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1 Kinetic Network Model and Stochastic Simulation

1.1 Molecular Dynamics Simulation

Twenty MD simulations of HIV-1 PR dimer each lasting 20 ns were performed using the molecular

simulation package IMPACT,1 the OPLS-AA force field (2005),2 and the AGBNP implicit solvent

model.3,4 All simulations started at the same temperature of 285K, thesame initial conformation

from the crystal structure (PDB: 1HHP) but different seeds of random numbers for the velocities.

More details about the parameter settings and simulations can be found in our previous work.5

The equilibration stage of all simulations lasted 450 ps with a time step of 1.5 fs and gradually

releasing of distance restraints. The subsequent 20× 20 ns production runs were obtained with

the time step of 1.0 fs. For each production simulation, the conformational snapshots were saved

every 1 ps and 20×20000= 400000 snapshots were stored in total.

1.2 Building the Markov State Kinetic Network Model

To build the network, we chose 200,000 snapshots (every 2 ps from all 20× 20 ns trajectories) and

calculated the C-α RMSD matrix of the two flaps (residue 43 to 58, and 142 to 157) between each

pair of snapshots which requires storage of 4×1010 matrix elements. The snapshots were clustered

into 82,291 conformational nodes using an RMSD criteria of 0.5 Å. Namely two snapshots are

grouped into the same node if their RMSD is smaller than 0.5Å. Then a network of conformational

nodes was created by connecting all pairs of clustered nodeswhich have the node RMSDs< 1.2

Å.

In the kinetic network model the time evolution of probability P(t) for each network node

obeys the master equation6,7

dPi(t)
dt

= ∑
j

ki jPj(t)−∑
j

k jiPi(t) (1)
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whereki j is the rate constant for transition from statej to statei defined by

ki j = Ci j(
Pi,eq

Pj,eq
)1/2. (2)

Theki j satisfy detailed balanceki jPj,eq = k jiPi,eq, andCi j = C ji. The rateki j can be expressed in

terms of the branching probabilityPj→i and the mean lifetime at nodej, Tj,

ki j =
Pj→i

Tj
. (3)

Eq. 3 suggests a way to parametrizeki j based on the lifetimes estimated from many short

MD trajectories. The branching probabilityPj→i depends approximately on the RMSD between

neighboring nodesi and j, ∆ri j. From running many short MD trajectories, we found that8 on

average the probability of jumping to a neighboring node at∆ri j can be fitted withPj→i ∝
∆r−6

i j

<∆r−6
i j > j

.

Additionally,Pj→i decreases approximately linearly with the number of neighboring nodes of node

j, i.e. Pj→i ∝ 1
NNb

j
. Taking these considerations together, we have

Pj→i ∝
∆r−6

i j

NNb
j

. (4)

Hence theki j is approximated by

ki j = Ci j(
Pi,eq

Pj,eq
)1/2 =

∆r−6
i j

< ∆r−6
i j >

1

NNb
j

1
Tj,MD

(
Pi,eq

Pj,eq
)1/2. (5)

SinceCi j =C ji, to enforce the detailed balance, we symmetrize theCi j asCi j =C ji ≈
1
2(

∆r−6
i j

<∆r−6
i j > jNNb

j Tj,MD
+

∆r−6
ji

<∆r−6
ji >iNNb

i Ti,MD
). Finally we obtain

ki j ≈
∆r−6

i j

2
(

1

< ∆r−6
i j > j NNb

j Tj,MD
+

1

< ∆r−6
ji >i NNb

i Ti,MD
)(

Pi,eq

Pj,eq
)1/2. (6)
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The node lifetimeTi,MD can be estimated by performing short MD simulations starting each node.8

In this paper, we built a very high resolution network and found Ti,MD for several representative

nodes located in different macrostates are similar, with< (Ti,MD + Tj,MD)/2 >= 4.8 ps with a

variance of 0.5 ps, which reproduces the average short time behavior of the motion in the MD

simulation.

1.3 Stochastic Simulations on the Network

Stochastic simulations on the kinetic network were implemented using the Gillespie algorithm9–11

as described previously.5,12,13 Briefly, the simulation starts from a node selected randomlyand

jumps to neighboring nodes for some waiting time. The waiting time at a given nodei is an

exponential random variable whose mean equals the inverse of the sum of the exiting rates from

that node to neighboring nodes. The probability that the system subsequently lands on a connected

node j is proportional to the microscopic rate from nodei to j. Such random walks on the network

satisfy the master equation 1.

To our best knowledge, this is the first time to calculate rotational correlation functions from a

kinetic network trajectory. In the KMC trajectory, the snapshot representing a node and the waiting

time on this node were saved once a transition to a new node occurs. Because the transition time

from node to node is a random variable according to the Gilliespie algorithm, the snapshots are not

evenly distributed on a time series from our network simulation. (There are a total of 3,123,612

snapshots in our 10 microseconds trajectory.) Instead, to compute the correlation functions, we

need to use a bin width with a constant time interval (5ps) to remap the time series, namely we

assigned the saved snapshots to each bin with the closest time to that from the Gilliespie simulation.
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2 NMR Relaxation Theory

2.1 General Theory

The rotational time correlation function of a nuclear spin-spin vector is defined as

C(l)
m (t) =< D(l)

m0(Ω
t
LF)D(l)∗

m0 (Ω0
LF) >=

4π
2l +1

< Y (l)∗
m (Ωt

LF)Y (l)
m (Ω0

LF) >, (7)

whereY (l)
m is the spherical harmonics function, andD(l)

mn is the Wigner rotation D-matrix element.

Ωt
LF = (α(t),β (t),γ(t)) are Euler angles specifying the time-dependent orientation of the unit vec-

tor connecting the two nuclei in the laboratory coordinate system. The brackets< · · · > represent

the ensemble average over the initial and final states at time0 andt.

When the system tumbles in an isotropic solution, the correlation function does not depend on

the indexm and can be rewritten as

C(l)(t)=
1
5

m=l

∑
m=−l

C(l)
m (t)=

1
5
·

4π
2l +1

m=l

∑
m=−l

< Y (l)∗
m (Ωt

LF)Y (l)
m (Ω0

LF) > =
1
5

< P(l)(~n(t) ·~n(0))>, (8)

whereP(l) is the Legendre polynomials of orderl.~n(t) and~n(0) represent the spin-spin unit vector

at time 0 andt. To describe the relaxation in nuclear magnetic resonance,l = 2 is sufficient.

Interpretation of NMR relaxations usually requires simplified structure models, from the early

single rigid rotor,14 to the anisotropic rotor plus internal motions,15–17 to the model-free approach

including the overall rotation part and the fast internal motion represented by a generalized order

parameter and an exponential decay with a characteristic time,18–20and to the more recent confor-

mational exchange model between states with different overall rotation diffusion tensors.21 Those

simplifications vary from model to model and largely depend on the problem being studied, but

they are based on a common fact thatΩt
LF , the time-dependent orientation of a spin-spin vector in

the laboratory coordinates frame can be decomposed into an overall rotationΩt
LP in the principal

frame, a series of Euler angles (ΩP1, Ω12, Ω23, · · · , Ωii+1, · · · , andΩN−1N) in the N successive

internal rotation frames, andΩt
NF describing the relative motions of spin vector in the N frame.
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Correspondingly, the Wigner D-matrix can be described by

D(2)
q0 (ΩLF) =

2

∑
a=−2

2

∑
b1=−2

2

∑
b2=−2

· · ·
2

∑
bi=−2

· · ·
2

∑
bN=−2

D(2)
qa (ΩLP)D(2)

ab1
(ΩP1)D

(2)
b1b2

(Ω12) · · ·D
(2)
bi−1bi

(Ωi−1i) · · ·D
(2)
bN−1bN

(ΩN−1N)D(2)
bN0(ΩNF). (9)

For many cases, the overall rotational motions are assumed to be independent of the internal

motions and they can be separated. Furthermore, a common approximation is that there are also

no correlations among any internal motions. Hence the correlation function of Eq. 7 is simplified

as22 as

C(2)
q (t) = < D(2)

q0 (Ωt
LF)D(2)∗

q0 (Ω0
LF) >

=
2

∑
a=−2

2

∑
a′=−2

< D(2)
qa (Ωt

LP)D(2)∗
qa′ (Ω0

LP) >
2

∑
b1=−2

2

∑
b′1=−2

< D(2)
ab1

(Ωt
P1)D

(2)∗
a′b′1

(Ω0
P1) >

2

∑
b2=−2

2

∑
b′2=−2

< D(2)
b1b2

(Ωt
12)D

(2)∗
b′1b′2

(Ω0
12) > · · ·

2

∑
bi=−2

2

∑
b′i=−2

< D(2)
bi−1bi

(Ωt
i−1i)D

(2)∗
b′i−1b′i

(Ω0
i−1i) > · · ·

2

∑
bN=−2

2

∑
b′N=−2

< D(2)
bN−1bN

(Ωt
N−1N)D(2)∗

b′N−1b′N
(Ω0

N−1N) >< D(2)
bN0(Ω

t
NF)D(2)∗

b′N0(Ω0
NF) > . (10)

2.2 Model-Free Approach

The model-free approach18,19assumes that the reorientational time correlation function of a spin-

spin vector can be separated into a slow overall rotation part and a fast internal one that is inde-

pendent of the former. The overall rotation part generally describes the rotational motions of a

rigid rotor using the principal coordinate frame of the molecule or the diffusion tensor. The inter-

nal part depicts the relative motions of a spin-spin vector in the local coordinate frame specified

for each spin-spin vector and is described by a generalized order parameterS2 and an exponential

decay with a constant ofτe . The transformation from the principal coordinate frame tothe local

coordinate frame is assumed to be independent of time. Hence, Ωt
LF in Eq. 7 are decomposed into

three rotational transformations:Ωt
LP describes the motion of the principal frame in the laboratory
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frame,ΩPD represents the time-independent orientation of local coordinate frame in the principal

frame, andΩt
DF describes the orientation of the spin-spin vector in the local coordinate frame. Due

to these assumptions, the model-free approach is valid whenthe overall rotations are much slower

than the internal motions (τM ≫ τe), and there are no large conformation changes modifying the

global shape of the molecule and the diffusion tensor.

For the model-free approach, the correlation function Eq. 7is reduced to

C(2)
q (t) = < D(2)

q0 (Ωt
LF)D(2)∗

q0 (Ω0
LF) >

=<
2

∑
m=−2

2

∑
n=−2

D(2)
qm(Ωt

LP)D(2)∗
qn (Ω0

LP) >

2

∑
k=−2

2

∑
l=−2

D(2)
mk (ΩPD)D(2)∗

nl (ΩPD) < D(2)
k0 (Ωt

DF)D(2)∗
l0 (Ω0

DF) >, (11)

where< D(2)
k0 (Ωt

DF)D(2)∗
l0 (Ω0

DF) > describes the internal motions of a spin vector in the local co-

ordinate frame. For the model-free approach there is no dependence onk or l 6= 0 and the internal

motion reduces to:

CI(t) =< D(2)
00 (Ωt

DF)D(2)∗
00 (Ω0

DF) >= S2+(1−S2)e−t/τe. (12)

S2 is called the square of the generalized parameterS and can be calculated by

S2 = CI(∞) =< D(2)
00 (Ω∞

DF)D(2)∗
00 (Ω0

DF) >

= < D(2)
00 (Ω0

DF) >< D(2)∗
00 (Ω0

DF) >=< P(2)(cosθ) >< P(2)∗(cosθ) >, (13)

S = < D(2)
00 (Ω0

DF) >=< P(2)(cosθ) >,

whereθ is the angle between the spin-spin vector and the Z axis of thelocal coordinates frame if

the internal motion is azimuthally symmetric.18
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The total correlation function in an isotropic solution will become

C(2)(t) =
1
5

q=2

∑
q=−2

C(2)
q (t) = CO(t)CI(t), (14)

CO(t) =
1
5

q=2

∑
q=−2

2

∑
m=−2

2

∑
n=−2

< D(2)
qm(Ωt

LP)D(2)∗
qn (Ω0

LP) > D(2)
m0(ΩPD)D(2)∗

n0 (ΩPD). (15)

The overall rotation functionCO(t) depends on the global shape of molecule and can be evaluated

by finding the Green’s function (conditional probability) from the free-diffusion equation for a

rigid-body rotor14–17,23

∂
∂ t

P(ΩLP, t) = −
3

∑
i, j=1

LiDi jL jP(ΩLP, t), (16)

whereLi represents the angular momentum operator about theith axis andDi j denotes thei jth

component of the second-order rotational diffusion tensorfor the molecule. Subjected to the

symmetry of the molecule, the solution of Eq. 16 and the correlation functionCO(t) have been

discussed in several places.15,23

The model-free approach assumes that the internal motions are well represented by one corre-

lation time and has been applied to account for relaxation data on many small proteins and simple

polymers with less flexibility. For many complex biomolecules, the time evolution of the internal

correlation function will be multi-exponential or highly nonexponential with slow components.

The extended model-free approach24 introduced two distinct correlation times to describe the in-

ternal motions.

CI(t) = S2+A f e−t/τ f +Ase
−t/τs = S2+(1−S2

f )e
−t/τ f +(S2

f −S2)e−t/τs , (17)

whereS2+A f +As = 1. τ f andτs describe the fast and slow decay components respectively. When

τs andτ f differ by at least 1 order of magnitude,CI(t) reaches an intermediate plateau value of

1−A f = S2
f , besidesCI(∞) = S2.
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2.3 Conformational Exchange between Two Macrostates

The model-free approach18,19 is quite successful for applications to molecules with well-defined

mostly rigid structures and fast local motions. However, for many cases, such as HIV-1 Protease,

the dynamics often involves slower conformational changesincluding loop motions and domain

reorientations. For example, there exist two well-defined macrostates with substantial populations

for HIV-1 protease: the semiopen and the closed states. Herewe derive the analytical forms for

the correlation functions and the effective order parameter S2 and the relaxation timeτe for the two

macrostates with independent internal motions specified byS2
A, S2

B, τeA, andτeB but sharing the

same diffusion tensor as shown in Fig. SS1.

x

y

x

y
z

y

z

Laboratory frame

Principal frame

State B

Local framex

y

z
z State A

x

θΑΒ

B0

Figure S1: Two-macrostate conformational exchange model.The macromolecule has two distinct
conformational states A and B which share the same principalcoordinate frame (diffusion tensor).

If conformational exchange is much slower than overall rotations and internal motions, (τEX ≫

τM ≫ τe), the cross terms between two different states are very small and can be neglected when

evaluating the correlation function using conditional probability. Hence the total correlation func-

tion in Eq. 7 is reduced to

CT (t) = CO(t)CI(t) = PACA(t)+PBCB(t). (18)
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When the two states share the same diffusion tensor it is easyto show that

CI(t) = PACIA(t)+PBCIB(t) = PA[S2
A +(1−S2

A)e−t/τeA ]+PB[S2
B +(1−S2

B)e−t/τeB ]

CI(t) = S2
T +PA(1−S2

A)e−t/τeA +PB(1−S2
B)e−t/τeB (19)

S2
T = CI(∞) = PAS2

A +PBS2
B. (20)

For the alternative case as shown in Fig.S1, namely the overall rotation is much slower than

conformation exchange and internal motions of both states (τM ≫ τEX ≫ τe), the correlation func-

tion Eq. 7 can be written as

C(2)
q (t) = < D(2)

q0 (Ωt
LF)D(2)∗

q0 (Ω0
LF) >

=
2

∑
m=−2

2

∑
n=−2

< D(2)
qm(Ωt

LP)D(2)∗
qn (Ω0

LP) >< D(2)
m0(Ω

t
PF)D(2)∗

n0 (Ω0
PF) > (21)

=
2

∑
m=−2

2

∑
n=−2

C(2)LP
qmqn (t)C(2)PF

m0n0 (t), (22)

WhereC(2)LP
qmqn (t) =< D(2)

qm(Ωt
LP)D(2)∗

qn (Ω0
LP) > describes the overall rotation part andC(2)PF

m0n0 (t) =<

D(2)
m0(Ω

t
PF)D(2)∗

n0 (Ω0
PF) > corresponds to the internal motion part for conformationalexchange be-

tween and local internal motions within the macrostates. Since the local internal motions are very

fast and they can be assumed to only depend on conformation states within each macrostate, the

internal part of Eq. 22 can be described as

C(2)PF
m0n0 (t) = < D(2)

m0(Ω
t
PF)D(2)∗

n0 (Ω0
PF) >

=< ∑
Ωt

PF=ΩA
PF ,ΩB

PF

∑
Ω0

PF=ΩA
PF ,ΩB

PF

D(2)
m0(Ω

t
PF)D(2)∗

n0 (Ω0
PF)P(Ωt

PF, t|Ω0
PF,0)Peq(Ω0

PF) >Local

=< ∑
β=A,B

∑
α=A,B

D(2)
m0(β , t)D(2)∗

n0 (α,0)P(β , t|α,0)Peq(α) >Local , (23)

where< · · · >Local represents the ensemble average in the local coordinates frame for each state.
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The conditional probability in Eq. 23 can be solved from the master equations as below,

dP(A, t|A,0)

dt
= −

1
τAB

P(A, t|A,0)+
1

τBA
P(B, t|A,0)

dP(B, t|B,0)

dt
= +

1
τAB

P(A, t|B,0)−
1

τBA
P(B, t|B,0) (24)

with the initial conditions att → 0 and normalized conditions at anyt.

P(A, t|A,0)|t→0 = 1, P(A, t|A,0)+P(B, t|A,0)= 1

P(B, t|B,0)|t→0 = 1, P(A, t|B,0)+P(B, t|B,0)= 1 (25)

The solutions are:

P(A, t|A,0) =
τAB

τBA + τAB
+

τBA

τBA + τAB
e−t/τEX = PA +PBe−t/τEX

P(B, t|A,0) =
τBA

τBA + τAB
(1− e−t/τEX ) = PB(1− e−t/τEX )

P(A, t|B,0) =
τAB

τBA + τAB
(1− e−t/τEX ) = PA(1− e−t/τEX )

P(B, t|B,0) =
τBA

τBA + τAB
+

τAB

τBA + τAB
e−t/τEX = PB +PAe−t/τEX (26)

where

PA = Peq(A) = P(A, t|A,0)|t→∞ = P(A, t|B,0)|t→∞ =
τAB

τBA + τAB

PB = Peq(B) = P(B, t|A,0)|t→∞ = P(B, t|B,0)|t→∞ =
τBA

τBA + τAB
1

τEX
= kAB + kBA =

1
τAB

+
1

τBA
(27)
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Substituting the solutions of Eq. 26 to 27 into the correlation function Eq. 23 we obtain that

C(2)PF
m0n0 (t) = < D(2)

m0(Ω
t
PF)D(2)∗

n0 (Ω0
PF) >

=< D(2)
m0(A, t)D(2)∗

n0 (A,0)P(A, t|A,0)PA+D(2)
m0(A, t)D(2)∗

n0 (B,0)P(A, t|B,0)PB

+D(2)
m0(B, t)D(2)∗

n0 (A,0)P(B, t|A,0)PA +D(2)
m0(B, t)D(2)∗

n0 (B,0)P(B, t|B,0)PB >Local

=< D(2)
m0(A, t)D(2)∗

n0 (A,0)(PA +PBe−t/τEX )PA +D(2)
m0(A, t)D(2)∗

n0 (B,0)PA(1− e−t/τEX )PB

+D(2)
m0(B, t)D(2)∗

n0 (A,0)PB(1− e−t/τEX )PA +D(2)
m0(B, t)D(2)∗

n0 (B,0)(PB +PAe−t/τEX )PB >Local

= S2
m0n0 +[Fm0n0−S2

m0n0]e
−t/τEX , (28)

where

S2
m0n0 = < [PAD(2)

m0(A, t)+PBD(2)
m0(B, t)][PAD(2)∗

n0 (A,0)+PBD(2)∗
n0 (B,0)] >Local , (29)

Fm0n0 = < PAD(2)
m0(A, t)D(2)∗

n0 (A,0)+PBD(2)
m0(B, t)D(2)∗

n0 (B,0) >Local . (30)

For the model-free approach, there is nom or n dependence andm = 0 andn = 0. The internal

correlation function can be written:

CI(t) = C(2)PF
0000 (t) = S2

0000+(F0000−S2
0000)e

−t/τEX , (31)

where

S2
0000=

=< [PAD(2)
00 (A, t)+PBD(2)

00 (B, t)][PAD(2)∗
00 (A,0)+PBD(2)∗

00 (B,0)] >Local

= P2
A < D(2)

00 (A, t)D(2)∗
00 (A,0) >Local +PAPB < D(2)

00 (A, t)D(2)∗
00 (B,0) >Local

+PBPA < D(2)
00 (B, t)D(2)∗

00 (A,0) >Local +P2
B < D(2)

00 (B, t)D(2)∗
00 (B,0) >Local . (32)
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From the model-free approach in the last section, we have

< D(2)
00 (A, t)D(2)∗

00 (A,0) >Local= S2
A +(1−S2

A)e−t/τeA ,

< D(2)
00 (B, t)D(2)∗

00 (B,0) >Local= S2
B +(1−S2

B)e−t/τeB . (33)

To evaluate the cross terms< D(2)
00 (A, t)D(2)∗

00 (B,0) >Local and< D(2)
00 (B, t)D(2)∗

00 (A,0) >Local , we

need to decompose theΩt
PF of each state into two components: one is the time-independent term

Ω0
PF describing the equilibrium position, and the other is the time-dependent termΩ∆t

PF represent-

ing the deviation from the equilibrium position. From the properties of the Wigner D-matrix, we

have

< D(2)
00 (A, t)D(2)∗

00 (B,0) >Local=

=< D(2)
00 (Ω(A0, t))D

(2)
00 (Ω(∆A, t))D(2)∗

00 (Ω(B0,0))D(2)∗
00 (Ω(∆B,0)) >Local

=< D(2)
00 (Ω(∆A, t))D(2)∗

00 (Ω(∆B,0)) >Local D(2)
00 (Ω(A0))D

(2)∗
00 (Ω(B0))

=< D(2)
00 (Ω(∆A, t)) >Local< D(2)∗

00 (Ω(∆B,0)) >Local P(2)(cosθAB)

= SASBP(2)(cosθAB). (34)

Similarly we also have< D(2)
00 (B)D(2)∗

00 (A) >Local= SBSAP(2)(cosθAB).

Finally we have

S2
0000(t) = P2

A(S2
A +(1−S2

A)e−t/τeA)+P2
B(S2

B +(1−S2
B)e−t/τeB)+2PASAPBSBP(2)(cosθAB)

= P2
AS2

A +2PASAPBSBP(2)(cosθAB)+P2
BS2

B +P2
A(1−S2

A)e−t/τeA +P2
B(1−S2

B)e−t/τeB (35)
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and

F0000(t) = < PAD(2)
00 (A, t)D(2)∗

00 (A,0)+PBD(2)
00 (B, t)D(2)∗

00 (B,0) >Local

= PA(S2
A +(1−S2

A)e−t/τeA)+PB(S2
B +(1−S2

B)e−t/τeB)

= PAS2
A +PBS2

B +PA(1−S2
A)e−t/τeA +PB(1−S2

B)e−t/τeB (36)

and

CI(t) = S2
0000(t)+(F0000(t)−S2

0000(t))e
−t/τEX . (37)

Comparing thet with τeA, τeB and τEX (>τeB(τeA)), the internal correlation function Eq. 37

becomes

CI(t) = F0000(t) t ≪ τEX (38)

CI(t) = S2
0000(t) t ≫ τEX (39)

and converges to three important values at different time scales as shown in Fig. SS2

CI(0) = F0000(0) = PA +PB = 1 t → 0 (40)

S2
P1 = CI(t) = F0000(t) = PAS2

A +PBS2
B τeB(τeA) ≪ t ≪ τEX (41)

S2
P2 = CI(∞) = S2

0000(∞) = P2
AS2

A +2PASAPBSBP(2)(cosθAB)+P2
BS2

B t → ∞ (42)

If the local motions of both states are much faster than the exchange rate between macrostates

andτeB(τeA) → 0, the effective internal correlation function is

CI(t) = S2
P2+(S2

P1−S2
P2)e

−t/τEX , (43)

τEX =
1

kAB + kBA
.
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Figure S2: Schematic graph for a rotational correlation function of internal motions predicted by
the two-macrostate conformational exchange model with fast internal motions.The exchange time
scaleτEX is much faster than the overall tumbling timeτM but slower than the time scale of local
motionsτe. For the slow exchange case (τEX ≫ τM), S2

P2 is averaged out by the overall tumbling
and not observable.

Furthermore, ifS2
A = S2

B = 1 the effective internal function can be simplified further to

CI(t) = S2
T +(1−S2

T )e−t/τEX , (44)

S2
T = P2

A +2PAPBP(2)(cosθAB)+P2
B .

This is consistent with the recent derivation for the exchange of two rigid rotors (no internal mo-

tions) with the same diffusion tensor.21

WhenθAB = 0, namely the z directions for both states are parallel to each other,S2
P2 = (PASA +

PBSB)2.

In summary, we obtained the total internal correlation functions for two limiting cases:

1. Slow exchange limit (τeA(τeB) ≪ τM ≪ τEX ) when the decay of overall rotation is much

quicker than the rate of exchange between the two macrostates. The total internal correlation

function is simply a population average of two states as shown in Eq. 19 or 38. There is

only one plateau value which is also the ensemble-averaged value of the generalized order
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parameters of the two states given by Eq. 20 or 41.

2. Fast exchange limit (τeA(τeB) ≪ τEX ≪ τM) when the decay of overall rotation is much

slower than the rate of exchange between the two states. The total internal correlation func-

tion involves the exchange term as displayed in Eq. 37. Thereare two plateau values, an

ensemble averaged plateau value at short time by Eq. 41 (the same as slow exchange case)

and a long-time combination as in Eq. 42 including a cross term of a second-order Legendre

polynomial.

Assuming that the rotational diffusion tensor for overall motions is a symmetric top (Dx = Dy),

we can multiply the overall rotation correlation function by the internal part and obtain the total

function as below:

Slow exchange: CT (t) =
1
5
{Ae−t/τ1 +Be−t/τ2 +Ce−t/τ3}(PACIA(t)+PBCIB(t)) (45)

CT (t) = CT (t|θ ,τ1,τ2,τ3,PA,PB,S2
A,S2

B,τeA,τeB)

Fast exchange:CT (t) =
1
5
{Ae−t/τ1 +Be−t/τ2 +Ce−t/τ3}(S2

0000(t)+(F0000(t)−S2
0000(t))e

−t/τEX)

(46)

CT (t) = CT (t|θ ,τ1,τ2,τ3,τEX ,PA,PB,S2
A,S2

B,θAB,τeA,τeB)

3 Supporting Data
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Figure S3: Potential of mean force and clustered nodes projected onto the first two principal
components. a) all nodes (82291 in blue) and b) semiopen (52204 in blue), closed (6554 in green),
transit (1293 in cyan), and expanded (262 in white) state nodes in different colors. All nodes were
classified by the RMSDs (< 2.2 Å) to the four individual macrostates.
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Figure S4: The first 100ps parts of the internal correlation functions of N-H vectors of residues
related to the floppy region, calculated from the 10µs network MSM trajectory.
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Figure S5: Same as Fig. S4 but on a much longer time (250ns).
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Figure S6: Comparison between the equilibriumS2
P2 (CI(∞)) calculated from the 10µs network

MSM trajectory with that from 20× 20 ns MD trajectories.
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Figure S7: Comparison between theS2
P1 (CI(t = 100ps)) calculated from the 10µs network MSM

trajectory with that experimentally derived.25
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Figure S8: S2
P2 (CI(∞)) for four different macrostates (semiopen, closed, transit, and expanded) of

HIV-1 PR, calculated from the 10µs network MSM trajectory.S2
P2 is calculated using the equi-

librium average of all snapshots belonging to the individual states. The total number of snapshots
is 3123612. The legends in the figure also show the statistical populations (0.638, 0.224, 0.012,
0.001) of four different states respectively. There are other states not belonging to any four states
with a total population of 0.14 roughly.
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