as a testing set to assess 

the predictor performance. To ensure balance in predictor assessment, each sample was used 

in the testing sample exactly once in the five random 40-40-20 data division. Subsequently, 

we identified molecular subtypes independently from training set A or B using consensus 



	  

33	  
	  

clustering (with most varying genes), silhouette width analysis, and then build BinReg or 

ClaNC predictors using core samples, as described in the section “Predictive modelling and 

validation by BinReg/ClaNC” of Materials and Methods and Suppl. Materials and Methods. 

The predictive model from training set A or B was then used to predict the subtype of the 

samples in the testing set. Concordance was measured by comparing predicted subtype with 

the original classification from the consensus clustering using all the 1,538 samples. The 

result is shown in Suppl. Fig. 9. 

 

Cell line panel 

The cell-line panel used in the study was a mixture of histology according to the publicly 

available descriptions (Suppl. Table 11). Microarray analyses for the gene expression of 142 

ovarian cancer cell lines were combined from four independent datasets and analysed: (1) 

Duke University (n = 42: A2008, A2780 cisR, A2780, BG1, C13, Caov-2, Caov-3, CH1, 

CH1 cisR, DOV 13, FU-OV-1, HEY, HeyA8, HeyC2, IGROV-1, M41, M41 cisR, MCAS, 

NOSE-06, NOSE-07, OV2008, OV90, ovary1847, OVCA420, OVCA429, OVCA432, 

OVCA433, OVCAR-10, OVCAR-2, OVCAR-3, OVCAR-5, OVCAR-8, PA-1, PEO1, PEO4, 

SKOV-3, SKOV-4, SKOV-6, SKOV-8, TOV-21G, TYK-nu, TYK-nu cisR); (2) Kyoto 

University (n = 37: A2008, A2780, Caov-3, HEY, IGROV-1, JHOC-5, JHOC-7, JHOC-8, 

JHOC-9, JHOM-1, JHOM-2B, JHOS-2, JHOS-3, JHOS-4, KOC-5c, KOC-7c, MCAS, 

OMC3, OV90, ovary1847, OVCA420, OVCA429, OVCA432, OVCA433, OVCAR-3, 

OVCAR-8, OVISE, OVK-18, OVTOKO, PEO1, RMG-I, RMG-II, RMG-V, SKOV-3, 

TAYA, TOV-21G, TYK-nu); (3) National University of Singapore (n = 34:	  A2008, A2780, 

C13, Caov-2, Caov-3, CH1, COLO720E, DOV 13, EFO-21, FU-OV-1, IGROV-1, JHOS-2, 

OAW28, OAW42, OV17R, OV2008, OV56, OV7, OV90, ovary1847, OVCA420, 

OVCA429, OVCA432, OVCA433, OVCAR-10, OVCAR-2, OVCAR-3, OVCAR-5, 

OVCAR-8, PEO1, SKOV-3, TOV-112D, TYK-nu, UWB1.289); and (4) Lawrence Berkeley 

National Laboratory (n = 29: 59M, A2780, Caov-3, DOV 13, EFO-27, ES-2, HEY, IOSE29, 

OAW28, OAW42, OC314, OC315, OC316, OCC1, OV90, OVCA420, OVCA429, 
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OVCA432, OVCA433, OVCAR-3, OVCAR-5, OVCAR-8, PA-1, PEO1, SKOV-3, SW626, 

TOV-112D, TOV-21G, UPN251). Out of these 142 cell lines, 28 cell lines originated from 

the same source (Duke, Kyoto, and National University of Singapore) and served as 

biological replicates. These 28 cell lines are described in Suppl. Table 9. 

 

Genome-wide RNAi screens for subtype-specific proliferation genes 

To assess the reliability of our shRNA screen, we performed RIGER analysis to obtain 

hairpins that correlated with the TP53 status of the 14 cell lines. The result shows that our 

systematic functional screening was able to deliver known TP53-downstream genes 

associated with a TP53 genotype of the cultured cell lines, with statistical significance (data 

not shown). Subsequently, the same method was applied to identify hairpins specifically 

relevant for cell growth in a molecular subtype.  

A comparison of the Cheung et al. (Cheung et al, 2011) dataset with ours was not 

feasible because of different experimental designs (i.e., at the endpoint of the screen, we 

compared the abundance of integrated shRNA sequences across the different molecular 

subtypes, while Cheung et al. compared the relative abundance to the initial shRNA pool 

across different cell line lineages) and detection platforms (next-generation sequencing versus 

microarray, respectively). 

 

Pathway analysis in silencing PA-1-specific genes 

Dharmacon SMART pool ON-TARGETplus siRNA (Thermo Fisher Scientific, Lafayette, 

CO) was used to silence the genes in OVCA433 (Epi-A), HeyA8 (Mes), and PA-1 (Stem-A). 

ON-TARGETplus Non-Targeting Pool (#D-001810-10-20) was used as a negative control. 

siRNA reverse transfections were performed in triplicate in a 6-well plate under the following 

conditions: OVCA433, 32,000 cells with 3.0 µl of DF1 (T-2001); HeyA8, 19,000 cells with 

0.7 µl of DF4 (T-2004); PA-1, 18,000 cells with 2.5 µl of DF2 (T-2002, Thermo Fisher 

Scientific). After 96-hour incubation, RNA was extracted (#74106, RNeasy Mini Kit, Qiagen, 

Hilden, Germany), and assayed for Affymetrix Human Exon 1.0 ST arrays (Affymetrix, Santa 
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Clara, CA). Fifty-eight microarray data were obtained, including duplicates to bridge four 

different microarray batches. The fold-change in the ss-GSEA score of siRNA treatment with 

a gene of interest versus that with negative control siRNA was computed. The gene sets with 

a standard deviation <0.1 and maximum absolute fold-change of >0.3 across all three cell 

lines were denoted as commonly altered gene sets. These gene sets are shown in Suppl. Table 

14. 
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