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The model: The global responses of a network node i (to perturbations which do not directly affect node i) have a
linear relationship with the global responses of its potential regulators. This relationship was previously derived in [3] and
the resulting formulation is known as Modular Response Analsys or MRA. We proposed a modified version of MRA by
introducing a binary indicator variable Aij which indicates whether node i is directly regulated by node j. Please note that
any interaction routes via unknown elements are also considered as direct interaction. Aij = 1 indicates that the node i is
directly regulated by node j and Aij = 0 indicates that node j does not directly regulate node i. We also accounted for
biological and measurement noise in the MRA relationship. The resulting equation is shown below.∑

j=1...n,j 6=i

AijrijRjk + εik = Rik; k = 1 . . . nip (1)

Here, rij are the connection coefficients (or local response coefficients[3]). Rjk is the global response of node j to perturbation
k. εik represents random noise. The global response coefficients (Rij) are calculated from the perturbation responses. The
binary variables Aij , the connection coefficients rij and the noise εik are unknown variables. Let us denote by ρi the set
of connection coefficients which represent true network interactions directed to node i. The connection coefficients rij and
the binary variables Aij share an intricate relationship: if Aij = 1 then rij ∈ ρi and if Aij = 0 then rij /∈ ρi. Given these
notations, Eq. 1 can be rewritten in a matrix form as shown below.

Ri = RT
pr(i)ρi + εi (2)

Here, Ri =
[
Rik, k = 1, 2, . . . nip

]T
is a nip × 1 vector which represents the global responses of node i and Rpr(i) is a nik × nip

matrix which represents the global responses of the potential regulators of node i to perturbations k = 1, 2, . . . nip. εi =[
εik, k = 1, 2, . . . nip

]T
is an nip× 1 vector that represents the cellular and measurement noise encountered in the perturbation

experiments. Eq. 2 represents a model that describes how the potential regulators of node i regulates its perturbation
responses. Inference can be drawn about different aspects of the model under a Bayesian framework. Bayesian inference of
the model variables requires assigning prior distributions to the unknown variables of the model. The prior distributions allow
us to incorporate our prior knowledge about the system. We have used generic priors for our framework which incorporates
only subjective knowledge about biochemical networks rather than objective knowledge about particular networks that are
being investigated. The prior distributions for the Bayesian framework is described below.

The priors: We start with the prior distribution of the binary vector Ai which represents the potential regulators of node
i. The elements Aij of the binary vector Ai = {Aij , j = 1 . . . n, j 6= i} which represents the potential regulators of node i is
assumed to have a Bernoulli distribution with parameter θ.

P (Aij = 1|θ) = θ (3)

P (Aij = 0|θ) = (1− θ)

Here θ is a parameter which represents the probability that node j directly regulates node i. If θ is known then the prior
probability of Ai is given by:

P (Ai|θ) =

n∏
j=1,j 6=i

P (Aij |θ) = θn
i
k(1− θ)n−n

i
k−1 (4)

where n is the total number of nodes in the network and nik is the number of potential regulators of node i.
In most cases, the value of θ is not known a priori. However, it is well known that most biochemical networks are sparse

implying that θ is most likely to be less than 0.5. Therefore we assumed that θ has a Beta-distribution with hyper parameters
a and b, i.e.

θ|a, b ∼ Beta(a, b) (5)
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Here, we considered a = 1 and b = 2, which implies that E(θ|a, b) = a
a+b = 0.333 and σ =

√
ab

(a+b)2(a+b+1) = 0.2357, i.e. the

values of θ is most likely, but not confined to be within the range (0.0973, 0.568). When, θ itself is stochastic the marginal
distribution of Ai can be estimated by marginalizing θ in Eq. 4, i.e.

P (Ai|a, b) =

∫ 1

0

P (Ai|θ)P (θ|a, b)dθ ∝ Beta(a+ nki , b+ n− 1− nki) (6)

Furthermore, there are
((n−1)

ni
k

)
possible different configurations ofAi which have nik numbers of ‘1’s. Therefore the probability

that Ai has nik number of ‘1’s is

P (
∑

Ai = nik|a, b) ∝
(

(n− 1)

nik

)
Beta(a+ nki , b+ n− 1− nki) (7)

For notational simplicity we shall denote P (
∑
Ai = nik|a, b) simply by P (Ai) hereafter.

For a network node i, the connection coefficients which represent true network connections (ρi) directed to node i are
assumed to have multivariate Gaussian distribution with zero mean and covariance matrix V ρi . A common practice is to
assume that the prior covariance matrix V ρi is proportional to the posterior covariance matrix that arises from experimental
data [4, 1]. One way to estimate the posterior covariance matrix is to calculate its lower bound which is the inverse
Fisher Information Matrix (FIM) of ρi, denoted by (Rpr(i)R

T
pr(i))

−1; where Rpr(i) contains the global responses of the
potential regulators of node i to perturbations which do not directly affect node i. The resulting prior estimate of V ρi =

cσ2(Rpr(i)R
T
pr(i))

−1 is known as Zellner’s prior [4]. Here, the proportionality constant c represents how much importance

is attributed to the prior precision V −1ρi . Zellner’s prior is widely used in Bayesian variable selection and model averaging

frameworks. However, the invertibility of FIM depends on the rank of Rpr(i). Since, nik is the number of potential regulators
of node i and nip is the number of perturbation experiments that do not directly affect node i, the dimension of Rpr(i) is

nik × nip. In order for FIM to be invertible, nik must be less than or equal to nip, i.e. one need to perform at least as many
perturbation experiments as there are potential regulators of node i. When the FIM is not invertible, the Zellner’s g prior
becomes singular[1]. To guarantee identifiability of ρi in its posterior distribution one needs to ensure that ρi has a non
singular distribution. One way to ensure a nonsingular prior distribution of ρi is to introduce a ridge parameter λ in the
prior estimate of Vρi as shown below [2]:

V ρi = cσ2(Rpr(i)R
T
pr(i) + λI)−1 (8)

Introduction of λ ensures that the matrix (Rpr(i)R
T
pr(i) + λI) is always positive definite regardless of the rank of Rpr(i).

This allows one to draw inference on different variables of Eq. 1 in a Bayesian setting even when nip < nik. Choosing an
appropriate value of the proportionality constant c is the topic of much debate [1]. The most comprehensive way of choosing
c is to estimate its posterior distribution based on experimental data [1]. However, in this paper we resort to a simple but
intuitive choice of c = nip drawing on the notion that the “amount of information” contained in the prior equalize the amount
of information in one observation. The value of λ was arbitrarily chosen to be 0.1 since it was found that any reasonable
value within the range 0 < λ < 1 works well[2].

The connection coefficients which do not represent true interactions, i.e. rij /∈ ρi are assumed to be degenerate random
variables which are 0 with probability 1. The resulting prior distribution of the connection coefficients ri is called spike and
slab prior. The distribution of ρi forms the slab and the distributions of rij ∈ ρi form the spikes. In summery, the prior
distribution of ri, denoted by P (ri|Ai, σ

2) is given below:

ρi ∼ N(0, cσ2(Rpr(i)R
T
pr(i) + λI)−1) (9)

P (rij = 0) = 1, if rij /∈ ρi

Finally the noise εik is assumed to be a zero mean normal(Gaussian) variable with variance σ2. Here, the noise variance
represents our prior assumption about the extent of uncertainty present in the data. The extent of uncertainty in a biological
datasets depends both on the biological system being analyzed and the measurement system used in the experiments.
Therefore, we assumed that σ itself is a stochastic parameter which has an inverse gamma distribution with parameters α
and β, i.e.

σ2|α, β ∼ IG(α, β) (10)

Here, we have assumed α = 1 and β = 1 to ensure that σ2 has a flat distribution implying that the extent of noise may
vary significantly depending on biological and experimental factors. We shall refer to this distribution as P (σ2) hereafter
for notational conveniences. The relationship between the observed data, the unknown variables, the parameters and hyper
parameters of our Bayesian framework is shown in a graphical model in Fig. ??.
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The likelihood function and the marginal likelihood: The likelihood function is the probability distribution of the
global responses(Ri) of node i given the global responses of its potential regulators (Rpr(i)), the connection coefficients ρi
and the noise variance σ2. The likelihood of the model shown in Eq.2 is given by:

P (Ri|Rpr(i), ri,Ai, σ
2) = N(RT

pr(i)ρi, σ
2I) (11)

In this paper, we are interested in inferring the potential regulators of a node i, i.e. Ai. Therefore, we calculated the
marginal likelihood of Ai marginalizing the likelihood function with respect to ρi and σ2 as shown below:

P (Ri|Rpr(i),Ai) =

∮
ri

∫
σ2

P (Ri|Rpr(i), ri,Ai, σ
2)P (ri|Ai, σ

2)P (σ2)dridσ
2 (12)

=

∮
ri

∫
σ2

N(RT
pr(i)ρi, σ

2I)N(0, cσ2(Rpr(i)R
T
pr(i) + λI)−1IG(α, β)dridσ

2

=
1√

(2π)
ni
p
2

c
−ni

k
2

βα

Γ(α)
Γ(α+

nip
2

)
|Rpr(i)R

T
pr(i)|

1
2

|
(Rpr(i)R

T
pr(i)

+λI)

c +Rpr(i)R
T
pr(i)|

1
2

×

β +
1

2

RiRi
T −RiRpr(i)

T

(
(Rpr(i)R

T
pr(i) + λI)

c
+Rpr(i)R

T
pr(i)

)−1
Rpr(i)Ri

T

−(
ni
p
2 +α)

The posterior distribution: The marginal posterior of Ai was calculated from the marginal likelihood using Bayes’
theorem as shown below.

P (Ai|R) =
P (Ri|Rpr(i),Ai)P (Ai)

P (Ri|Rpr(i))
(13)

=
P (Ri|Rpr(i),Ai)P (Ai)∑
Ai
P (Ri|Rpr(i),Ai)P (Ai)

The denominator in Eq.14 has to be calculated numerically which is possible for small networks (typically n ≤ 20) using
computers. For large networks, this becomes prohibitively computation intensive. In case of large networks, one can calculate
P (Ai|R) up to a constant of proportionality, i.e.
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P (Ai|R) ∝ P (Ri|Rpr(i),Ai)P (Ai) (14)

∝ c
−ni

k
2

|Rpr(i)R
T
pr(i)|

1
2

|
(Rpr(i)R

T
pr(i)

+λI)

c +Rpr(i)R
T
pr(i)|

1
2

×

β +
1

2

RiRi
T −RiRpr(i)

T

(
(Rpr(i)R

T
pr(i) + λI)

c
+Rpr(i)R

T
pr(i)

)−1
Rpr(i)Ri

T

−(
ni
p
2 +α)

×

(
(n− 1)

nik

)
Beta(a+ nik, b+ n− 1− nik)

Inferences can be drawn about different properties of Ai by sampling from the marginal posterior shown above.
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