
Additional File 1 for “A Binary Matrix Factorization Algorithm
for Protein Complex Prediction”

Shikui Tu1, Runsheng Chen2,†, and Lei Xu1,†?

1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong,
P.R.CHINA, e-mail: {sktu,lxu}@cse.cuhk.edu.hk.

2. Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing 100101

† These authors contributed equally to this work.

Abstract. This file is appended with the paper titled ”A Binary Matrix Factorization Algorithm
for Protein Complex Prediction” as a supplementary document. In this file, all evaluation results
on 42 percentage pairs of random additions and deletions are given. Also, a theoretical analysis on
the computational efficiency and performance of the proposed BYY-BMF algorithm is presented.
Some parts of theoretical analysis have been included in a working paper titled ”BYY Harmony
Learning Algorithms for Binary Factor Analysis and Binary Matrix Factorization” to be submitted
to the Neurocomputing journal.

1 The Evaluations Results of All 6 × 7 = 42 Percentage Pairs (add,del)

As in [1], we build a test graph X from the MIPS complexes [2] by linking the protein
nodes in the same complex. For a systematic evaluation, we alter the test graph X to be Xa,d,
where a and d denote the percentages of randomly added or deleted edges with respect to
the number of original edges in X. The set of percentage pairs (a, d) is PAD = {(a, d) | a ∈
{0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.0}; d ∈ {0, 0.05, 0.1, 0.2, 0.4, 0.8} }. We evaluate the predictions on the
42 altered graphs by BYY-BMF(opt) that outputs the clustering result of the highest harmony
measure under repeated random initializations, and MCL(opt) that uses the optimal value of
the inflation parameter tuned by its prediction performance. All the results are given in Figure
1-10.

2 A Theoretical Analysis on the BYY-BMF algorithm

2.1 Algorithm Details of BYY-BMF

The BYY-BMF algorithm is implemented to maximize the following harmony functional

H(p‖q) =
∑

A,Y,X

∫
p(α,β|X)p(A, Y |X, α,β)p(X) ln[q(X|Y, A)q(Y |α)q(A|β)q(α|Ξ)q(β|Ξ)]dαdβ.

(1)

The architecture of the algorithm is sketched in the Section “Methods” of the paper.

In “Yang-Step”, Y = [y1, . . . ,yN] is estimated by a discrete optimization, which is sim-
ply decoupled into individual maximizations per yt, since the likelihood q(X|Y,A)q(Y |α) =∏N

t=1[q(xt|yt,A)q(yt|α)] is factorizable. It follows that

ŷt = arg max
yt∈Y1

ln[q(xt|yt,A)q(yt|α)]

= arg max
yt∈Y1

{
n∑

i=1

[xit ln(1− e−aT
i yt)− (1− xit)aT

i yt] + yT
t (lnα)

}
, (2)

? The correspondence should be addressed to Prof. Lei Xu, lxu@cse.cuhk.edu.hk.

2

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.00, 0.00)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.05, 0.00)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.00, 0.05)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.05, 0.05)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 1. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions.

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.00, 0.10)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.05, 0.10)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.00, 0.20)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.05, 0.20)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 2. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions (continue).

3

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.00, 0.40)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.05, 0.40)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.00, 0.80)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.05, 0.80)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 3. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions (continue).

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.10, 0.00)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.20, 0.00)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.10, 0.05)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.20, 0.05)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 4. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions (continue).

4

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.10, 0.10)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.20, 0.10)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.10, 0.20)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.20, 0.20)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 5. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions (continue).

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.10, 0.40)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.20, 0.40)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.10, 0.80)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.20, 0.80)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 6. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions (continue).

5

Acc Sn PPV Sep Acc Sn PPV
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.40, 0.00)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.80, 0.00)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep Acc Sn PPV
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.40, 0.05)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.80, 0.05)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 7. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions (continue).

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.40, 0.10)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.80, 0.10)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.40, 0.20)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep Acc Sn PPV
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.80, 0.20)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 8. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions (continue).

6

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.40, 0.40)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.80, 0.40)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.40, 0.80)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (0.80, 0.80)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 9. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions (continue).

which is a discrete optimization over the set Y1 = {y ∈ {0, 1}m | ∑m
j=1 yj = 1} of size m, where

for simplicity η = 1 and ν = 0. Analogously, for estimating A = [a1, . . . ,an]T , we have by the
following maximization for each ai:

âi = arg max
ai∈A1

ln[q(X|Y,ai)q(ai|β)]

= arg max
ai∈A1

{
N∑

t=1

[xit ln(1− e−aT
i yt)− (1− xit)aT

i yt] + aT
i (lnβ)

}
, (3)

where A1 = {a ∈ {0, 1}m | ∑m
j=1 aij = 1} is of size m.

A∗ = arg max
A

ln

[(
N∏

t=1

q(xt|yt,A)

)
q(A|β)

]

In the “Ying-Step”, the maximization for α is made over a simplex,
∑m

j=1 αj = 1. Consider
the Lagrange function L(α, γ) with a Lagrange multiplier γ,

L(α, γ) = ln

[(
N∏

t=1

q(yt|α)

)
q(α|Ξ)

]
+ γ(

m∑

j=1

αj − 1),

then, it follows from ∂L
∂αj

= 0 and ∂L
∂γ = 0 that

αj ∝
(∑

t

yjt

)
+ (ξαλα

j − 1) ln C(ξα,λα), (4)

thus, αj =
(
∑

t yjt) + (ξαλα
j − 1) ln C(ξα,λα)

∑m
j=1

{
(
∑

t yjt) + (ξαλα
j − 1) ln C(ξα,λα)

} , (5)

7

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (1.00, 0.00)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (1.00, 0.05)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (1.00, 0.10)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (1.00, 0.20)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (1.00, 0.40)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Acc Sn PPV Sep
0.4

0.5

0.6

0.7

0.8

0.9

1
MIPS−Complex: (add, del) = (1.00, 0.80)

BMF(avg)
BMF(opt)
MCL(1.8)
MCL(opt)

Fig. 10. The evaluations results on 42 percentage pairs (a, d) of random additions and deletions (continue).

8

where C(ξ,λ) = Γ (ξ)/
∑

j Γ (ξλj). Similarly, we get

βj = (
∑

i aij)+(ξβλβ
j−1) ln C(ξβ ,λβ){∑m

j=1(
∑

i aij)+(ξβλβ
j−1) ln C(ξβ ,λβ)

} . (6)

It can be observed from eq.(5)(6) that the Dirichlet priors produce a regularization.

2.2 A Theoretical Analysis on BYY-BMF

We provide some theoretical results on the efficiency of the algorithm BYY-BMF. Suppose
the n × N binary data matrix X is generated by X = A∗Y ∗, the underlying low-rank is m∗

with 1 ≤ m∗ < min{n,N}, and every row of A∗ or every column of Y ∗ takes the value 0 in all
dimensions except for one element being 1. For simplicity, we first assume A∗ and Y ∗ are block-
diagonal (and so is X), and then show the results still hold when a random permutation is made
on X’s row or/and column. The m∗ blocks of all ones in the block-diagonal X correspond to m
non-overlapping biclusters. We denote the sizes of those blocks in order as n1×N1, . . . , nm∗×Nm∗ ,
where

∑m∗
j=1 nj = n and

∑m∗
j=1 Nj = N . Define the following notations: sr

j =
∑j

`=1 n`; sc
j =∑j

`=1 N`; Br
j = {i | sr

j−1 + 1 ≤ i ≤ sr
j}; Bc

j = {t | sc
j−1 + 1 ≤ t ≤ sc

j}; sr
0 = sc

0 = 0.

Theorem 1. Under the above assumptions with X = A∗Y ∗, if we initialize A by uniformly
randomly assigning 0 or 1 to its entry aij, initialize m = m∗ and (∀j) αj = βj = 1/m in
Algorithm BYY-BMF, then BYY-BMF converges after only one Ying-Yang iteration, and

H(p‖q, Io) ≤ H(p‖q, I∗), ∀Io, (7)

where H(p‖q, Io) is the harmony measure in eq.(1) calculated by Algorithm BYY-BMF from
the initialization Io = {A(0)}, and I∗ = {A(0)

∗ } is an initialization that satisfies eq.(9) and

{kj | j ∈ {1, . . . , m}} = {1, . . . , m}. (8)

Moreover, if the “Model-Selection-Step” is used, the resulted m̂ from Io and I∗ satisfy m̂(Io) ≤
m̂(I∗) = m∗ with equality when eq.(7) is tight.

The result of “one-step-convergence” is based on the above assumption that the data X is
generated by X = A∗Y ∗ with every row of A∗ and every column of Y ∗ taking the value 0 in all
elements except for one element being 1. The “one-step-convergence” may not hold without this
condition, e.g., when X is corrupted by noise such as X = A∗Y ∗ ⊕ E, where E ∈ {0, 1}n×N , ⊕
is a boolean operator. Based on our experience from experiments, several more steps are usually
enough to reach convergence, and the Eq.(7) still holds.

Corollary 1. Under the Uniform random initialization (as specified in Theorem 1), the prob-
ability of the event: “the Algorithm BYY-BMF correctly factorize the data matrix X”, is ap-
proximately Pr{‖X − ÂŶ ‖ = 0} ≈ m!

mm , where m is initialized at the underlying true number of
blocks m∗ in X, and Â, Ŷ are the output of Algorithm BYY-BMF.

Before proceeding to proofs, we verify the above results in a simulated study first. We use
the method described in [3] to generate a synthetic binary data matrix Xn×N with m∗ = 3
biclusters. The data is considered in three cases: (1) X1 (in Fig.11(a)), block-diagonal with non-
overlapping biclusters; (2) X2 = ΠrX1Πc (in Fig.11(b)), generated by random permutations
Πr and Πc on the rows and columns respectively. In the experiments, the reconstruction error
is evaluated Err = |X − X̂| = |X − ÂŶ | =

∑
i,t |xit − âT

i ŷt|, where Â = [â1, . . . , ân]T and
Ŷ = [ŷ1, . . . , ŷN] are output by Algorithm BYY-BMF.

Experimental results are summarized as follows: (1) X1 and X2 can be reconstructed via ÂŶ
with zero error after only one Ying-Yang iteration if we initialize appropriately with minit ≥ m∗;

9

200 400 600 800 1000 1200 1400

100

200

300

400

500

600

700

800

900

1000

(a) X1

200 400 600 800 1000 1200 1400

100

200

300

400

500

600

700

800

900

1000

(b) X2

200 400 600 800 1000 1200 1400

100

200

300

400

500

600

700

800

900

1000

(c) X̂1 by bad initialization

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Model Selection Accuracies on X1

A
c
c
u
r
a
c
i
e
s

(
%
)

initial value for m

BYY−BMF

(d) Model selection accuracies on X1

Fig. 11. (a) A synthetic data Xn×N with n = 1000, N = 1500 and m∗ = 3 underlying biclusters, and “white-
black” color corresponding to “0 − 1” entry; (b) X1 after a random permutation. Experiments show that the
biclusters embedded in the data (a) and (b) can both be correctly recovered. (c) A resulted reconstruction of X1
from a bad initialization. (d) Model selection accuracies on X1, i.e., m̂ = m∗ = 3, by BYY-BMF with the initial
value for m being 1, . . . , 30.

(2) m∗ can be correctly and automatically detected; (3) Starting from a bad initialization for
X1 (as indicated in Theorem 1), m = minit = 3 will be reduced to m̂ = 2 as shown in Fig.11(c)
and in Fig.12 with a smaller H(p‖q). According to Corollary 1, bad-initialization problem can
probably be avoided by selecting the highest H(p‖q) in multiple trials, or by increasing a initial
value for m as indicated by the model selection accuracies on X1 in Fig.11(d), because a large
initial m may probably lead to a set K = {kj , 1 ≤ j ≤ minit} of size |K| ≥ m∗, and then the
eq.(8) is likely to be satisfied after merging extra kj according to Lemma 2.

In the following, we prove Theorem 1 by proving several lemmas first.

Lemma 1. The eq.(2) or eq.(3) can recover the true results if the other quantities are fixed at
the true ones. More precisely, fixing m = m∗, we have
(a) If (∀j) αj = 1/m and A = A∗, then Ŷ = Y ∗, where Ŷ = [ŷ1, . . . , ŷN] is the estimate by
eq.(2).
(b) If (∀j) βj = 1/m and Y = Y ∗, then Â = A∗, where Â = [â1, . . . , ân]T is the estimate by
eq.(3).

Proof: Since A = A∗ = [aij]n×m is also block-diagonal: ∀j ∈ {1, . . . , m}, aij = 1, if i ∈ Br
j ;

otherwise aij = 0. Enumerate elements in Y1 in this order: y(1) = [1, 0, . . .]T , y(2) = [0, 1, 0, . . .]T ,
. . ., and then Ay(j) = aj , where aj = [a1j , . . . , anj]T is the j-th column vector of A. Then, when
t ∈ Bc

j , the complete log-likelihood of (xt,y
(`)) is

L(xt,y
(`)) = ln[q(xt|y(`),A)q(y(j)|α)] =

{
nj ln(1− e−1) + lnα1, if ` = j;
nj ln(1− e0)− n` + lnα`, if ` 6= j;

10

0 2 4 6 8 10
−14

−12

−10

−8

−6

−4

−2
x 10

5

H
 (

 p
 ||

 q
)

0 2 4 6 8 10
5

10

15

20

ti
m

e
(s

ec
o

n
d

s)

0 2 4 6 8 10
0

0.5

1

1.5

2

it
er

at
io

n
s

m
init

0 2 4 6 8 10
1

1.5

2

2.5

3

re
su

lt
ed

 m
m

init
Fig. 12. The horizontal axis is the initial value for the cluster number. The results of BYY-BMF on X1 coincide
with Theorem 1. (All experiments are implemented with Matlab R2006b on Pentium(R) D CPU 3.00GHz, 2.99GHz with 1GB RAM.)

which implies j = arg max1≤`≤m L(xt,y
(`)), or ŷt = y(j), i.e., ŷt indicates the correct member-

ship j of xt. Then, we must have Ŷ = Y ∗. The same idea can be used to prove Â = A∗ when
Y = Y ∗. Q.E.D.

Lemma 2. Initializing m = m∗ and αj = βj = 1
m , the Algorithm BYY-BMF will converge

after only one Ying-Yang iteration, due to the following two results:
(a) If A = [aij]n×m satisfies that

∀j ∈ {1, . . . , m}, ∃kj ,
∑

i∈Br
j

aikj
>

∑

i∈Br
j

ai`, (∀`) (9)

then the resulted Ŷ = [ŷjt]m×N by eq.(2) satisfies

∀j ∈ {1, . . . , m}, ŷjt =
{

1; if t ∈ Bc
kj

;
0; otherwise.

(10)

(b) If Y = [yjt]m×N satisfies that

∀j ∈ {1, . . . , m}, ∃kj ,
∑

t∈Bc
j

ykj ,t >
∑

t∈Bc
j

y`t, (∀`) (11)

then the resulted Â = [âij]n×m by eq.(3) satisfies

∀j ∈ {1, . . . , m}, âij =
{

1; if i ∈ Br
kj

;
0; otherwise.

(12)

Proof: We prove Lemma 2(a) first. Without loss of generality, assume k1 = 1. Then, when
t ∈ Bc

j , the complete log-likelihood of (xt,y
`) is1

L(xt,y
(`)) = n

(1)
j` ln(1− e−1) + n

(0)
j` ln(1− e0)− ñ

(1)
j` − ñ

(0)
j` · 0 + ln(1/m),

1 Here and in the following, we regard ln(1− e0) as ln(1− eε) with a very small positive value ε.

11

where n
(1)
j` =

∑
i∈Br

j
ai`, n

(0)
j` =

∑
i∈Br

j
(1 − ai`), and ñ

(1)
j` =

∑
i6∈Br

j
ai`, ñ

(0)
j` =

∑
i6∈Br

j
(1 − ai`),

1 ≤ j, ` ≤ m. The eq.(2) requires to maximize the above log-likelihood with respect to ` ∈
{1, . . . , m}. According to eq.(9), we have

kj = arg max1≤`≤mL(xt,y
(`)),

which implies the eq.(10). This completes the proof for Lemma 2(a). The proof for Lemma 2(b)
is similar, and not repeated here.

After initialization {A(0), α
(0)
j = β

(0)
j = 1/m,m = m∗} in Algorithm BYY-BMF, if A(0)

satisfies eq.(9), then Y (1) is given in eq.(10) by the optimization in Yang-Step. Note that eq.(10)
satisfies eq.(11), and thus A(1) is given in eq.(12) by the optimization in Yang-Step. The α(1)

and β(1) are calculated in Ying-Step. Ignoring the Model-Selection-Step, the Algorithm BYY-
BMF will produce Y (2) = Y (1), A(2) = A(1) and α(2) = α(1), β(2) = β(1), i.e., the Algorithm
converges. Q.E.D.

Lemma 3. Permutation properties:
(a) The solution X = AY is not unique due to the permutation indeterminacy among the cluster
indexes.
(b) For any permutation matrices Πr and Πc respectively on the rows and columns of X, the
Algorithm BYY-BMF will output A′ = ΠrA and Y ′ = Y Πc from the same initialization which
produces X = AY .

Proof: Consider a permutation mapping π : j ∈ {1, . . . , m} → j′ ∈ {1, . . . , m}, then

xit = aT
i yt =

m∑

j=1

aijyjt =
m∑

j=1

ai,π(j)yπ(j),t =
∑

π(j)

ai,π(j)yπ(j),t =
∑

j′
ai,j′yj′,t,

which implies Aπ = [aij′]n×m and Yπ = [yj′,t]m×N is also a solution.

Assume the initialization Io results in X = AY . If we input X ′ = ΠrXΠc = [xi′,t′]n×N into
the Algorithm BYY-BMF, then starting from Io, all the maximization processes by eq.(2)-(6)
are performed on i′ ∈ {1, . . . , n} and t′ ∈ {1, . . . , N} instead of i and t. The permutation only
changes the positions of row elements or column elements, but not change the computation
procedure by eq.(2)-(6). Therefore, the output is A′ = [ai′,j]n×m = ΠrA and Y ′ = [yjt′]m×N =
Y Πc.

Now, we can prove Theorem 1 and Corollary 1 as follows.

Proof of theorem: (Sketched) Without loss of generality, we assume the input data matrix
X is block-diagonal, and I∗ is such an initialization that k∗j = j, (∀j). First, we illustrate why
eq.(7) holds by a specific initialization Io: ko

j = 1 when j = 2; otherwise ko
j = j. Then, the key

difference between H(p‖q, Io) and H(p‖q, I∗) lies in the evaluation on {xit | (i, t) ∈ D} with
D = {(i, t) | i ∈ Br

1 ∧ t ∈ Bc
2; i ∈ Br

2 ∧ t ∈ Bc
1.}, i.e.,

H(p‖q) =
∑

(i,t)∈D

{
xit ln(1− e−âT

i ŷt)− (1− xit)âT
i ŷt

}
+ ...

Then, we have H(p‖q, Io) = −(n1N2+n2N1) ·1+ · · · and H(p‖q, I∗) = −(n1N2+n2N1) ·0+ · · · ,
which implies eq.(7). If “Model-Selection-Step” is used, then it follows from eq.(10) and eq.(12)
that: (a) For Io, m will be deducted by at least one because the first two blocks are merged; (b)
For I∗, m∗ blocks are detected.

The complete proof extends the basic idea of this illustration to any initialization Io. We
omit the details due to the space limit. Q.E.D.

Proof of corollary: Assume n and N are large, and n1 ≈ . . . ≈ nm, N1 ≈ . . . ≈ Nm. It is
reasonable to regard kj (by eq.(9)) as independently uniformly distributed overM = {1, . . . , m}.
Then, the number of I∗-initializations (which results in correct solutions) is m!, while the number
of all initializations is mm. This completes the proof. Q.E.D.

12

References

1. S. Brohee and J. van Helden, “Evaluation of clustering algorithms for protein-protein interaction networks,”
BMC Bioinformatics, vol. 7, no. 1, p. 488, 2006.

2. ftp://ftpmips.gsf.de/yeast/PPI/PPI 18052006.tab.
3. A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Gruissem, L. Hennig, L. Thiele, and E. Zitzler,

“A Systematic Comparison and Evaluation of Biclustering Methods for Gene Expression Data,” Bioinformatics,
vol. 22, no. 9, pp. 1122–1129, 2006.

