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A. Introduction

This supplemental section contains details regarding
analysis, calculation, and theory not found in the main
text. Two movies are also included as supplementary
material, where Movie 1 is at 30.25◦C, and Movie 2 is
at 29.75◦C, with Tc ≈ 29.5◦C. Both movies are 35µm
wide. Section B contains additional information on anal-
ysis procedures. Section C explains why Fisher renor-
malization does not affect the observed static critical ex-
ponents in 2D Ising systems, and why the critical region
is larger in 2D liquid-liquid membrane systems than it
would be in analogous 3D ones. Section D details the
Ising model simulations that we used to verify our anal-
ysis. Section E reviews previous theoretical results for
purely 2D critical hydrodynamics.

B. Details of Analysis

In the definition of S(~k, τ) =
〈

m(~k, t)m(~k, t+ τ)
〉

, the

value of S(k, τ = 0) is guaranteed to be real as an expec-
tation value and also from run to run since each term
appears with its complex conjugate. For τ 6= 0, the ex-
pectation value of the imaginary part of S is guaranteed
to be real by time-reversal invariance expected of sys-
tems in equilibrium. However, each term contributes an
imaginary component. Adding the complex conjugate
and dividing by two leads to an effective measurement
of 1/2(S(k, τ) + S(k,−τ)), which for an equilibrium sys-
tem is equal to S(k, τ). The inclusion of zeros required
to pad the raw data in m(k, t) introduces a small error
in the calculation of S(k, τ), which can be corrected for
by dividing S(k, τ) by the correlation function of pure
ones and zeros in the real space correlation function. For
calculations in k-space, there is no simple correction (the
real space correction has an ill-posed Fourier transform
and so introduces unacceptable noise in k-space). Never-
theless, any correction is expected to be small (values of
S(k, τ) were similar when calculated with vs without zero
padding). More importantly, any correction would cancel
out of the main results presented here, where S(k, τ) is
divided by S(k, τ = 0). For movies at the slowest frame
rate, 0.5 fps, noise in S(k, 0) caused an offset from the
rest of the structure factor. For calculations made with
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those data sets, the measured value of S(k, 0) was re-
placed by the value extrapolated from an exponential fit
to the 2nd through 5th points in S(k, τ).

C. Experimental advantages of lipid bilayers

This section explains why Fisher renormalization does
not affect the observed static critical exponents in 2D
Ising systems, and why the critical region is larger in
2D liquid-liquid membrane systems than it would be in
analogous 3D ones.
Widom-Fisher rescaling leads to only an immeasurably

small correction to 2D critical exponents : Concentration
fluctuations consistent with static 2D Ising critical expo-
nents were previously observed in membranes over our
entire range of kξ [1]. As we show below, this observa-
tion is not at odds with the fact that our ternary system
is subject to rescalings first discovered by Widom [2] and
generalized by Fisher [3]. Rescaling corrections apply
to any system with a quantity whose chemical potential
smoothly affects the critical temperature. When a com-
ponent is instead held at fixed composition (as our three
components are) then the observed critical behavior re-
ceives non-analytic corrections, essentially because the
chemical potential of the third component has singular
behavior near the critical point when held at fixed com-
position. As a result, the singular form of the coexistence
curve near the critical point is changed from its usual ex-
ponent β to β′ = β/(1− α). Here α is the static critical
exponent for specific heat. Other critical exponents that
relate singular behavior of a quantity to the distance in
temperature from the fixed point (for example α, β, ν
and γ) receive similar corrections. For example, the spe-
cific heat exponent itself becomes α′ = α/(1−α)[3]. The
rescaling correction is not confined to ternary systems:
binary systems held at fixed density, rather than fixed
pressure undergo similar rescalings, as does any system
in which a density variable is held fixed in a phase dia-
gram rather than it’s conjugate field.
Fortunately for the current study, Widom-Fisher

rescaling in the 2D Ising model leads to an immeasurably
small change in the singular behavior and no change in
the critical exponents themselves. As noted above, α is
the static critical exponent for specific heat, C, which di-
verges as C ∼ ((T − Tc)/Tc)

−α . In the 2D Ising model,
specific heat diverges as C ∼ log((T − Tc)/Tc), which is
slower than any power law divergence, so that α is said to
be zero. As explicitly discussed in both [2] and [3], there
is potentially a logarithmic correction to the singular be-
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havior of quantities whose critical exponents are usually
multiplied by (1 − α)−1. For example, the correlation
length ξ, which is usually written as ξ ∝ (T−Tc

Tc

)−ν , be-

comes ξ ∝ (− log (T−Tc)(T−Tc)
Tc

)−νafter rescaling. In this

case, ν′ = ν, so rescaling does not change the critical
exponent. For a system described by the 3D Ising model
(rather than the 2D Ising model as in the current study),
α ≈ 0.11 [3, 4], such that the effect of rescaling is small
but observable in the critical exponents.

Although the effect of rescaling on the dynamic ex-
ponent z is not discussed explicitly in the literature, we
expect that z would not be affected by rescaling even
for systems in which α 6= 0. The dynamic exponent z
describes scaling of the time scale as the length scale is
changed, with τs ∝ ξz . The product νz describes crit-
ical slowing with respect to temperature, where τs ∝
(T−Tc

Tc

)νz . As such, νz does describe the singular be-

havior of a quantity (here the time scale) as temperature
is changed and it receives a correction of 1

1−α through
the parameter ν.

The critical region is larger in 2D liquid-liquid mem-

brane systems than in analogous 3D ones. The point
here goes beyond considerations that as dimension de-
creases, the critical region becomes larger due to changes
in the Ginzburg temperature, which is the temperature
at which a system crosses over from mean-field to crit-
ical behavior [4]. Correlation lengths of ξ ∼ 10µm are
regularly observed in vesicle membranes. These corre-
lation lengths are larger than those typically observed
in 3D binary mixtures, even though control over lipid
composition in membranes is coarser. This is because:
(1) lipids are molecules with length scales of ξ0 ∼ 1nm,
whereas the atoms employed in many studies of 3D crit-
ical phenomena are an order of magnitude smaller, with
ξ0 ∼ 0.1nm, and (2) differences between critical expo-
nents in the Ising classes are favorable to 2D systems.
In 2D, ν = 1 and β = 1/8, whereas in 3D, ν ≈ 0.630
and β ≈ 0.325 [5]). The scaling form for correlation

length can be written as ξ = ξ0t
−νU

(

(|φ| /φ0)
1/β t−1

)

,

where t = (T − Tc) /Tc is reduced temperature, ξ0 is a
molecular scale, and ‘magnetization’ φ is a function of
composition normalized by φ0, which is roughly the dif-
ference in composition between the two low temperature
phases far from the critical point. U(x) is a universal
function of its dimensionless argument x. U(x) has a
maximal value at x = 0 and decreases to 0 as its argu-
ment increases. Tuning a system’s correlation length to
ξ, requires tuning temperature to within approximately
∆T ∼ Tc(ξ/ξ0)

−1/ν . Consider a membrane with values
observed here: ξ ∼ 10 µm, ξ0 ∼ 1 nm, and Tc ∼ 300K.
In 2D, ∆T ∼ .03 K, which is experimentally achievable.
For 3D systems in which ξ0 is typically 1 Å, a 10µm
correlation length would require tuning temperature to
a much higher precision of ∆T ∼ 10−4K. Similarly, ex-
treme accuracy in composition is not required in 2D to
observe fluctuations of ξ ∼ 10 µm. For a membrane to
lie in the critical region, composition must be tuned such

that the argument of U is of order 1. Given the difference
between critical exponents in 2D vs 3D, far less precise
experimental control of composition can be tolerated in
2D than in 3D.

D. Simulation details

Simulation procedures were standard [6, 7] and briefly
explained here. The standard Ising Hamiltonian given by
H = −∑

{i,j} sisj was used, with spin variables si = ±1

and summation over the four nearest neighbors (j) of ev-
ery state (i). Temperatures were in terms of the exact
critical temperature given by the Onsager solution [8],

Tc = 2/ log(1 +
√
2) so that a reduced temperature

t = (T − Tc)/Tc corresponds to a simulation tempera-
ture of Tsim = 2.269(1 + t). In this section, T and ∆H
correspond to temperature and to the change in energy
between initial and final states, respectively. Both are in
dimensionless units. In a Monte-Carlo ’sweep’, 160, 000
(4002) pairs of spins were proposed to be swapped, such
that each spin was proposed twice. Metropolis spin ex-
changes were used; each pair was exchanged or not to
satisfy detailed balance [6, 7]. If the resulting configura-
tion was lower in energy, the exchange was accepted. If
energy increased, the exchange was accepted stochasti-
cally with probability exp(−∆H/T ).
Note that any dynamics that satisfy detailed balance

will lead to the same equilibrium ensemble of configura-
tions [7]. To rapidly equilibrate the system, ’nonlocal’
moves were employed in which each of a pair of spins
were chosen from all sites on the lattice. Equilibration is
very rapid using these nonlocal dynamics since they ap-
proximate ”Model A” for large systems where z is near
2 [9]. The system was equilibrated for 100, 000 sweeps us-
ing nonlocal moves starting from a distribution that con-
tained the desired fraction of up spins but was otherwise
random. 100, 000 sweeps is much longer than the decay
time of the slowest decaying system used here. The decay
time is approximately 1000 sweeps at 1.05Tc, which can
be seen qualitatively by inspecting successive snapshots
or quantitatively by inspecting the decay of time depen-
dent correlation functions. Once the system was equili-
brated, dynamics relevant for the locally conserved order
parameter (Kawasaki Dynamics) were employed. In this
case, a single spin and one of its four nearest neighbors
were chosen to form a pair proposed to be swapped.

E. Predictions for binary liquids in 2D

Model H for binary fluids in 2D predicts z ≈ 2 using
z = 4− η−xλ, where η = 2β is a static critical exponent
and xλ must be calculated from an epsilon expansion
(where ǫ = 4 −D, and D is the number of dimensions).
This yields xλ = 18/19(1− (constant)ǫ+Oǫ2) where the
constant is either 0.033 [10] or 0.039 [11]. Since the con-
stant is small, it is plausible that the expansion applies
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even when ǫ = 2, yielding z = 2.00 (which also arises
from a much simpler mean field argument) or 1.98. Sim-
ulations in 2D binary liquids are reportedly challenging

and we know of none that either verify or contradict the
prediction that z = 2. Measurements in bulk 3D liquids
far from Tc find that zeff = 2 (e.g. [12–14]).
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