SUPPLEMENT

PEGylation of cationic, shell-crosslinked-knedel-like nanoparticles modulates inflammation and enhances cellular uptake in the lung

Aida Ibricevic, MD PhD¹, Sean P. Guntsen, BS¹, Ke Zhang PhD², Ritu Shrestha, PhD⁴, Yongjian Liu, PhD³, Jing Yi Sun, BS¹, Michael J. Welch, PhD^{3,†}, Karen L. Wooley, PhD^{2,4} and Steven L. Brody, MD^{1,3,*}

Supplement contents: Methods and Table: 1

Cell culture and endocytosis inhibitor treatments

Cell culture. MLE 12 (ATCC, Manassas, VA), a mouse cell line with features of alveolar type II cells was cultured in media recommended by ATCC.

Endocytosis inhibitors. Inhibitors were from Sigma-Aldrich. Phagocytosis was inhibited by latrunculin B (1 μ M), and macropinocytosis by cytochalasin D (10 μ M) and nocodazole (33 μ M). Methyl-b-cyclodextran (MbCD, 100 μ M) was used to disrupt lipid raft-mediated endocytosis by sequestration of cholesterol. Monodansylcadaverine (MDC, 200 μ M) and chlorpromazine (CPM, 100 μ M) were used to inhibit clathrin-mediated endocytosis, and dynasore (10 μ M) to inhibit dynamin-mediated endocytosis. Cells (5 x 10⁴/well) were pretreated with inhibitors for 30 min, then incubated with nanoparticles (7.5 mg/mL) for 1 h, followed by flow cytometry. cSCK labeled with Alexa Fluor 488 were co-localized in cells using a FACSCalibur flow cytometer with CELLquest software (BD Biosciences).

1

Endocytosis inhibitor	Pathway affected and effect on endocytosis	Percent of nanoparticle cell uptake			
		non-PEG cSCK	cSCK- 2PEG	cSCK- 5PEG	cSCK- 10PEG
Latrunculin B	Phagocytosis: Disrupts microfilaments	112.1 ± 5.2	110.9 ± 1.8	102.4 ± 5.8	101.1 ± 2.2
Nocodazole	Macro- pinocytosis: Depolymerizes microtubule	90.9 ± 19.2	88.6 ± 5.2	94.6 ± 4.6	91.0 ± 4.9
Cytochalasin D	Macro- pinocytosis: Inhibitor of F-actin polymerization	110.0 ± 12.5	110.6 ± 20.3	106.4 ± 7.6	101.3 ± 5.1
Monodansyl- cadaverine (MDC)	Clathrin-mediated pinocytosis: Inhibitor of fibrin stabilization	72.4 ± 7.1*	89.7 ± 22.1	103.1 ± 15.7	89.8 ± 3.3
Chlorproma- zine (CPM)	Clathrin-mediated pinocytosis: Inhibitor of AP2 function	70.6 ± 7.9*	88.3 ± 10.1	98.4 ± 9.8	96.6 ± 5.8
Methyl-β- cyclo- dextran (MβCD)	Lipid raft - mediated pinocytosis: Cholesterol depletion	92.2 ± 8.7	100.5 ± 9.0	103.2 ± 3.3	99.2 ± 6.4
Dynasore	Dynamin-mediated pinocytosis: Dynamin 1 and 2 GTPase inhibitor	12.6 ± 5.4*	33.1 ± 5.6*	39.2 ± 9.0*	58.0 ± 13.4*

Supplementary Table 1: Effect of endocytosis inhibitors on cell uptake of cSCK

A significant difference in uptake compared to no inhibitor controls is indicated (ANOVA, *p < 0.05).