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S1 Steady state behavior of the enzymatic circuit motif

Our enzymatic circuit motif has the following set of reactions:

X
k1−→ X ∗

X ∗
k2−→ X

X + Ef
kf−→ X ∗ + Ef

X ∗ + Eb
kb−→ X + Eb .

The time evolution of X∗ in the mass-action kinetic model of this motif can be expressed in the follows
ordinary differential equation:

dX∗(t)

dt
= k1X(t) + kfX(t)Ef (t)− k2X

∗(t)− kbX
∗(t)Eb(t). (S1)

Solving this for the steady state by setting the left-hand side to be 0 gives the expression of X∗, the
deterministic steady state of Xds∗ as follows:

Xds∗ =
(k1 + kfE

ds
f )Xtot

k1 + kfEds
f + k2 + kbEds

b

, (S2)

where Xtot = X + X∗ is the total molecular count of the protein and Eds
f and Eds

b are the steady state
of Ef and Eb, respectively.

The stochastic model of the motif is based on stochastic chemical kinetics. Given X∗(t) = x∗,
X(t) = x, Ef (t) = ef , and Eb(t) = eb, X

∗(t + dt) is expressed as

X∗(t + dt) = x∗ + Ξ(dt;x∗, x, ef , eb), (S3)

where Ξ(dt;x∗, x, ef , eb) is a random variable with density function Π(v | dt;x∗, x, ef , eb):

Π(v | dt;x∗, x, ef , eb) =


(k1x + kfefx)dt for v = 1,

(k2x
∗ + kbebx

∗)dt for v = −1,

1− [(k1x + kfefx + k2x
∗ + kbebx

∗]dt for v = 0.

(S4)

We can then express the mean time evolution of X∗(t) as

〈X∗(t + dt)〉 = 〈X∗(t)〉+ 〈Ξ(dt;X∗(t), X(t), Ef (t), Eb(t))〉. (S5)

〈Ξ(dt;X∗(t), X(t), Ef (t), Eb(t))〉 = 1 ∗

k1 ∑
x∈X

xPX(x) + kf
∑

x∈X(t)
ef∈Ef (t)

efxPX,Ef
(x, ef )

 dt

+−1 ∗

k2 ∑
x∗∈X∗(t)

x∗PX∗(x∗) + kb
∑

x∗∈X∗(t)
ef∈Eb(t)

ebx
∗PX∗,Eb

(x∗, eb)

 dt

= [k1〈X(t)〉+ kf 〈X(t)Ef (t)〉 − k2〈X∗(t)〉 − kb〈X∗(t)Eb(t)〉] dt
(S6)
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where PX(x) is the probability that X(t) = x, PX,Ef
(x, ef ) is the joint probability that X(t) = x and

Ef (t) = ef , PX(x) is the probability that X∗(t) = x∗, and PX∗,Eb
(x∗, eb) is the joint probability that

X∗(t) = x∗ and Ef (t) = ef . From Eqs. S4 and S6, we can obtain the average behavior of X∗(t) as

d〈X∗(t)〉
dt

= k1〈X(t)〉+ kf 〈X(t)Ef (t)〉 − k2〈X∗(t)〉 − kb〈X∗(t)Eb(t)〉

= k1〈X(t)〉+ kf 〈X(t)〉〈Ef (t)〉 − k2〈X∗(t)〉 − kb〈X∗(t)〉〈Eb(t)〉
+ kfCov(X(t), Ef (t))− kbCov(X∗(t), Eb(t)).

(S7)

Since Cov(X(t), Ef (t)) = Cov(Xtot−X∗(t), Ef (t)) = −Cov(X∗(t), Ef (t)), the steady state of 〈X∗(t)〉
becomes

〈Xss∗〉 = Xds∗ −
kfCov(Xss∗, Ess

f ) + kbCov(Xss∗, Ess
b )

k1 + kf 〈Ess
f 〉+ k2 + kb〈Ess

b 〉
. (S8)

Since the molecular counts of Ef (t) and Eb(t) do not change in this motif in isolation, both Cov(Xss∗, Ess
f )

and Cov(Xss∗, Ess
b ) become 0. Thus, we have 〈Xss∗〉 = Xds∗. This also means here that when there are

only very small correlation between Xss∗ and Ess
f and between Xss∗ and Ess

b ,

S2 Enzymatic circuit motif with Michaelis-Menten kinetics

With enzymatic reaction kinetics, the reaction to activate X∗ has the following rate function:

(k1 + kfEf )X

1 + KEX
(S9)

whereas the catalytic reaction to inhibit X∗ has the following rate function:

(k2 + kbEb)X
∗

1 + KEX∗
. (S10)

Here, both k1 and k2 were set to be 0.01 to make the basal rates small. To have the half velocity at the
molecular count of 25, we set KE to be 1/25. We chose to have the value of kf and kb to be 20/25 or
100/25 to make the affinities of the protein binding comparable and to keep their ratio the same as the
reaction kinetics used in the main text.
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S3 A system of equations for N4A

The 4-node network N4A has the following list of reactions:

R1 :X1
k1−→ X∗1

R2 :X1 + X∗2
kf1−−→ X∗1 + X∗2

R3 :X∗1
k2−→ X1

R4 :X∗1 + X∗3
kb1−−→ X1 + X∗3

R5 :X2
k1−→ X∗2

R6 :X2 + E2
f

kf2−−→ X∗2 + E2
f

R7 :X∗2
k2−→ X2

R8 :X∗2 + X∗4
kb2−−→ X2 + X∗4

R9 :X3
k1−→ X∗3

R10 :X3 + E3
f

kf3−−→ X∗3 + E3
f

R11 :X∗3
k2−→ X3

R12 :X∗3 + E3
b

kb3−−→ X3 + E3
b

R13 :X4
k1−→ X∗4

R14 :X4 + E4
f

kf4−−→ X∗4 + E4
f

R15 :X∗4
k2−→ X4

R16 :X∗4 + E4
b

kb4−−→ X4 + E4
b

A system of these reactions can be modeled via stochastic chemical kinetics, and the following system of
equations can be derived for the mean time evolution of the model:

d〈X∗1 (t)〉
dt

= k1〈X1(t)〉+ kf1〈X1(t) ·X∗2 (t)〉 − k2〈X∗1 (t)〉 − kb1〈X∗1 (t) ·X∗2 (t)〉,

d〈X∗2 (t)〉
dt

= k1〈X2(t)〉+ kf2〈X2(t) · E2
f (t)〉 − k2〈X∗2 (t)〉 − kb2〈X∗2 (t) ·X∗4 (t)〉,

d〈X∗3 (t)〉
dt

= k1〈X3(t)〉+ kf3〈X3(t) · E3
f (t)〉 − k2〈X∗3 (t)〉 − kb3〈X∗3 (t) · E3

b (t)〉,

d〈X∗4 (t)〉
dt

= k1〈X4(t)〉+ kf4〈X4(t) · E4
f (t)〉 − k2〈X∗4 (t)〉 − kb4〈X∗4 (t) · E4

b (t)〉,
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Supporting Tables

Table S1. Parameter/network combinations with 17 highest deviation levels in 4-node networks.

N4A N4B
N1a N2 N3 N4 Deviation N1 N2 N3 N4 Deviation
3b 3 2 2 1.803313 3 2 3 2 1.65566
0 3 2 2 0.8921112 2 2 1 2 0.8874556
2 1 2 2 0.8807242 0 2 3 2 0.8437993
3 0 2 2 0.7959255 3 2 0 2 0.7887775
3 1 1 2 0.7479988 3 2 1 1 0.7293608
3 1 2 1 0.692863 3 1 1 2 0.6925644
1 3 1 2 0.6299344 1 2 2 2 0.6332205
1 2 2 2 0.5883827 1 1 3 2 0.6310045

1 2 3 1 0.5198858

aNX means node X. For example, N1 means node 1.
bHere, the values of N1-4 indicate parameter combinations. 0 means kf = 1, kb = 1; 1 means kf = 1, kb = 5; 2 means

kf = 5, kb = 1; and 3 means kf = 5, kb = 5.
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Supporting Figures

Figure S1. A scatter plot showing the stochastic steady state (x-axis) and the deterministic steady
state (y-axis) of each network/parameter combinations in the three-node networks. The total number of
network/parameter combinations is 1,664. The area colored in sky blue represents the region where the
deviation level is greater than or equal to 0.5.
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Figure S2. A scatter plot showing the correlation between the potential for stochastic variation
(x-axis) and the potential for deviation level (y-axis) of each network in the three-node networks. In
each network, the potential for stochastic variation is computed by calculating the average of the five
highest noise levels, whereas the potential for deviation level is computed by calculating the average of
the five highest deviation levels. The correlation coefficient of the two data is 0.69, suggesting a high
positive relation between the potential for deviation level and the potential for variation.
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Figure S3. A scatter plot showing the correlation between the stochastic steady state (x-axis) and the
deterministic steady state (y-axis) of each network/parameter combinations in the four-node networks.
The area colored in sky blue represents the region where the deviation level is greater than or equal to
0.5. A very small fraction of the combinations (17 out of 27,648) have deviation levels higher than 0.5.



9

3 4

1 2

3 4

1 2

Noise Level

D
ev

ia
tio

n

a b

Figure S4. The relation between the potential for variation and the potential for deviation level of
four-node networks with Michaelis-Menten kinetics. (a) A scatter plot showing the correlation between
the potential for stochastic variation (x-axis) and the potential for deviation level (y-axis) of each
network. Each red open circle represents the potential for deviation and variation of a network. In each
network, the potential for stochastic variation is computed by calculating the average of the ten highest
noise levels, whereas the potential for deviation level is computed by calculating the average of the ten
highest deviation levels. The two networks surrounded by the oval in sky blue are the ones with the
highest potential for deviation and variation. (b) The structures of the two networks with the highest
potential for deviation and variation. These are the same as N4A and N4B in the main text.
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Figure S5. Networks capable of exhibiting bistability assuming enzymatic reaction kinetics. Stability
of each network in our three-node and four-node networks is checked using CRNT Toolbox. (a)
three-node networks with bistability. (b) four-node networks with bistability.
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Figure S6. Changes in the distributions of the covariances, Cov(Xss∗
1 , Xss∗

2 ) and Cov(Xss∗
1 , Xss∗

3 ),
based on the addition of node 4 in N4A. (a) A scatter plot showing the covariance between Xss∗

1 and
Xss∗

2 (x-axis) and the covariance between Xss∗
1 and Xss∗

3 (y-axis) of each parameter combination for the
three-node network showing in the upper right-hand corner of the panel. (b) A scatter plot showing the
covariance between Xss∗

1 and Xss∗
2 (x-axis) and the covariance between Xss∗

1 and Xss∗
3 (y-axis) of each

parameter combination for N4A. Each covariance is computed by simulating each stochastic model for
100 time units. Data were uniformly sampled at 100,000 time points. The first 10,000 samples were
discarded, and the rest were used to compute the covariances.
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a

b

Figure S7. The distributions of the number of parameter combinations in N4A that reach given
deviation and noise levels. Here, each node has 25 different parameter combinations, resulting in
390,625 distinct parameter combinations. (a) The distribution based on given deviation levels. (b) The
distribution based on given noise levels.
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Figure S8. A scatter plot showing the stochastic steady state (x-axis) and the deterministic steady
state (y-axis) of each network/parameter combinations in the five-node networks. There are 436
different five-node networks, each of which has 1,024 different parameter combinations, resulting in
446,464 distinct combinations. The area colored in sky blue represents the region in which the deviation
level is greater than or equal to 0.5. 474 combinations had deviation levels greater than or equal to 0.5.
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Figure S9. The potnetial for deviation and stochastic variation in five-node networks. (a) A scatter
plot showing the correlation between the potential for stochastic variation (x-axis) and the potential for
deviation level (y-axis) of each network in the five-node networks. In each network, the potential for
stochastic variation is computed by calculating the average of the 10 highest noise levels, whereas the
potential for deviation level is computed by calculating the average of the 10 highest deviation levels.
The fourred circles surrounded by the light blue oval represent the four networks with the highest
deviation and noise potential. (b) The strcutures of the four five-node networks with the highest
deviation and noise potential.
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Figure S10. Steady-state response curves based on inhibitory stimuli to various nodes. The
steady-state level of X∗1 is measured given various levels of an inhibitory stimulus to (a) node 3; (b)
node 4; and (c) node 5. Here, the red diamonds represent data from the deterministic model, while the
blue circles represent data from the stochastic model.
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Figure S11. The potential for deviation and noise levels for various model conditions. The left panels
show results from three-node networks, whereas the right panels show results from four-node networks
that correspond to the three-node network on the same row. On the right panels, the blue circles
represent the data from N4A and N4B. In each of the models simulated here, the parameter condition is
changed from the original one in the main text as follows: (a) kf , kb ∈ {3, 9}. (b) Xtot = 100 and
kf , kb ∈ {1, 10}. (c) Xtot = 200 and kf , kb ∈ {0.5, 2}.
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Figure S12. Propagation of deviations in a large-network context. (a) Discrepancy between 〈Xss∗
1 〉

and Xds∗
1 in a 10-node network propagated from a 5-node subnetwork with high deviation level

upstream. (b) Insignificant difference between 〈Xss∗
1 〉 and Xds∗

1 in a 10-node network with a 5-node
subnetwork with insignificant level of deviation upstream. Here, similar to Table S1, the number in red
by each node indicates parameter combinations. 0 means kf = 1, kb = 1; 1 means kf = 1, kb = 5; 2
means kf = 5, kb = 1; and 3 means kf = 5, kb = 5. .
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Figure S13. A scatter plot showing the stochastic steady state, 〈Xss∗
1 〉, (x-axis) and the deterministic

steady state, Xds∗
1 , (y-axis) of three-node networks with parameter combinations that are known to be

deviation free. Since the enzymes for nodes 2 and 3 are constant, we have 〈Xss∗
2 〉 = Xds∗

2 and
〈Xss∗

3 〉 = Xds∗
3 . Here, we have eight combinations, and for each the parameters for nodes 2 and 3 are

set to be the same so that we have Xss∗
2 = Xss∗

3 . Furthermore, we set kf1 = kb1 so that
kf1Cov(Xss∗

1 , Xss∗
2 ) = −kb1Cov(Xss∗

1 , Xss∗
3 ). Thus, from Eq. S7, this network is deviation-free in these

parameter conditions, and this control experiment shows the correctness of our simulations.


