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1 Pairwise dissimilarities

Let Dm
i (a, b) be the measured distance between two cases a and b for data type i. There

could be identical values in our dataset (i.e. Dm
i (a, b) = 0). As we use ordinal distances

to detect cases lying close together, detection of local transmission clusters will be more
challenging when many values are identical; no ordering exists on these. To be able to
make comparison between cases with identical values and those with distinct values, we
will assume that for all cases for which the same value was measured, the actual value
lies a random infinitesimal distance away from this measured value. This is actually true
for the temporal data, which is always interval censored, as dates but not exact times
are given. It is not true for genetic data, which are discrete. However, these can be seen
as a proxy for evolutionary time separating two samples, which is again continuous.

We define the dissimilarity di(a, b) between two cases a and b as the expected number
of cases between them, plus one:

di(a, b) = |{p : Dm
i (a, p) < Dm

i (a, b) ∧Dm
i (b, p) < Dm

i (b, a)}|+ |{p:Dm
i (a,p)=0}−1|+|{p:Dm

i (b,p)=0}−1|
2 + 1

= |{p : Dm
i (a, p) < Dm

i (a, b) ∧Dm
i (b, p) < Dm

i (b, a)}|+ |{p:Dm
i (a,p)=0}|+|{p:Dm

i (b,p)=0}|
2

when Dm
i (a, b) 6= 0, and

di(a, b) =
|{p : Dm

i (a, p) = 0}| − 2

3
+ 1 =

|{p : Dm
i (a, p) = 0}|+ 1

3

when Dm
i (a, b) = 0. Here ‘∧’ denotes the logical AND operator; A ∧ B is true if and

only if both A and B are true. To see that the definition above coincides with the
expected value plus one, consider three points a, b and c, with a and b having the same
observed value ()Dm

i (a, b) = 0), each lying a random infinitesimal distance away from
their measured values. Then the probability that any two of the actual pairwise distances
are equal is zero. Therefore, if Dm

i (a, c) 6= 0, the probability that b is in between a and
c is 1

2 . If Dm
i (a, c) = 0, the probability that b is in between a and c is 1

3 . Further note
that, for distinct cases, when identical values do not occur in our dataset the definition
above is equivalent to equation (1) in the main text.

As in the main text, the full dissimilarity between two cases a and b is given by

d(a, b) = Πidi(a, b)

2 Putative transmission clusters

For any subset S ⊆ D, define l(S) as the largest dissimilarity in the minimum spanning
tree of S. Note that several minimum spanning trees can exist, but l(S) is unique (see
lemma 1). To test the null hypothesis of independence between data types, we construct
the set D′ from D by randomly permuting the values of the data types. D′ is identical
to D for each of the data types, but satisfies the null hypothesis. We then define the
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p-value for S as the probability that a subset with at least that size and at most that
largest dissimilarity exists under the null hypothesis:

P (∃S′ ⊆ D′ : |S′| ≥ |S|, l(S′) ≤ l(S))

and we call S a putative transmission cluster (PTC) if this p-value is beneath a threshold
of 0.001.

We can limit the number of clusters we have to test using hierarchical clustering, a
technique that yields a dendogram of the dataset. A dendogram can be defined as a
function h : [0,∞)→ PD, where PD is the set of all partitions of the dataset D, with the
properties that m ≤ m′ implies h(m) ≤ h(m′) (i.e. every element of h(m) is a subset of
an element of h(m′)), and h is eventually the whole dataset (h(m) = D for sufficiently
large m). h(m) here is the set of subsets S of D such that l(S) ≤ m and the only set S2

that contains S and has l(S2) ≤ m is S itself. Let S be the set of subsets of D that are
in h(m) for some m. By lemma 2, subsets of D that are a PTC are always contained in
an element of S which is also a PTC. Since we are interested in whether cases belong to
a cluster or not, we only have to test the elements of S for being a PTC.

Lemma 1. For any weighted graph G, all minimal spanning trees have the same maxi-
mum edge weight.

To prove this, let’s assume T1 and T2 are minimal spanning trees of G, such that
their maximum edge weights are different. Without loss of generality, let the maximum
edge weight of T1 be larger, and let e ∈ T1 be an edge with this weight. Now select an
edge e′ from T2 such that e′ is in the cut induced by e in T1. As the maximum edge
weight of T2 is smaller than that of T1 by assumption, the weight of e′ is smaller than
that of e. The tree (T1 − {e}) ∪ e′ is a spanning tree of G, with total weight less than
T1. This is a contradiction, as T1 was a minimal spanning tree.

Lemma 2. If S ⊆ D is a putative transmission cluster (PTC), ∃T ∈ S with S ⊆ T and
T a PTC.

Either S ∈ h(l(S)) ⊆ S and we are done, or ∃T ∈ h(l(S)) ⊆ S, with S ⊂ T . Because
S is a PTC we have

P (∃S′ ⊂ D′ : |S′| ≥ |S|, l(S′) ≤ l(S)) < 0.001

since furthermore |T | > |S|, l(T ) = l(S) and l is monotonically increasing in cluster size,
we have that

P (∃S′ ⊂ D′ : |S′| ≥ |T | > |S|, l(S′) ≤ l(T ) = l(S)) <=
P (∃S′ ⊂ D′ : |S′| ≥ |S|, l(S′) ≤ l(S)) < 0.001

which shows that T is also a PTC.
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3 Details of simulations

3.1 Generating simulated datasets

In our first simulation scenario, all locally infected cases belong to one large outbreak.
One index case was generated near the start of the study period so the outbreak would be
completed within the time window. As the variance in the final size of a large outbreak
generated by branching processes is quite large, we restricted this outbreak to be of size
exactly one tenth of the size of the total simulated dataset. We therefore generated cases
until the number was reached, and picked an infector for each from the set of previously
generated cases. As assigning cases randomly from the set of already generated cases
would amount to strong superspreading behavior (the index case would get a large
number of infectees assigned), we preferentially picked more recently generated cases.
In particular, we set the probability for any generated case to be assigned as an infector
as twice the probability of picking the case generated before. For example, when three
cases had been generated, they would be picked as an infector with probabilities 1/7,
2/7 and 4/7. This procedure is arbitrary, but simple and keeps the expected number
of infections per infected individual bounded. For example, the expected number of

infections caused by the index case would be
N∑
i=1

1
2i−1 ≈ 1.61.

The small and very small outbreaks were generated using branching processes, as
explained in the main text. Below we calculate the expected size of the outbreaks
generated in this way.

3.2 Final size calculations

To find the expected value of the final size S of the outbreaks in the second and third
scenario, let f(x) be the probability that one infectious case infects x others. For the
geometric distribution we use, f(x) = px(1 − p), where p = R

1+R and R is the expected
number of infections per infectious case. As each case infected again infects new cases,
we have

E(S) = 1 +
∞∑
x=0

f(x)xE(S) = 1 + RE(S)

which simplifies to E(S) = 1
1−R , yielding expected sizes 2 and 10

9 for the R values of 0.5
and 0.1 used.

As only outbreaks of value of at least 2 are characterized as clusters in our analysis,
we might also want to find the expected size of these clusters: E(S|S > 1). This is
equivalent to conditioning on the index case causing at least one infection. We get

E(S|S > 1) = 1 +

∞∑
x=1

f(x)

1− f(0)
xE(S) = 1 +

R

1− f(0)
E(S) = 1 +

(1 + R)

1−R

yielding 4 and 20/9≈2.22 for the two scenarios.

4



4 Additional simulation results

In this section we give the results obtained by applying the proposed method to simu-
lations where the absolute distances between infector-infected pairs are smaller than in
the main text, and to simulations where 20% of cases are unobserved.

4.1 Small distances

The statistical signal left by clusters of cases depends for a large part on the relation
for each of the data types between infector-infected pairs. When distances in these data
types are smaller, the statistical signal is stronger. To illustrate this, we performed
additional simulations in which these distances are smaller. We simulate as described in
the main text, but the time distance is now exponentially distributed with expectation
0.5 (1 in the main text), the geographical distance is N(0, 2) (N(0, 4) in the main text),
and the expected number of mutations is now 0.1 (0.5 in the main text). Clustering
performance is given in figure S2 and table S1. As the statistical signal is much stronger,
the distinction between outbreak and unrelated cases is much clearer than in the main
text.

4.2 Unobserved cases

Many datasets face the problem of missing or unobserved cases. Here, we tested the
performance of our method when facing unobserved cases. We do this by performing
simulations as described in the main text, and then separately discarding each of the
cases with probability 0.2, thus discarding 20% of cases at random. We applied our
method to this reduced datasets, results are given in figure S3 and table S2. Datasets
with missing cases are similar to complete datasets with larger distances between the
cases; thus this scenario constitutes the opposite of the one in the previous section.
As expected, clustering performance decreases for most scenarios. A notable exception
are the very small clusters, where sensitivity actually increases. As these transmission
clusters are mainly of size two, discarding a case does not lead to larger distances, but
to elimination of the cluster. Thus the number of cases and transmission clusters is
affected, but not the intra-cluster distances. Outbreak cases and unrelated cases can be
distinguished for all scenarios, showing that the method can provide useful results even
when cases are unobserved.
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