SUPPLEMENTAL MATERIALS Table S1. Binding of LDLR fragments to RAP 1,2 | LDLR fragment | $k_a (1/M \times s)$ | k _d (1/s) | K _D (nM) | Chi ² | R _{max} (RU) | |----------------|----------------------|-----------------------|---------------------|------------------|-----------------------| | LDLR-exodomain | 7.56×10^{6} | 6.47×10^{-3} | 0.87 | 32.0 | 193 | | LDLR cluster | 3.62×10^{6} | 3.45×10^{-3} | 0.95 | 21.4 | 135 | | CR.2-3 | 1.01×10^{5} | 2.93×10^{-3} | 28.9 | 24.9 | 412 | | CR.3-4 | 1.42×10^{6} | 4.95×10^{-3} | 3.48 | 26.4 | 248 | | CR.4-5 | 7.26×10^{5} | 4.68×10^{-3} | 6.44 | 24.8 | 173 | Table S2. Binding of LDLR fragments to FVIII 1,2 | LDLR fragment | k_a (1/M \times s) | k _d (1/s) | K_D (nM) | Chi ² | R _{max} (RU) | |----------------|------------------------|-----------------------|------------|------------------|-----------------------| | LDLR-exodomain | 1.83×10^4 | 1.24×10^{-3} | 67.9 | 9.56 | 139 | | LDLR cluster | 4.41×10^4 | 1.43×10^{-3} | 32.5 | 13.4 | 122 | | CR.2-3 | 5.16×10^4 | 2.10×10^{-3} | 40.7 | 15.6 | 79.9 | | CR.3-4 | 2.71×10^4 | 2.36×10^{-3} | 87.2 | 12.6 | 112 | | CR.4-5 | 3.59×10^{4} | 2.66×10^{-3} | 74.0 | 26.4 | 153 | ¹ Corresponds to experiment shown in Fig. 3 ² Association and dissociation signals were fitted with a 1:1 (Langmuir) model ¹ Corresponds to experiment shown in Fig. 4 ² Association and dissociation signals were fitted with a 1:1 (Langmuir) model ## **Binding with FVIII** FIGURE S1. **Binding of RAP and FVIII to the mutants of CR.2-3 and CR.3-4.** In SPR, CR.2-3 (A and C), CR.2-3 W66S (B and D), CR.3-4 (E and G) and CR.3-4 W144S (F and H) were immobilized and tested for the binding with RAP (0.6 nM, 1.3 nM, 2.5 nM, and 5 nM) (A, B, E and F) and FVIII (full-size recombinant FVIII, 50 nM, 100 nM, 150 nM and 200 nM) (C, D, G and H); injections of the buffer only were used as controls. For each pair of a particular LDLR fragment and its mutant tested versus a given ligand, the signals are shown in the same scale. (*) CR domains affected by mutagenesis. FIGURE S2. Far-UV CD spectra of CR.2-3 and CR. 3-4 and their mutants upon the titration by EDTA. The CR doublets, CR.2-3 (A) and CR.3-4 (C) and their mutants, CR.2-3 W66S (B) and CR.3-4 W144S (D) were at concentrations of 30 μ M. The spectra correspond to the absence of EDTA (bottom curves in bold) and its increase as 1x, 2x and 3x over molar equivalent of Ca²⁺ in the solutions, shown as respective increase in the signals (upper curves).