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1 Kinetic Network Model and Stochastic Simulation

1.1 Molecular Dynamics Simulation

Twenty MD simulations of HIV-1 PR dimer each lasting 20 nseveerformed using the molecular
simulation package IMPACTthe OPLS-AA force field (2005%,and the AGBNP implicit solvent
model 34 All simulations started at the same temperature of 285K s#iree initial conformation
from the crystal structure (PDB: 1HHP) but different seeflmsadom numbers for the velocities.
More details about the parameter settings and simulatiande found in our previous work.

The equilibration stage of all simulations lasted 450 pswitime step of 1.5 fs and gradually
releasing of distance restraints. The subsequent 20 ns production runs were obtained with
the time step of 1.0 fs. For each production simulation, thr&@rmational snapshots were saved

every 1 ps and 28 20000= 400000 snapshots were stored in total.

1.2 Building the Markov State Kinetic Network M odel

To build the network, we chose 200,000 snapshots (every topsdll 20 x 20 ns trajectories) and
calculated the @ RMSD matrix of the two flaps (residue 43 to 58, and 142 to 15%fyben each
pair of snapshots which requires storage ef#0'° matrix elements. The snapshots were clustered
into 82,291 conformational nodes using an RMSD criteria 6fA Namely two snapshots are
grouped into the same node if their RMSD is smaller tharf0 Bhen a network of conformational
nodes was created by connecting all pairs of clustered notieh have the node RMSDs 1.2

A

In the kinetic network model the time evolution of probatyilP(t) for each network node

obeys the master equatidh

dpd'—pzzhjpj(t)—;kjﬂ(t) @
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wherek;; is the rate constant for transition from stgteo statei defined by

P
Kij =Cij(F;ﬁ)1/2- 2)
J7a:1
Thekj satisfy detailed balande;Pj eq = KjiR g, andCij = Cji. The ratekjj can be expressed in
terms of the branching probabilifj_; and the mean lifetime at nodeT;,
P
== ®3)
Eq. 3 suggests a way to parametrige based on the lifetimes estimated from many short

MD trajectories. The branching probabili_; depends approximately on the RMSD between

neighboring nodes and j, Arjj. From running many short MD trajectories, we found than
Ari’j6
<br;®>j

Additionally, P, decreases approximately linearly with the number of neigimg nodes of node

average the probability of jumping to a neighboring nod&ratcan be fitted withP;_; O

j,ie.P_i0 N—%‘E Taking these considerations together, we have
j

Ari*j6
Pi-i O~ 4)
j

Hence the;j is approximated by

R arg® 11 R
kj =Cij(5 )2 = — SR (5)

. 6 _ NbT, _
Pj.eq <Ar;;° > NP Tjmp  Pjeg

-6
Arij

SinceCij = Cjj, to enforce the detailed balance, we symmetriz&thasCij = Cji ~ %( A NPT, +

Ar-6

]I

———————). Finally w tain
<Arj’ie>iNiNb'I'i_MD) ally we obta

Ar-6 1 1

kij ~ —=(

Pleg\1/2
- + — =), (6)
<A > NPT yp - < Arg® > NNPTivp ™ Pieg
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The node lifetimél; mp can be estimated by performing short MD simulations stgriach nodé.
In this paper, we built a very high resolution network andrfdd; mp for several representative
nodes located in different macrostates are similar, witliTi mp + Tj mp)/2 >= 4.8 ps with a
variance of 0.5 ps, which reproduces the average short tishavior of the motion in the MD

simulation.

1.3 Stochastic Simulations on the Networ k

Stochastic simulations on the kinetic network were impletaé using the Gillespie algorithint!

as described previousB/2:13 Briefly, the simulation starts from a node selected randoamg
jumps to neighboring nodes for some waiting time. The wagitiime at a given node is an
exponential random variable whose mean equals the invétde sum of the exiting rates from
that node to neighboring nodes. The probability that théssysubsequently lands on a connected
nodej is proportional to the microscopic rate from nade j. Such random walks on the network
satisfy the master equation 1.

To our best knowledge, this is the first time to calculatetroteal correlation functions from a
kinetic network trajectory. In the KMC trajectory, the sishpt representing a node and the waiting
time on this node were saved once a transition to a new nodgocBecause the transition time
from node to node is a random variable according to the Gplie algorithm, the snapshots are not
evenly distributed on a time series from our network simaftat (There are a total of 3,123,612
snapshots in our 10 microseconds trajectory.) Insteadptopate the correlation functions, we
need to use a bin width with a constant time interval (5psketaap the time series, namely we

assigned the saved snapshots to each bin with the closedttitmat from the Gilliespie simulation.
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2 NMR Relaxation Theory

2.1 General Theory

The rotational time correlation function of a nuclear sppin vector is defined as

| | )% 4m |
Cin' (t) =< Dip(QL)Dp (Q) >= 5 <Y (@) (@) >. ™

Wherean) is the spherical harmonics function, abél% is the Wigner rotation D-matrix element.
Ql - = (a(t),B(t),y(t)) are Euler angles specifying the time-dependent orientatiche unit vec-
tor connecting the two nuclei in the laboratory coordinatstem. The brackets --- > represent
the ensemble average over the initial and final states atGiareit.

When the system tumbles in an isotropic solution, the cati@h function does not depend on

the indexm and can be rewritten as

=13 k-1 AT Wf' LoV (@F) > = < PU() 1(0) >, (8)

whereP!) is the Legendre polynomials of orderfi(t) andri(0) represent the spin-spin unit vector
at time 0 and. To describe the relaxation in nuclear magnetic resondneg, is sufficient.
Interpretation of NMR relaxations usually requires sirfiptl structure models, from the early
single rigid rotor!* to the anisotropic rotor plus internal motiof%;!’ to the model-free approach
including the overall rotation part and the fast internaltimo represented by a generalized order
parameter and an exponential decay with a characteristigf2°and to the more recent confor-
mational exchange model between states with differentadivertation diffusion tensoré! Those
simplifications vary from model to model and largely depemdtive problem being studied, but
they are based on a common fact ti¥ét, the time-dependent orientation of a spin-spin vector in
the laboratory coordinates frame can be decomposed inteenalbrotationQ! , in the principal
frame, a series of Euler angle@g1, Q12, Qo23, - -+, Qijj+1, ---, andQn_1n) in the N successive

internal rotation frames, an@} - describing the relative motions of spin vector in the N frame
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Correspondingly, the Wigner D-matrix can be described by

2

dean-35 5 3 3

a=—2b;=—2hy=-2 -2 by=-2
DE (Qup)DY) (Qp1)DY, (Q12) D 1 (Qi 1i)---DE |, (Qn_1n)DZ,(Q 9
da (Qup)Dgp, (QP1)Dyy, (Q12) Dy 1 (Qi-1i) - Dy (QN—1n) D i0(QnF). (9)

For many cases, the overall rotational motions are assumbd tndependent of the internal
motions and they can be separated. Furthermore, a commooxapgation is that there are also

no correlations among any internal motions. Hence the tairo@ function of Eq. 7 is simplified

as?? as

2 2 2)x%
cd(t) =< Déo)(Q}_ﬁDéo) (QP) >

2 2 2 2
= > 5 <DR@pDF @) > Y Y <D (@b)DG (@R >

a=—2a=-2 b1:—2b’1:7

i §<D Q! D(z)*(QO)>---§ §<D() (o} )D() o (QF15) >
bz_—2b'f bb 1b/2 12 bi:—2bi’: bi_1b; i—1 i—1

2 2
. <Déi),le(Q}\1—1N>DEyN) B (QR-1n) >< Déi,)o(Qtr\lF)Dé?g(QRJF)>- (10)
N=—2b\=—

2.2 Model-Free Approach

The model-free approaékl®assumes that the reorientational time correlation funotiba spin-
spin vector can be separated into a slow overall rotatioh gadt a fast internal one that is inde-
pendent of the former. The overall rotation part generattgatibes the rotational motions of a
rigid rotor using the principal coordinate frame of the nlk or the diffusion tensor. The inter-
nal part depicts the relative motions of a spin-spin veatathie local coordinate frame specified
for each spin-spin vector and is described by a generalimer paramete®® and an exponential
decay with a constant at . The transformation from the principal coordinate framefte local
coordinate frame is assumed to be independent of time. H&jgen Eq. 7 are decomposed into

three rotational transformatiothLP describes the motion of the principal frame in the laborator
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frame,Qpp represents the time-independent orientation of localdioate frame in the principal
frame, andQl- describes the orientation of the spin-spin vector in thallsoordinate frame. Due

to these assumptions, the model-free approach is valid Wieeaverall rotations are much slower
than the internal motionsy; > t¢), and there are no large conformation changes modifying the
global shape of the molecule and the diffusion tensor.

For the model-free approach, the correlation function Eig.réduced to

2 2
2 2 Dﬁf@(QPwD(Z)*(QPD) < DI&(Z))(Q}DF>DI((2))*(Q%F> >, (11)

where< D%)(QtDF)Dl(g)*(Q%F) > describes the internal motions of a spin vector in the looal ¢

ordinate frame. For the model-free approach there is norcepece ork or | ## 0 and the internal

motion reduces to:
Ci(t) =< D (QL)DE*(Q%r) >= P+ (1- R)e /e 12
1(t) =< Dgg (QbF)Dgg (QbF) >=S"+( el (12)
& is called the square of the generalized param®serd can be calculated by

F =Ci(w) =< D(()%)(QOSF>D(()%)*(Q%F) >
= <DP(0%) >< D" Q%) >=< P@(cosh) >< P?*(cosh) >, (13)

S= < D@ (Q%¢) >=< P@(cosh) >,

where@ is the angle between the spin-spin vector and the Z axis dbtad coordinates frame if

the internal motion is azimuthally symmetr&.
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The total correlation function in an isotropic solution Miecome

1 4=2
g=-2
1222 (2)+ @ (2)+
=5 > < Dgn(Qip)Dar (QPp) > Dy (Qep) D™ (Qep). (15)

g=—2m=—-2n=-2

The overall rotation functio@q(t) depends on the global shape of molecule and can be evaluated
by finding the Green’s function (conditional probabilitybi the free-diffusion equation for a
rigid-body rotoft4-17:23

0 3
EP (Qup,t) z LiDijL;P(QLp,t), (16)
i,]=1

wherel; represents the angular momentum operator abouitthaxis andD;; denotes thejth
component of the second-order rotational diffusion terfsorthe molecule. Subjected to the
symmetry of the molecule, the solution of Eq. 16 and the ¢atien functionCo(t) have been
discussed in several plac&s?®

The model-free approach assumes that the internal motrensell represented by one corre-
lation time and has been applied to account for relaxatida da many small proteins and simple
polymers with less flexibility. For many complex biomolees) the time evolution of the internal
correlation function will be multi-exponential or highlyonexponential with slow components.
The extended model-free approaétintroduced two distinct correlation times to describe the |

ternal motions.
Ci(t)=F+Ae /T AV =S+ (1-F)e V" +(F - F)e V", (17)

whereS’ 4+ As +As= 1. T+ andTs describe the fast and slow decay components respectivélgnw
Ts and 11 differ by at least 1 order of magnitud€; (t) reaches an intermediate plateau value of

1-As = S, beside (o) = S
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2.3 Conformational Exchange between Two M acrostates

The model-free approaéf®is quite successful for applications to molecules with vaelfined
mostly rigid structures and fast local motions. However,f@any cases, such as HIV-1 Protease,
the dynamics often involves slower conformational charigekiding loop motions and domain
reorientations. For example, there exist two well-definettrastates with substantial populations
for HIV-1 protease: the semiopen and the closed states. Mermerive the analytical forms for
the correlation functions and the effective order param&tand the relaxation times for the two
macrostates with independent internal motions specifiesﬁbﬁ%, Tea, and Teg but sharing the
same diffusion tensor as shown in Fig. SS1.

State A

State B

Local frame

Principal frame

/ y
y Laboratory frame

Figure S1: Two-macrostate conformational exchange mdded.macromolecule has two distinct
conformational states A and B which share the same principaidinate frame (diffusion tensor).

If conformational exchange is much slower than overalltrotes and internal motionstfx >
™ > Te), the cross terms between two different states are verylsmdlcan be neglected when
evaluating the correlation function using conditionallpability. Hence the total correlation func-

tionin Eq. 7 is reduced to

Cr(t) =Co(t)Ci(t) = PaCa(t) +PeCa(t). (18)
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When the two states share the same diffusion tensor it isteagyow that

Ci(t) = PaCia(t) + PeCig(t) = PA[SA + (1 — %)Y/ ™) + PS5 4 (1 — SB)e /e8]
C(t)= S%+PA(1—S£)e_t/Te’\+PB(1_%)e—t/TeB (19)
St =Ci(o) =PaSA+ P (20)

For the alternative case as shown in Fig.S1, namely the Ibvetation is much slower than
conformation exchange and internal motions of both staigs# 1ex > Te), the correlation func-

tion Eq. 7 can be written as

2 2
2 2)x 2 2)x
= > > < Di(QLp)DG (Qfp) >< D (Qbe)DE (Q8F) > (21)
m=—2n=-2
2 2 (2LP (2)PF
= > 2> Camon (Cyono (1), (22)
m=—2n=-2

WhereCliag (1) =< DE(QL p)DE™ (Q05) > describes the overall rotation part agff)™" () =<
D%(Q‘PF)D%*(QE,F) > corresponds to the internal motion part for conformatieaihange be-
tween and local internal motions within the macrostatesc&the local internal motions are very
fast and they can be assumed to only depend on conformatites stithin each macrostate, the

internal part of Eq. 22 can be described as

2)PF 2 2)
Cipm (1) = < Dia(Qbe D (Q%) >

2 2)x
=< Dy (Qbe) DL (B )P(Qb QB 0)Peg(QBF) >Loca

_ B 00 _
Qbr =0 Qe QPr=0p¢ QB¢

=<3 3 D2 (B,t)DE* (a,0)P(B,t|ar,0)Peg(Q) >Local, (23)
B=ABa=AB

where< --- >| ocal represents the ensemble average in the local coordinatee fior each state.
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The conditional probability in Eqg. 23 can be solved from thaster equations as below,

P(A.t|A 1 1
dPALIAO) _ 1 pia 1A 0)+ - P(B.t|A0)
dt TAB TBA

P(B.1|B 1 1
PEIBO _ ., L pate,0—-—P(B.1B,0)
dt TAB TBA

with the initial conditions at — 0 and normalized conditions at ahy

P(A7t|A7 O>|t—>0 =1, P(A7t|A7 O) + P(th|A7 O) =1

P(B,t|B,0)|t—0=1, P(At|B,0)+P(B,t|B,0) =1

The solutions are:

T T|
P(At|A0) = B BA o t/Tex — Py + Pget/TEx
Tea+TaB  TBA+ 1AB
T
P(B,t|A,0) = i(l— e t/Tex) — pg(1— e V/Tex)
TBa+ TAB
T
P(At|B,0) = &(1_ e—t/TEX) =Pa(1— e—t/TEx)
BA+TaAB
T T,
P(B,t|B,0) = BA AB o t/Tex — Pg + Pae 1/ TEX

TBa+TaB  TBa+ TAB

where

T
Pa = Peg(A) = P(At|A,0) [t—0o = P(A|B,0) |t~ = _tas

Tea+ TaB

IBA

= Pyg(B) = P(B,t|A,0)|i o = P(B,t|B,0) |t .o = ————
P = Peq(B) = P(B.tA, O)t o = P(B.A[B, Ot on = -
1 1 1

Tk - = 4=

TEX a8+ kea TaB * IBA
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Substituting the solutions of Eq. 26 to 27 into the correlatiunction Eq. 23 we obtain that

Cigrs (t) = < D2 (Qbe)Dlg " (QPF) >
=< D (A, 1)D'2*(A,0)P(A t|A,0)Pa+ DX (A 1)D'2*(B,0)P(A,t|B,0)Ps
+D3)(B,1)DZ* (A, 0)P(B, t|A,0)Ps+ D2 (B,1)D'2" (B,0)P(B,t|B, 0)Ps >Local
=< D (A, )D'2*(A,0)(Pa+ Pae /™ )Py+ DY (A 1)DZ* (B,0)Pa(1 — & V™) Ry

+D(B,t)DZ* (A 0)Ps(1— e /™x)Ps + DI (B,1)D'2" (B, 0) (Ps + Pae /™) Ps > ocal

= S?nOnO + [FmOnO - s%nOnO] e_t/TEX7 (28)
where

Soo= < [PaD(AL)+PuDE(B.)][PADS" (A, 0) + FeDZ (B,0)] >roca,  (29)

Frono = <PD@ (A 1)DP*(A 0)+ DY (B,t)DZ*(B,0) >Loca - (30)

For the model-free approach, there ismer n dependence amd = 0 andn = 0. The internal

correlation function can be written:

Ci(t)= C(()%)OF:)F (t) = Sbo00+ (Foooo— Shoo0)e /&, (31)

where

%000:
—< [PAD2 (A1) + PsD2) (B,1)] [PAD2" (A, 0) + PeD2" (B,0)] >Loca
— P < D (A,1)DL3"(A,0) >Local +PaPs < D (A,t)DL2"(B,0) >Loca

+PsPa < D2 (B,1)DI2* (A, 0) >Local +P < D) (B,1)DE)*(B,0) >Loca . (32)
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From the model-free approach in the last section, we have

<D (A DD (A,0) >Loca= S+ (1— SR)e /™,

< D@ (B,1)D2*(B,0) >Loca= B+ (1— P)e /™. (33)

To evaluate the cross tern%Dg%) (A,t)Déo) (B,0) >Local and < DéO)(B t)D( "*(A,0) >Local, We
need to decompose i, of each state into two components: one is the time-indeperidan
Qg,: describing the equilibrium position, and the other is tihegtidependent terrﬁ F represent-
ing the deviation from the equilibrium position. From theperties of the Wigner D-matrix, we

have

< DZ(A1)DZ*(B,0) > oca =
—< D (Q(A0,1))Dig (DA, 1)) (2(Bo, 0))Dg (A8, 0)) >Loca
=< DR (Q(8A,1))DF" (Q(AB,0)) >Loca Dig (2(A0))Dgg (Q(Bo))
=< D (A1) >Locar < Dy (Q(88B,0)) >1ocar PP (COSOn)

= S\SP? (costhg). (34)

Similarly we also have: D (B)DZ* (A) > oca = S5SaP@ (COSOag).

Finally we have

Sooolt) = PA(SR+ (1— ) V™) + P3(F + (1— R)e /™) + 2PaSaPs P (cosBag)

= P2S2 + 2PaSaPsSeP? (cosBag) + PES3 + PR(1— S3)e Va1 P2(1— K)e /™8 (35)
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and

Foooolt) = < PaDig (A, t)Di " (A, 0) + Dl (B,1)D* (B,0) >Local
=PAK+(1-S)e /™) + (B + (1-F)e /™)
— PASk + P8 + Pa(1— )e VA 4 pg(1— K)e /e (36)

and

= Sooolt) + (Foooo(t) — Sooolt))e Y/ Tex. (37)

Comparing thet with Tea, Teg and Tex(>Tes(Tea)), the internal correlation function Eq. 37

becomes

Ci (t) = Fooool(t) t < Tex (38)

t) = Sooolt) t > Tex (39)

and converges to three important values at different tinagesas shown in Fig. SS2

Ci(0) = Fpooo(0) =Pa+Ps =1 t—0 (40)
3231 =Ci(t) = Foooo(t) = PASA + PSS Ten(Ten) <t < Tex  (41)

S, = Ci () = Spo0(®) Sk + 2PaSaPsSsP? (cosOag) + P t—o (42)

If the local motions of both states are much faster than ticha@axge rate between macrostates

and1es(Tea) — O, the effective internal correlation function is

=)+ (P — FPp)e /™, (43)
1
TEX = kag + Kea ™
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TeB
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0 Vo
100 ps VA 100 ns

Figure S2: Schematic graph for a rotational correlatiorcfiom of internal motions predicted by
the two-macrostate conformational exchange model withifidsrnal motions.The exchange time
scaletgx is much faster than the overall tumbling timg but slower than the time scale of local
motionste. For the slow exchange casgf > 1v), 3%2 is averaged out by the overall tumbling
and not observable.

Furthermore, ifS; = S = 1 the effective internal function can be simplified further t

C(t) =S+ (1—F)e V/Ex, (44)

S = P2+ 2PARsP? (cosBpg) + P3.

This is consistent with the recent derivation for the exdw®af two rigid rotors (no internal mo-
tions) with the same diffusion tensét.

WhenBxg = 0, namely the z directions for both states are parallel tt emer,S%Z = (PaSa+
PsSs).

In summary, we obtained the total internal correlation tiores for two limiting cases:

1. Slow exchange limitea(Tes) < Tm < Tex) When the decay of overall rotation is much
quicker than the rate of exchange between the two macrestlibe total internal correlation
function is simply a population average of two states as shiomEq. 19 or 38. There is

only one plateau value which is also the ensemble-averagjee wf the generalized order
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parameters of the two states given by Eq. 20 or 41.

2. Fast exchange limittéa(Tes) < Tex < Tm) When the decay of overall rotation is much
slower than the rate of exchange between the two states.otdderiternal correlation func-
tion involves the exchange term as displayed in Eq. 37. Thezdwo plateau values, an
ensemble averaged plateau value at short time by Eq. 414the as slow exchange case)
and a long-time combination as in Eq. 42 including a cross t&fra second-order Legendre

polynomial.

Assuming that the rotational diffusion tensor for overafitions is a symmetric tofy = Dy),
we can multiply the overall rotation correlation functiogy the internal part and obtain the total

function as below:

Slow exchange: Cr(t) = é{Aet/T1 +Be /% Ce V/BY(PaCia(t) + PsCia(t)) (45)

Cr(t) =Cr(t|6,T1, T2, T3,Pa, Ps, 3, S5, Ten, Tes)
Fast exchange: Cr (t) = é{Ae‘/ "+ Be /™ +Ce /" }(Soolt) + (Foooolt) — Sooolt))e /™)

(46)

Cr(t) =Cr(t|6, 11, T2, T3, TEX, Pa, Ps, S2, S8, 6B, Ten, TeB)

3 Supporting Data
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pcal

pcal

(b)

Figure S3: Potential of mean force and clustered nodes giegjeonto the first two principal
components. a) all nodes (82291 in blue) and b) semioperd@&izzblue), closed (6554 in green),
transit (1293 in cyan), and expanded (262 in white) statesdaul different colors. All nodes were
classified by the RMSDs<{ 2.2 A) to the four individual macrostates.
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Figure S4: The first 100ps parts of the internal correlatimmctions of N-H vectors of residues
related to the floppy region, calculated from theusetwork MSM trajectory.
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Figure S5: Same as Fig. S4 but on a much longer time (250ns).
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Figure S6: Comparison between the equilibriﬁﬁg (Ci (0)) calculated from the 1@xs network
MSM trajectory with that from 20< 20 ns MD trajectories.
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Figure S7. Comparison between % (C (t = 100ps)) calculated from the 1f@is network MSM
trajectory with that experimentally derivea.
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Figure S8: SE,Z (Ci (e0)) for four different macrostates (semiopen, closed, ttaasid expanded) of
HIV-1 PR, calculated from the 1s network MSM trajectoryS%2 is calculated using the equi-
librium average of all snapshots belonging to the individiates. The total number of snapshots
is 3123612. The legends in the figure also show the statigagzulations (0.638, 0.224, 0.012,

0.001) of four different states respectively. There areep8iates not belonging to any four states
with a total population of 0.14 roughly.
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