Thyroid Hormonelike Actions of 3,3',5'-L-Triiodothyronine and 3,3'-Diiodothyronine

STATHIS S. PAPAVASILIOU, JOSEPH A. MARTIAL, KEITH R. LATHAM, and JOHN D. BAXTER, Metabolic Research Unit and Departments of Medicine, and Biochemistry and Biophysics, University of California, San Francisco, California 94143

ABSTRACT L-Thyroxine is converted to 3,5,3'-L-triiodothyronine (T_3) as well as to 3,3',5'-L-triiodothyronine (reverse T_3). One product of further deiodination is 3,3'-diiodothyronine ($3,3'T_2$). The serum levels of reverse T_3 and $3,3'T_2$ change considerably in various physiological and disease states. We previously found that reverse T_3 and $3,3'T_2$ bind to the solubilized hepatic nuclear "receptors" for thyroid hormones. This led us to study binding and actions of these metabolites in cultured rat pituitary cells in which glucose consumption and growth hormone production are regulated by T_3 and L-thyroxine.

Reverse T_3 and $3,3'T_2$ stimulated growth hormone production and glucose consumption and inhibited nuclear binding of radioactive T_3 . Either metabolite produced maximal effects that equaled those of T_3 , and neither inhibited the T_3 response. Further, additive effects were observed when reverse T_3 was combined with submaximal concentrations of T_3 .

In serum-free and serum-containing media, concentrations of $3.3'T_2$ 50- to 70- and 10- to 100-fold greater, respectively, than those of T_3 were required for equivalent stimulations and for inhibition of nuclear binding by T_3 . The relative activity differences under the two conditions can be attributed to weaker serum protein binding of $3.3'T_2$ than T_3 . With cells in serum-free media, reverse T_3 was a less avid com-

These studies suggest that reverse T_3 and $3,3'T_2$ can stimulate thyroid hormone-regulated functions as weak agonists by acting via the same receptors that mediate T_3 actions. Moreover, some of the effects of reverse T_3 may be due to $3,3'T_2$ produced by deiodination of reverse T_3 .

INTRODUCTION

Monodeiodination of thyroxine (3,5,3',5'-tetraiodo-L-thyronine, T_4)¹ in peripheral tissues results in the production of 3,3',5'-L-triiodothyronine (reverse T_3) as well as the biologically potent 3,5,3'-L-triiodothyronine (T_3 , references 1-6). Studies in several laboratories have also shown that reverse T_3 is a normal component of human serum (5-11). Marked elevations of serum reverse T_3 , as compared with

petitor than $3,3'T_2$ for T_3 binding by the nuclear receptors, and was less potent than $3,3'T_2$ (0.001 the potency of T_3) in inducing growth hormone production or glucose oxidation. In incubations with serum-containing media, reverse T_3 was an ineffective competitor for T_3 binding, and had only 0.1 the inducing potency of $3,3'T_2$ (0.001 the potency of T_3). The weaker activity of reverse T_3 relative to $3,3'T_2$ in serum-containing media could be explained by stronger serum binding of reverse T_3 than $3,3'T_2$. In addition, after long-term incubation of cells with radioactive reverse T_3 , much of the cell-associated radioactivity was recovered as $3,3'T_2$.

Dr. Papavasiliou is a recipient of a fellowship from the Bay Area Heart Research Committee. Dr. Martial is a recipient of a fellowship from the American Cancer Society, California Division, no. J-308. Dr. Latham is a National Institutes of Health Postdoctoral Fellow, 1 F 32 AM05100-01. Dr. Baxter is an Investigator at the Howard Hughes Medical Institute, University of California, San Francisco.

Received for publication 15 July 1976 and in revised form 15 June 1977.

¹Abbreviations used in this paper: BSA, bovine serum albumin; DIHPPA, 4-hydroxy-3,5-diiodophenylpyruvic acid; DIT, diiodothronine; K_d , apparent equilibrium dissociation constant; MEM, modified Eagle's minimal essential medium; MIHPPA, 4-hydroxy-3-iodophenylpyruvic acid; MIT, monoiodotyrosine; reverse T_3 , 3,3',5'-L-triiodothyronine; 3,3'T₂, 3,3'-diiodo-L-thyronine; T_3 , 3,5,3'L-triiodothyronine; T_4 , 3,5,3', 5'-tetraiodo-L-thyronine.

normal adult levels, have been found in the cord blood of newborn humans (with high concentrations also present in amniotic fluid) and in adult serum in various disease states, including hepatic cirrhosis, chronic renal failure, acute febrile disease, and protein and calorie malnutrition (5–7, 9–11). Elevations of reverse T_3 are frequently accompanied by a decrease in serum T_3 (7, 10). 3,3'-diiodo-L-thyronine (3,3' T_2) is also a constituent of the serum iodothyronines, and its main source seems to be extrathyroidal (12). 3,3' T_2 is probably the major product of monodeiodination of reverse T_3 and may only be a minor product of T_3 metabolism (13).

These recent observations relating to reverse T₃ and 3,3'T2 have directed attention to possible biological functions of these compounds. In earlier studies (14), reverse T₃ appeared to have antithyroid hormonelike properties with respect to regulation of calorigenesis. By contrast, Samuels et al. (15) found that reverse T₃ stimulated glucose consumption in cultured rat pituitary tumor cells (GH₁). However, these workers could not exclude the possibility that their results were owing to the presence of contaminating T₃. In some studies (16, 17), reverse T₃ was shown to possess as much as 5% the activity of T₄ in preventing the development of goiter in rats receiving propylthiouracil; in other studies (18), reverse T_3 was reported to have <3% of the T_4 goiter prevention or calorigenic action. In adult mouse hemopoietic cells, reverse T₃ had 200 and 100% the activity of T₃ and T₄, respectively, in potentiating the effect of erythropoietin (19). More recently, Chopra et al. (20, 21) reported that reverse T3 had a weak effect (5.2% that of T₄) on the rat pituitary in suppressing the release of thyroid stimulating hormone in response to thyrotropin releasing factor. The potential actions of 3,3'T₂ have received less attention, and the available literature (16, 17, 22, 23) does not clearly define its intrinsic biological activity. In this discussion, we have excluded a review of actions of reverse T_3 and $3,3'T_2$ in a number of potentially important systems in which the effects of T3 and T4 are observed only at hormone concentrations much greater than are achieved physiologically (24, 25).

We recently found that both reverse T_3 and $3,3'T_2$ bind to the putative nuclear receptors for thyroid hormones in studies with solubilized preparations (26). These findings suggested that these substances could have intrinsic agonist or antagonist actions on thyroid hormone responses, and led us to study these metabolites in greater detail.

For the current studies we used cultured rat pituitary tumor cells (GH₁ line) that contain thyroid hormone receptors (27, 28) and respond to thyroid hormones by increases in glucose consumption (15) and growth hormone production (29), and by decreases in

prolactin production (29). We also investigated another subline of these cells (GC) which differs from GH_1 cells in that the former divide more frequently (mean doubling time of 30 h as compared with 48 h for the GH_1 cells), produce more growth hormone, do not produce a significant amount of prolactin, and can be grown readily in spinner culture (30).

METHODS

Materials. Reverse T₃ and 3,3'T₂ were kindly provided by Dr. Eugene Jorgensen of the University of California at San Francisco. The synthesis and analysis of these compounds have been reported previously (31, 32), and each migrated as a single peak in the thin-layer chromatography systems described earlier (26). Stock solutions were prepared in n-propanol at 1 mM. Exposure of the solutions to UV irradiation was avoided. T3 was purchased from Sigma Chemical Co., (St. Louis, Mo.) and assayed for purity as previously described (26). Stock solutions were prepared in serum-free modified Eagle's minimal essential medium (MEM) Joklik (Grand Island Biological Co., Grand Island, N. Y.) at 5 µM. [125I]Reverse T₃ (679 μCi/μg) was kindly provided by Dr. Ralph Cavalieri, also of the University of California at San Francisco, and was prepared by Abbott Laboratories, Diagnostics Div. (South Pasadena, Calif.) as described previously (6). Based on thin-layer chromatography in the solvent systems described previously (26), there was about 10% contamination of this material with 125I-iodide and minimal contamination with other species.

Cell growth and incubation conditions. Rat pituitary tumor cells of the GH1 line, from the American Type Culture Collection (Rockville, Md.), were grown in Ham's F-10 medium supplemented with 15% horse serum and 2.5% fetal calf serum. Cells of the GC subline (30), kindly provided by Dr. Carter Bancroft, Sloan-Kettering Institute for Cancer Research, New York, were grown in MEM Jorlik supplemented with 15% horse serum, 2.5% fetal calf serum, and 0.4 mM CaCl₂. Cells were grown at 37°C in monolayers in 75 cm² plastic flasks (Falcon Plastics, Oxnard, Calif.) in 5% CO2. All media, sera, salt, and trypsin-EDTA solutions were obtained from Gibco and were prepared and sterilized in the Central Tissue Culture Facility of the University of California, San Francisco. For subculture, the medium was removed and each flask was incubated with 5 ml of a trypsin-EDTA solution (Grand Island Biological Co., no. 531) at 37°C for 10 min. Then, the trypsin-EDTA solution was removed and the cultures were resuspended in media. The detached cells were pelleted at 200 g for 10 min, and resuspended in fresh medium.

The examinations of responses to thyroid hormones and analogues were based on techniques previously described by Samuels and co-workers (15). Cells at the late logarithmic phase of growth were trypsinized and processed as described above. Approximately 55,000 cells/cm² were plated in a multiwell apparatus (Falcon Plastics). After incubation for 48–72 h under standard conditions, the medium was replaced by "hypothyroid media" containing 10% serum from a thyroidectomized calf (obtained from Rockland, Inc., Gilbertsville, Pa.) instead of horse and fetal calf serum, and incubated for 48–72 h to deplete the cells of T₃ present in the normal serum and to allow any thyroid-induced responses to subside. The T₃ and T₄ levels of the hypothyroid serum were determined; T₃ was measured by a radioimmunoassay (33) and T₄ by an adsorption technique

as described by the manufacturer (Abbott Laboratories). Both hormones were undetectable ($T_3 < 20$ ng/dl, T_4 $< 0.5 \mu g/dl$). The medium was then replaced with the dilutions of hormones and analogues in hypothyroid medium. The solvents used for the hormone were added to control incubations and did not produce detectable effects. After incubation for 48-60 h, the media of the GH₁ cell cultures were either assayed for glucose content immediately or frozen at -20°C and assayed the next day. With GC cell cultures after a 48 to 60-h incubation, the media were replaced with fresh media containing the hormones and analogues. After an additional incubation of 24 h the media were collected, frozen at -60°C, and assayed for growth hormone and glucose content within 1 wk. The freezing did not affect growth hormone or glucose levels. After removal of the media, both GH1 and GC cultures were washed twice with 0°C phosphate-buffered saline (25 mM potassium phosphate, 0.1 M NaCl, pH 7.4) and were frozen at -20°C. After 2-7 days, cells were thawed, scraped in 0.5 ml of water, and portions were assayed for protein (34).

Serum-free incubations. GH₁ cells (80,000 cells/cm²) were plated and treated as described above up to the point of introducing the hormones and analogues to the cultures. At this step the media were removed and substituted with hormone dilutions prepared either in serum-free media or in serum-free media supplemented with 10% of a "serum substitute" whose composition and use in other cell culture systems has been previously described (35). All chemicals necessary for preparation of the serum substitute were obtained from Sigma Chemical Co. and Fisher Scientific Co. (Pittsburgh, Pa.). All hormones included in the composition of the serum substitute were excluded except insulin which was added to the medium (28 µU/ml; Eli Lilly and Co., Indianapolis, Ind.). After 48 h of incubation, the media were collected and 50-µl portions were diluted 1:5 or 1:10 in bovine serum albumin (BSA; Sigma Chemical) barbital buffer (1 mg/ml BSA, 0.05 M barbital, pH 8.6) and stored at -20°C. The cultures were washed twice with 1-ml portions for 0°C phosphate-buffered saline and stored at -20°C. After 2 wk the media were assayed for growth hormone and protein as described above.

Glucose measurement. Glucose was assayed by the glucose oxidase method in a Beckman glucose analyzer (Beckman Instruments Inc., Fullerton, Calif.). Glucose consumption was calculated by subtracting the glucose present in the media at the end of the incubation from that present initially and is presented in all cases as a percent of control incubations which did not receive any hormone.

Growth hormone radioimmunoassay. Antiserum to rat growth hormone (first antibody, prepared in Rhesus monkey) and rat growth hormone for radioiodination and for reference standard were provided by the rat pituitary hormone distribution program of the National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health. Second antibody was a goat antimonkey gamma globulin, P4, obtained from Antibodies Incorporated (Davis, Calif.). Rhesus monkey carrier serum was obtained from Calbiochem (San Diego, Calif.).

For radioiodination, 10 μ g of growth hormone (previously diluted in 0.01 M NaHCO₃ and stored at -20° C) was diluted in 10 μ l of 0.3 M phosphate buffer pH 7.5 and iodinated with 2 mCi of ¹²⁵I-iodide (carrier free; Amersham/Searle Corp., Arlington Heights, Ill.) in the presence of a stoichiometric amount (0.3 μ g) of chloramine-T (Chester A. Baker Laboratories, Inc., Miami, Fla.). After 3 min, 25 μ l (1 mg/ml) of Na₂S₂O₅ was added. After mixing, an excess of KI (75 μ l, 10 mg/ml) and 5 ml of hypophysectomized dog plasma (obtained from the Department of Physiology, University of California,

San Francisco) were added, and this reaction mixture was applied to a Sephadex G-100 column (1.5 \times 24 cm), equilibrated in BSA-barbital buffer (0.5 M barbital, pH 8.6, 5 mg/ml of BSA. The peak of $^{125}\text{I-growth}$ hormone eluted at 1.8 times the void volume of the column, well separated from aggregation products (in the void volume) and free iodide (in the included volume, 2.5 times the void volume). The $^{125}\text{I-growth}$ hormone was diluted to a sp act of 400,000 cpm/ml with BSA-barbital buffer and then frozen at -60°C in 5-or 10-ml portions.

For the standard curve, duplicate $180-\mu l$ aliquots containing from 0.5 to 6 ng growth hormone were added to $120-\mu l$ aliquots consisting of a 1:1 mixture of ¹²⁵I-growth hormone and first antibody (previously diluted 1:10,000 or 1:15,000 in BSA-barbital buffer). In all cases, the unknown samples were prepared and assayed in triplicate. After 4 days of incubation at 0–4°C, each tube received 240 μl second antibody solution (previously diluted 1:20 in BSA-barbital buffer) and 60 μl carrier serum (previously diluted 1:25 in BSA-barbital buffer). After overnight incubation at 0–4°C, the tubes were centrifuged at 1,000 g for 30 min, and radioactivity in the pellets was assayed in a gamma spectrometer (efficiency 74%). The quantity of growth hormone in the unknown samples was calculated after comparison with a standard curve.

Under the conditions described, the assay was sensitive between 0.5 and 5 ng. From 60-70% of the radioactivity in the tubes that did not contain any unlabeled hormone was precipitated under the conditions of the assay. The intra-assay variation (36) was 2.9%.

Nuclear binding of T_3 , reverse T_3 and $3,3'T_2$. Nuclear binding of T_3 , reverse T_3 , and $3,3'T_2$ was examined in serum-free and serum-containing media in GC cells, according to techniques previously described by Samuels and Tsai (27). For serum-free experiments, GC cells in suspension culture (5 \times 10⁵ cells/ml) were pelleted at 200 g for 5 min, resuspended in serum-free MEM Joklik (5 × 105 cells/ml), and incubated at 37°C for 30 min to deplete the cells of endogenously receptor-bound hormone. Cells were then washed once in serum-free MEM Joklik and 3 × 106 cells in 2 ml of serum-free media were added to each of a series of tubes containing reverse T3, 3,3'T2, or T3 freshly prepared in serum-free MEM Joklik (1 ml/tube). Radioactive [125 I]T₃ (sp act 502 μ Ci/ μ g, Amersham/Searle) to a final concentration of 30 pM was added immediately afterward. The tubes were gently agitated and incubated at 37°C for 2.5 h. During the incubation, the cells were gently resuspended every 30 min with a Pasteur pipette. After the incubation, the tubes were chilled on ice and 1 ml of 0°C phosphate-buffered saline was added to each tube. The tubes were then centrifuged at 800 g for 5 min. The supernate was discarded and the pellet was resuspended in 1 ml of Triton-magnesium buffer (Tris 50 nM, MgCl₂ 1 mM, Triton X-100 0.5%, pH 7.8). After 5 min the tubes were centrifuged for 8 min at 100 g. The Triton treatment was repeated and after the second centrifugation, radioactivity in the tubes was measured in a gamma spectrometer. Specific binding was calculated by subtracting from the total binding the nonspecific binding (cpm) observed in tubes that contained a 10,000-fold excess of nonradioactive T₃.

For the nuclear binding assays after incubations in serum-containing media, a modified technique was utilized. Duplicate tubes containing 0.3 ml of "hypothyroid serum" received radioactive [125 I] 17 3 to yield a 0.2-nM concentration in the final reaction volume. Then the nonlabeled hormones (in 1 ml of serum-free MEM Joklik) were added. After equilibration for 3 h at 37°C, 3 × 10° cells, in 1.6 ml serum-free media (prepared as described above), were added

to each tube and the same procedure as for the serum-free binding assays was follows.

 T_3 and reverse T_3 radioimmunoassay. T_3 radioimmunoassay was performed as described elsewhere (26). Reverse T_3 assays were performed by Ms. Margaret Hammond of the University of California at San Francisco and by Dr. Ralph Cavalieri by a double antibody technique (37). This method gives a cross-reactivity with T_3 of <0.01%, with 3,3' T_2 of 3.8%, and with T_4 of 0.062% (37).

3.8%, and with T₄ of 0.062% (37).

Metabolism of reverse T₃. [125I]Reverse T₃ was incubated with cells and media as described in the legend to Table I. After the incubations, the media were collected and cells were detached by trypsinization as described above. The cells were then centrifuged (300 g for 5 min) and the pellets were washed once with 3 ml of ice-cold phosphate-buffered saline and then frozen. After thawing, media samples were extracted with an equal volume of ethanol:butanol 1:3 (vol/vol) and the pellets (containing about 8×10^6 cells) were each extracted with 0.5 ml of the ethanol:butanol solution. After addition of the solvent, the mixtures were vigorously agitated and then centrifuged (5,000 g, 10 min), and samples of the organic phase were analyzed by thin-layer chromatography as described previously (26) using authentic reverse T₃ and 3,3'T₂ as internal standards.

RESULTS

Nuclear binding of T_3 , reverse T_3 , and $3{,}3'T_2$ to GC cells. To determine whether reverse T₃ or 3,3'T₂ could occupy the same nuclear receptor as T₃, we initially asked whether these metabolites could inhibit the binding of radioactive T₃ by the nuclear receptors in incubations with intact cells. As shown in Fig. 1, either metabolite could inhibit the binding of radioactive T₃ under serum-free conditions. T₃ is a more effective competitor; reverse T_3 and $3,3^{\prime}T_2$ have about 0.1 and 1.5%, respectively, the activity of T₃ (Fig. 1, Table I). The similarity of the activities of reverse T_3 and $3.3'T_2$ relative to those obtained with the solubilized receptors (Table I) suggests that the inhibition is the result of competition with T₃ for binding rather than uptake. From these data we estimate apparent affinities (equilibrium dissociation constants; K_d) of these analogues for binding the receptors in the cells to be around 0.5, 70, and 20 nM for T₃, reverse T₃, and 3,3'T₂, respectively.²

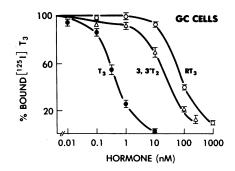


FIGURE 1 Inhibition of nuclear binding of [^{125}I] T_3 by non-radioactive T_3 , reverse T_3 (RT₃), and 3,3'T₂ in GC cells and serum-free media. Shown is the mean and range determined from duplicate incubations of the specific binding. The abscissa shows the specific binding (see Methods) as a percent of that obtained in incubations without added competitor (6 fmol/3 \times 106 cells).

Different results were obtained when incubations were performed in serum-containing media (Fig. 2). $3,3'T_2$ still exhibits competitor activity. By contrast, reverse T_3 is ineffective as a competitor, and in fact, at very high concentrations, even stimulates T_3 binding. As discussed later, the observed differences between serum-free and serum-containing conditions are likely explained by differences in the serum binding of the hormones.

Actions of T_3 reverse T_3 and $3,3'T_2$ on GC and GH_1 cells. The influence of T_3 , reverse T_3 , and $3,3'T_2$ in GC and GH_1 cells on glucose consumption in serum-containing medium is shown in Figs. 3–5 and in Table I. Both reverse T_3 and $3,3T_2$ stimulate glucose consumption (Figs. 3–5). Concentrations of reverse T_3 1,000-fold higher than T_3 are required to produce equivalent effects (Figs. 3–5), although concentrations of $3,3'T_2$ one-hundredth that of reverse

TABLE I
Receptor Binding and Biological Activity of Iodothyronines*

	Activity (% of T ₃)			
			Reverse	
	T ₃	T ₄	T ₃	3,3'T ₂
Binding by the nuclear receptors				
Solubilized receptors (liver)	100‡	20‡	0.2§	0.7‡
Intact GH ₁ cells	100"	11"	_	_
Intact GC cells	100	_	0.5	1.8
Biological effects				
Growth hormone production				
GC cells (serum containing)	100	_	0.1 - 0.5	_
Glucose consumption				
GC cells (serum free)	100		0.06	1.5
GC cells (serum containing)	100	_	0.1 - 0.5	15

^{*} In this table are summarized results obtained by us and others for nuclear binding and biological responses of GH₁ and GC cells to iodothyronines. Data expressed relative to T₂ (100%).

 $^{^2}$ The apparent K_d for T_3 was calculated from the relationship $K_d=C_{50}-T_3^*.\ K_d$ is the equilibrium dissociation constant. C_{50} is the concentration of the competitor at which 50% inhibition of radioactive T_3 binding to the receptor is observed; T_3^* is the concentration of radioactive $[^{125}I]T_3$ present in the reaction mixture. For these calculations we assumed that in serum-free medium, the total T_3 equals the free T_3 , because during the incubations <15% of the total is taken up by the cells. Also, the high media to cell radio further ensures that any T_3 that is endogenously bound is trivial in terms of the total T_3 concentration and therefore will not affect the measured K_d . For reverse T_3 and $3,3^\prime T_2$, the K_d was calculated from the relationship $K_c=C_{50}K_d/(K_d+T_3^*)$, where K_c is the apparent equilibrium dissociation constant for the competitor.

¹ Data from Latham et al. (26) and Jorgensen et al. (23).

[§] Measured as previously described (26).

Data from Samuels et al. (15, 27).

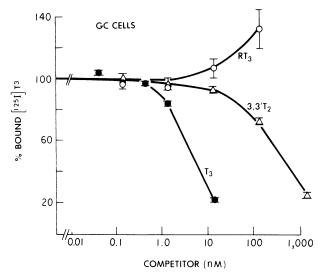


FIGURE 2 Specific nuclear binding of radioactive $[^{125}I]T_3$ in GC cells incubated in serum-containing media in the presence of nonradioactive T_3 , reverse T_3 (RT₃), and 3,3'T₂. Shown are the means and ranges of values from duplicate incubations. (The abscissa shows the specific binding (see Methods) as a percent of that obtained in incubations without added competitor (10 fmol/3 \times 10% cells).

 T_3 are required for a similar response (Fig. 3). Neither reverse T_3 or $3,3'T_2$ was inhibitory, even at high concentrations (to 1 μ M), and reverse T_3 and $3,3'T_2$ produced maximal effects that approached but never exceeded those maximally obtainable by T_3 . When reverse T_3 and T_3 were given together (Figs. 4 and 5), there was an augmentation in the responses at submaximal concentrations of the hormones (e.g., with 1 nM T_3 and 1 μ M reverse T_3 ; Figs. 4–6; P < 0.01, Student's t test (38)). However, the hormones in

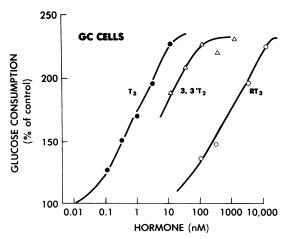


FIGURE 3 Effect of $3,3^{\prime}T_2$ on glucose consumption by GC cells incubated with the indicated hormone concentrations. Shown are the means and ranges of duplicate determinations. RT₃, reverse T₃.

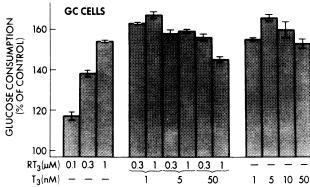


FIGURE 4 Effects of T_3 and reverse T_3 (RT₃) on glucose consumption by GC cells incubated with the indicated concentrations of T_3 or reverse T_3 , alone or in combination. Shown are the means and ranges of duplicate determinations.

combination did not result in effects significantly greater than those elicited by maximally effective concentrations of T_3 alone. The data in Fig. 6 and Table I show that reverse T_3 can also stimulate growth hormone production by GC cells and also does not inhibit the effect of T_3 .

The three analogues were also found to stimulate growth hormone production in experiments with serum-free media (Fig. 7 and Table I). The stimulations, especially with T_3 and reverse T_3 , were obtained at analogue concentrations lower than required for equivalent stimulation in serum-containing media. The differences in the relative analogue potencies between the serum-free and serum-containing experiments can, in part, be explained by the varying binding of T_3 , reverse T_3 , and $3.3'T_2$ to the serum proteins (39). Presumably, a higher proportion of the analogues

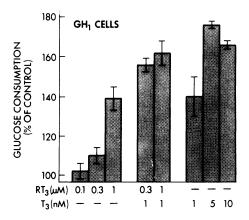


FIGURE 5 Effect of T_3 and reverse T_3 (RT₃) on glucose consumption by GH_1 cells incubated as described in Methods with the indicated concentrations of T_3 or reverse T_3 , alone or in combination. Shown are the means and ranges from duplicate incubations.

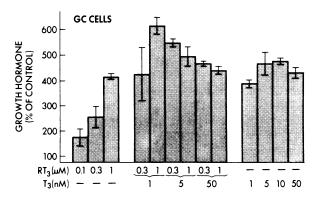


FIGURE 6 Effects of T_3 and reverse T_3 (RT₃) on growth hormone production by GC cells incubated with the indicated concentrations of T_3 or reverse T_3 , alone or in combination. The results are expressed as a percent of control cultures which did not receive any hormones. Shown are the means and ranges from duplicate incubations. The rate of production of growth hormone in control cultures was $4.3~\mu g/10^6$ cells per 24~h.

are free in serum-free media. This results in a shift in the dose-response curve to the left (Figs. 3 and 7). The concentration of free $3,3'T_2$ is influenced to a lesser extent by the serum-proteins perhaps because of its lower affinity for them (39). Inasmuch as $3,3'T_2$ is more potent than reverse T_3 and can result from deiodination of the latter, it was of interest to know whether or not this occurs in GH cells and could in part explain reverse T_3 action. We therefore studied the metabolism of reverse T_3 .

Metabolic conversion of reverse T_3 by the cells. Cells were incubated with radioactive reverse T_3 in serum-containing media under conditions identical to those in which the measurements of the responses were performed. Radioactivity present in cells and

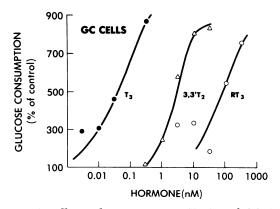


FIGURE 7 Effects of T_3 , reverse T_3 (RT₃), and $3,3'T_2$ on glucose consumption by GC cells in media with a serum substitute. Shown are the means (\pm SEM) from triplicate incubations from two experiments with serum-free and serum substitute media. The rate of production of growth hormone in control cultures was $1.6~\mu g/10^6$ cells per 24 h.

media as reverse T₃ and 3,3'T₂ was then quantified utilizing the thin-layer system previously described (26; Table II). As shown, after a 72-h incubation of cells with radioactive reverse T3, only small amounts (2–18% in various experiments) of the radioactivity associated with the cells was recovered as reverse T₃; more radioactivity migrated with 3,3'T₂. The reverse T₃ used is radioactively labeled in only one outer ring iodine. Because outer ring monodeiodination is random owing to free rotation of the ring around the ether bridge (40), radioactivity recovered as 3,3'T₂ would reflect only half the actual conversion of reverse T₃ to 3,3'T₂; half the deiodination would result in free 125I-iodide and nonradioactive 3,3'T₂ as products. Therefore, the actual amount of 3,3'T2 present is double that of the measured radioactive 3,3'T2. Thus, even though the media contained as much or more reverse T₃ than 3,3'T₂ at the end of the incubation, there was 5-16 times more cell-associated 3,3'T2 than reverse T3. These findings suggest that a substantial amount of the reverse T₃ which associates with the cells is converted to 3,3'T₂.

TABLE II Conversion of Reverse T_3 to $3,3'T_2^*$

	Recovery (%)			
Experimental conditions: Reverse T_3		3,3′T₂		
	Reverse T ₃	Radioactive	Total	
Added to media (no				
incubation	78 (84, 72)	2.5(3,2)	5	
Incubated in media (no				
cells)	74 (73, 75)	2.5(2,3)	5	
Incubated with media and GC cells				
Recovery in media	42 (24, 60)	20.5 (25, 15)	41	
Recovery in cells	4(2,6)	33 (36, 30)	66	
Incubated with media and	. , ,			
GH ₁ cells				
Recovery in media	64 (59, 69)	7.5 (4, 11)	15	
Recovery in cells	11 (4, 18)	30 (33, 27)	60	

* 5 ml of "hypothyroid" media containing 1 μ M nonradioactive reverse T₃ and 10⁶ cpm/ml radioactive reverse T₃ was introduced to 6-cm diameter plastic Petri dishes (Falcon Plastics) plus or minus cells (10^5 /cm²) and were incubated for 72 h. The dishes were then processed as described in Methods. Shown is the percent of the radioactivity applied to the thin-layer system that chromatographs with authentic reverse T₃ and 3,3'T₂. Most of the radioactivity that was not recovered in these two fractions was located at the solvent front. Shown are the means (and in parentheses the individual results) of determinations from two experiments, each performed with triplicate incubations. Replicate determinations within each experiment varied by <5%. The recovery of radioactive 3,3'T₂ has been doubled (total 3,3'T₂) to reflect the actual amounts present (see text).

Inasmuch as about 70% of the cell-associated radioactivity is accounted for by $3,3'T_2$, reverse T_3 , and iodide due to monodeiodination of reverse T_3 to $3,3'T_2$, further deiodination products represent a minority of the thyronines associated with the cells. The data further suggest that the conversion of reverse T_3 to $3,3'T_2$ is largely a cellular function, because there was little conversion of reverse T_3 to $3,3'T_2$ when reverse T_3 was incubated for 3 days in media without cells (Table II).

DISCUSSION

In the present studies we utilized rat pituitary tumor cells to study nuclear binding and biological actions of T₃, reverse T₃, and 3,3'T₂ as well as cellular metabolism of reverse T₃. We confirmed the findings of Samuels and co-workers (15) that GH₁ cells respond to physiological concentrations of T₃ by increased glucose consumption and growth hormone production. We also found that the GC line responds in a similar manner. In general agreement with Samuels' results (15, 29), the maximally effective T₃ concentration was in the range of 5 nM in serum-containing experiments, and T₃ effects were observed at lower concentrations of the hormone (e.g., 0.1 nM) in experiments with serum-free medium.

We also found that reverse T_3 and $3,3'T_2$ stimulated glucose consumption and growth hormone production in both cell lines. Because the maximal responses elicited by either metabolite were as great as those of T_3 , and because a small additive effect was observed when reverse T_3 was combined with submaximal concentrations of T_3 , it appears that both analogues behave as thyroid hormone agonists rather than antagonists. These data also suggest that the measured biological effects of reverse T_3 and $3,3'T_2$ are probably mediated via the same mechanism as are those of T_3 .

The hypothesis that reverse T_3 and $3,3'T_2$ actions are mediated by the intranuclear thyroid hormone receptor also receives some support from our previous studies (and those of Jorgensen and co-workers [23]), with the solubilized thyroid hormone receptors from liver in which reverse T_3 and $3,3'T_2$ were shown to competitively inhibit binding of radioactive T_3 by the receptors. In the current studies, we found that reverse T_3 and $3,3'T_2$ also compete with radioactive T_3 for binding to the nuclear sites in GC cells in experiments where incubations were performed using intact cells.

Inasmuch as these results could be obtained if the initial preparations of reverse T_3 and $3.3^{\prime}T_2$ were contaminated with T_3 or T_4 , it is crucial to know that this is not the case. A number of considerations suggest that contaminations do not explain the results

obtained. With respect to the reverse T_3 sample, radioimmunoassay showed no T_3 immunoreactive material under conditions in which 0.1 nM T_3 is readily detectable. Second, the technique of Block (32) excludes such contaminants. Even with the method of Shiba and Cahnmann (31),³ it is extremely unlikely that the material was contaminated by as much as even 1% T_3 .

 T_4 also does not appear to be present in the reverse T_3 preparations, because the 25% contamination required to explain the previous receptor binding data (26) would have been detected by our thin-layer chromatography analysis as described previously (26). This level of contamination is also excluded by the elemental analysis of the material (31). Although T_4 radio-immunoassay might further clarify this issue, the antibodies to T_4 do significantly cross-react with the reverse T_3 preparations (26) so that it is impossible to draw any conclusions with this technique.

With 3,3'T2, contaminations by 1% T3 could explain the serum-free binding data and the response, and 10% contamination could explain the responses in serum-containing media. Likewise, a much greater contamination with T4 would be required to explain the responses in serum-containing media. Again, from information related to the 3,3'T2 source,4 contamination appears to be extremely unlikely. If the observed results were owing to T₃ contamination, then the activity of the preparations relative to T₃ should be identical in experiments with serum-free and serumcontaining medium. This is not the case. For example, the activity of 3,3'T2 relative to T3 is only 1.5% in experiments with serum-free medium (Fig. 1), whereas it is 10% in the experiments with serum-containing medium. Finally, a 10% contamination with T4 would

³ The reverse T₃ was synthesized by condensation of 4-hydroxy-3,5-diiodophenylpyruvic acid (DIHPPA) and monoiodotyrosine (MIT; 31). In this reaction the keto acid furnishes the phenolic ring and the amino acid furnishes the nonphenolic ring and the aliphatic chain of the iodothyronine (31). This method of preparation excludes possible T₃ contamination, unless there was significant contamination in the starting materials with both 4-hydroxy-3-iodophenyl-pyruvic acid (MIHPPA) and diiodothyronine (DIT). Whereas the reaction of DIHPPA and MIT results in an approximate 17-20% yield, MIHPPA and DIT react with a yield of only 2% (31). Thus, to obtain a 0.2-1% contamination of reverse T3 with T3 in the initial preparation, both DIHPPA and MIT would have to be contaminated by 10-50% with MIHPPA and DIT, respectively. This is highly unlikely, and such contamination would have been detected by the authors' chromatography or elemental analysis of the starting material (31).

⁴ The 3,3'ce" \geq_{-2} was prepared by condensation of iodo-L-tyrosine and an anisyliodonium salt that resulted in 3-iodo-L-thyronine. Further iodination yielded a mixture of iodo-thyronines, and $3,3'T_2$ was isolated by thin-layer chromatography (41). The differences in R_f between $3,3'T_2$ and T_3 (0.22 vs. 0.4) in the solvent system used by the authors, makes T_3 contamination unlikely (41).

have been readily detected by our thin-layer chromatography, and cannot explain the biological responses of 3,3'T₂, because the relative potency of the preparation is greater in serum-containing than in serumfree media (Figs. 3 and 7). Thus, we consider it to be unlikely that the results were the result of contamination of either reverse T₃ or 3,3'T₂ preparations with either T₃ or T₄. Some earlier preparations have recently been shown by high pressure gas-liquid chromatography to contain unidentified contaminants.5 These impurities are not T₃ or T₄ and were not detected in the preparations used in our present experiments. The presence of contaminants could explain why, in previous studies (26), we found a higher affinity for the solubilized receptors than was found in the present studies for receptors in either intact cells or solubilized preparations (Table I).

We found that the biological activity and the binding of $3,3'T_2$ relative to T_3 was less in experiments in which serum-free medium was used than in experiments in which serum-containing medium was used. These differences could be explained if $3,3'T_2$ does not bind as avidly to serum as T_3 ; this was found to be the case with human thyroxine-binding globulin (39), but was not directly studied in our situation for calf serum. Thus, a greater proportion of the circulating $3,3'T_2$ could be available for receptor binding and hormone action than T_3 or T_4 .

The quantitative aspects of reverse T₃ action were found to be more complex. Reverse T₃ readily inhibited T₃ binding in incubations with serum-free medium, but in fact stimulated binding of radioactive T₃ in incubations with serum-containing medium. These data may be explained if reverse T₃ binds more avidly to serum but less avidly to the receptor than T₃. It is known that human serum binds reverse T₃ more avidly than T₃ (39). Thus, more avid displacement of serum-bound than receptorbound radioactive T₃ by reverse T₃ may result in more free radioactive T_3 available for receptor binding. These findings raise the conceivable possibility that reverse T_3 might act in our experiments or in physiological circumstances by displacing T₃ from serum. Although this could happen in conditions where substantial T3 is present (e.g., in the binding experiment where 0.2 nM T₃ was added), there was no detectable contaminating T₃ present in the serum used in the experiments to elicit reverse T₃ effects. In any event, the experiments in which reverse T₃ was exposed to cells in serum-free media most clearly demonstrate the intrinsic activity of the latter.

Avid plasma binding can account for the greater biological activity of reverse T₃ in serum-free as com-

pared to serum-containing medium. Furthermore, the biological activity of reverse T₃ relative to T₃ and 3,3'T₂ in general parallels its relative affinity for the intranuclear receptors. However, we found also that there was major cellular conversion of reverse T₃ to 3,3'T₂. In fact, only 12-18% of the cell-associated radioactivity was recovered as reverse T3; most of the hormone (60-66%) was recovered as 3,3'T₂. By contrast, there was very little deiodination of reverse T₃ in incubations with media only. Therefore, it seems that in the intracellular environment, most of the reverse T_3 is converted to $3.3^{\circ}T_2$. Consequently, 3,3'T₂ may be a major form of the hormone in the cell available for receptor occupancy. In certain respects, then, reverse T₃ may act as a prohormone being converted to 3,3'T₂ intracellularly. These data also indicate that most of the cell-associated 3,3'T2 can remain in an unmetabolized form for an appreciable time period.

To quantify precisely the contribution of $3,3'T_2$ to reverse T_3 action would require a direct measurement of radioactive reverse T_3 and $3,3'T_2$ on the receptor under the exact conditions in which the inductions are performed. This is difficult in practice because the affinity of these analogues for the receptor is much lower than that of T_3 . Thus, there would be greater dissociation of these analogues during the isolation of nuclei, and more importantly, the higher concentrations of analogue required to produce adequate saturation of the receptors results in unacceptably high levels of nonspecific binding which masks an ability to directly observe specific binding.

These results, taken together, suggest that reverse T₃ and 3,3'T₂ can interact with the intranuclear receptors for thyroid hormone and influence thyroid hormone-mediated functions as agonists. The results also indicate that the quantitative aspects are complex and are influenced by serum binding and intracellular metabolism. Because thyroxine-binding globulin levels may vary, because target cells may vary in the extent to which reverse T₃ is metabolized, and because there may be intratissue variations in the affinity of T₃ and analogues for the receptors, caution must be excercised in transferring the quantitative aspects of the current studies to physiological situations. Nevertheless, it may be useful, for perspective and development of testable hypotheses, to use the available data, to ask to what extent could reverse T₃ and 3,3'T₂ influence thyroid hormoneregulated functions in the various states in which these hormones have been measured. Inasmuch as serum shifts the response to higher hormone concentrations, levels of 3,3'T2 or reverse T3 required for responses in vivo would probably be higher than those required in the current studies, in which 10% or no serum was present in the incubations. Levels of 3,3T₂

⁵ Jorgensen, E. C. Personal communication.

have been measured in amniotic fluid and in the serum of normal adults, in cord blood of the new born, and in patients with hypothyroidism, hyperthyroidism, and cirrhosis (42, 43). Based on the current studies, the levels of 3,3'T2 in these situations are probably too low (0.1-0.6 nM) for more than minimal thyroid hormone agonist activity to be attributed to this compound. In the adult, in conditions of excess reverse T₃ (e.g., cirrhosis, acute febrile disease, etc. [5-11]), serum levels of the hormone rarely exceed 75 ng/dt (1.2 nM), although levels to 300 ng/dl have been detected in the human fetus (5). The current studies show that even in undiluted plasma, reverse T₃ is essentially inactive at this concentration. In amniotic fluid, reverse T₃ levels may exceed 300 ng/dl (~5 nM). In this circumstance, reverse T₃ may be mostly free, and therefore its levels may approach 5 nM in cellular compartments. At 5 nM (Fig. 1), reverse T₃ can minimally influence T₃ binding to the receptors. Although the data raise the possibility that under certain circumstances, reverse T₃ and 3,3'T₂ may be active hormones, it is likely that these two hormones are mostly of minor importance in eliciting physiological responses of thyroid hormones.

ACKNOWLEDGMENTS

We are indebted to Dr. Eugene Jorgensen for supplying nonradioactive reverse T_3 and $3,3'T_2$; to Dr.Ralph Cavalieri and Ms. Margaret Hammond for supplying the radioactive reverse T_3 and for performing the reverse T_3 radio-immunoassays; to Dr. Herbert Samuels for helpful information about the cells and T_3 incubation conditions and helpful comments; and to Ms. Sonja Scovel for helpful discussions and the preparation of this manuscript.

These studies were supported by grants BC-175 from the American Cancer Society, GB-41582 from the National Science Foundation, 10-1201-AM-18878-01 from the National Institutes of Health, and V3/5-mb536OE from the Fonds National de la Recherche Scientifique (Belgium).

REFERENCES

- Braverman, L. E., S. H. Ingbar, and K. Sterling. 1970. Conversion of thyroxine (T₄) to triiodothyronine in athyreotic human subjects. J. Clin. Invest. 49: 855-864.
- Fisher, D. A., I. J. Chopra, and T. H. Dussault. 1972. Extrathyroidal conversion of thyroxine to triiodothyronine in sheep. *Endocrinology*. 91: 1141-1144.
- Schwartz, H. L., M. I. Surks, and J. H. Oppenheimer. 1971. Quantitation of extrathyroidal conversion of Lthyroxine to 3,5,3'-triiodo-L-thyronine in the rat. J. Clin. Invest. 50: 1124-1130.
- Surks, M. I., A. R. Shadlow, J. M. Stock, and J. H. Openheimer. 1973. Determination of iodothyronine absorption and conversion of L-thyroxine (T₄) to L-triiodothyronine (T₃) using turnover rate techniques. J. Clin. Invest. 52: 805-811.
- Chopra, I. J., J. Sack, and D. A. Fisher. 1975. Reverse T₃ in the fetus and newborn. In Perinatal Physiology

- and Disease. D. A. Fisher and G. N. Burrow, editors. Raven Press, New York. 33-48.
- Chopra, I. J. 1974. A radioimmunoassay for measurement of 3,3',5'-triiodothyronine (reverse T₃). J. Clin. Invest. 54: 583-592.
- Chopra, I. J., U. Chopra, S. R. Smith, M. Roa, and D. H. Solomon. 1975. Reciprocal changes in serum concentrations of 3,3',5'-triiodothyronine (reverse T₃) and 3,5',3'-triiodothyronine (T₃) in systemic illness. J. Clin. Endocrinol. Metab. 41: 1043-1049.
- Gavin, L., J. Castle, F. McMahon, P. Martin, M. Hammond, and R. R. Cavalieri. 1976. Reverse T₃ and T₃ production rates in man. Clin. Res. 34: 143A. (Abstr.)
- Gavin, L., B. Rapoport, M. Hammond, and R. R. Cavalieri. 1976. Variable serum reverse T₃ concentrations in nonthyroidal systemic illness. Clin. Res. 24: 219A. (Abstr.)
- Burger, A., P. Nicod, P. Suter, B. Vallonton, A. Vagenakis, and L. Braverman. 1976. Reduced active thyroid hormone levels in acute illness. *Lancet*. I: 653-655.
- Chopra, I. J., and B. F. Crandall. 1975. Thyroid hormones and thyrotropin in amniotic fluid. N. Engl. J. Med. 293: 740-743.
- Burman, K. D., R. C. Dimond, R. A. McGuire, J. M. Earl,
 D. Strum, and L. Wartofsky. 1976. The effect of varying serum T₄ concentrations on extrathyroidal production of T₃, reverse T₃ and 3,3'diiodothyronine (T₂). Clin. Res. 34: 270A. (Abstr.)
- Chopra, I. J., S.-Y. Wu, and D. Solomon. 1976. Extrathyroidal production of 3,3-diiodothyronine (T₂) in vitro.
 Program of the 58th Annual Meeting of the Endocrine Society, San Francisco. 102.
- Pittman, C. S., and S. B. Barker. 1959. Inhibition of thyroxine action by 3,3',5'-triiodothyronine. *Endo*crinology. 64: 466-468.
- Samuels, H. H., T. S. Tsai, and R. Cintron. 1973.
 Thyroid hormone actions: a cell culture system responsive to physiological concentrations of thyroid hormones. Science (Wash. D. C.). 181: 1253-1256.
- Roche, J., R. Michel, J. Nunez, and W. Wolf. 1955.
 Sur deux constituants hormonaux du corps thyroid; la 3,3'diiodothyronine et la 3,3',5'-triiodothyronine. Biochim. Biophys. Acta. 18: 149.
- 17. Roche, J., and R. Michel. 1956. Nature and metabolism of thyroid hormones. Recent Prog. Horm. Res. 12: 1-26.
- Stasili, N. R., R. L. Kroc, and R. I. Meltzer. 1959. Antigoitrogenic and calorigenic activities of thyroxine analogues in rats. *Endocrinology*. 64: 62-82.
- Golde, D. W., N. Besch, I. J. Chopra, and M. J. Cline. 1976. Potentiation of erythropoiesis in vitro by thyroid hormones. Clin. Res. 24: 309A. (Abstr.)
- Chopra, I. J., H. E. Carlson, and D. H. Solomon. 1976.
 A study of TSH-suppressive effects of various thyroid hormones in the rat. Clin. Res. 24: 99A. (Abstr.)
- Chopra, I. J., H. E. Carlson, and D. H. Solomon. 1976.
 Comparison of TSH-suppressive effects of various thyroid hormones in vitro. Clin. Res. 24: 270A. (Abstr.)
- Koerner, D., H. L. Schwartz, M. I. Surks, L. H. Oppenheimer, and E. C. Jorgensen. 1975. Binding of selected iodothyronine analogs to receptor sites of isolated rat hepatic nuclei. J. Biol. Chem. 250: 6417-6423.
- 23. Jorgensen, E. C., M. B. Bolger, and S. W. Dietrich. 1976. Thyroid hormone analogs: correlations between structure nuclear binding and hormonal activity. In Excerpta Medica. V. H. T. James, editor. American-Elsevier Co., Amsterdam. In press.
- 24. Marcus, R., C. Lundquist, and I. J. Chopra. 1975. In vitro inhibition of cyclic nucleotide phosphodiesterase (PDE) by thyroid hormones. *Clin. Res.* 23: 94A. (Abstr.)

- 25. Adamson, L. F., and S. H. Ingbar. 1967. Some properties of the stimulatory effect of thyroid hormones on amino acid transport by embryonic chick bone. *Endocrinology*. 81: 1372-1378.
- Latham, K. R., J. C. Ring, and J. D. Baxter. 1976.
 Solubilized nuclear "receptors" for thyroid hormones. J. Biol. Chem. 251: 7388-7397.
- Samuels, H. H., and J. S. Tsai. 1973. Thyroid hormone action in cell culture: demonstration of nuclear receptors in intact cells and isolated nuclei. *Proc. Natl. Acad. Sci.* U. S. A. 70: 3488-3492.
- Samuels, H. H., and J. S. Tsai. 1974. Thyroid hormone action: demonstration of similar receptors in isolated nuclei of rat liver and GH₁ cells. J. Clin. Invest. 53: 656– 659.
- Tsai, J. S., and H. H. Samuels. 1974. Thyroid hormone action: stimulation of growth hormone and inhibition of prolactin secretion in cultured GH₁ cells. *Biochem. Bio*phys. Res. Commun. 59: 420-428.
- Bancroft, F. C. 1973. Measurement of growth hormone synthesis by rat pituitary cells in culture. *Endocrinology*. 92: 1014-1021.
- Shiba, T., and H. J. Cahnmann. 1964. Model reactions for the biosynthesis of thyroxine: reactions of 4-hydroxy3,5diiodophenylpyruvic acid with L-tyrosine or its iodinated congeners: a novel synthesis of 3,3',5'-triiodo-L-thyronine. J. Org. Chem. 29: 1652–1653.
- 32. Block, P. 1976. Synthesis of 3-iodo-L-thyronine and its iodinated derivatives. J. Med. Chem. 19: 1067-1069.
- Chopra, I. J., R. S. Ho, and R. Lam. 1972. An improved radioimmunoassay of triiodothyronine in serum: its application to clinical and physiological studies. J. Lab. Clin. Med. 80: 729-739.
- Lowry, O. H., N. T. Rosebrough, A. L. Faler, and R. J. Randall. 1951. Protein measurement with a Folin phenol reagent. J. Biol. Chem. 193: 265-275.

- 35. Bauer, R. F., L. O. Arthur, and D. L. Fine. 1976. Propagation of mouse cell lines and production of mammary tumor virus in a serum-free medium. *In Vitro (Rockville)*. 12: 558–563.
- Rodbard, D. 1974. Statistical quality control and routine data processing for radioimmunoassays and immunoradiometric assays. Clin. Chem. 20: 1255-1270.
- 37. Gavin, L., J. Castle, F. McMahon, P. Martin, M. Hammond, and R. R. Cavalieri. 1977. Extrathyroidal conversion of thyroxine to 3,3',5'-L-triiodothyronine (reverse T₃) and 3,5,3'-L-triiodothyronine (T₃) in humans. J. Clin. Endocrinol. Metab. In press.
- 38. Colton, T. 1974. Statistics in Medicine. Little Brown & Co., Inc., Boston. 1st edition. 129-131.
- 39. Snyder, S. M., R. R. Cavalieri, I. D. Goldfine, S. H. Ingbar, and E. C. Jorgensen. 1976. Binding of thyroid hormones and their analogs to thyroxine-binding globulin in human serum. *J. Biol. Chem.* **251**: 6489–6494.
- Kollman, P. A., W. J. Murray, M. E. Nuss, E. C. Jorgensen, and S. Rothberg. 1973. Molecular orbitals of thyroid hormone analogs. J. Am. Chem. Soc. 95: 8519-8525.
- Heider, J. G., and J. R. Bronk. 1965. A rapid separation of thyroxine and some of its analogs by thin layer chromatography. *Biochim. Biophys. Acta.* 95: 353-355.
- Wu, S.-Y., I. J. Chopra, Y. Nakamura, D. H. Solomon, and L. R. Bennett. 1976. A radioimmunoassay for measurement of 3,3'-L-diiodothyronine (T₂). J. Clin. Endocrinol. Metab. 43: 682-685.
- Burman, K. D., J. Read, R. C. Dimond, D. Strum, F. D. Wright, D. Patow, J. M. Earll, and L. Wartofsky. 1976. Measurements of 3,3',5'-triiodothyronine (reverse T₃) 3,3'-L-diiodothyronine, T₃ and T₄ in human amniotic fluid and in cord and maternal serum. J. Clin. Endocrinol. Metab. 43: 1351-1359.