
 
Web Material 

Web Appendix 1:  Literature identification 

We sought prospective studies of women with CT including observational studies with or 

without a control group, and RCTs of screening interventions. We identified studies from 

recent review papers (1-4), reference searches of published economic and population 

transmission models (5-15) and as part of a wider review of the literature on the natural 

history of CT. Included among these was a recent systematic review instituted at an Expert 

Advisory Meeting of the Centers for Disease Control and Prevention (1). We exclude the 

study by Bachmann et al (16) because the follow-up time was not reported, the study by 

Stamm et al (17) because the patients were co-infected with gonorrhoea, and the study by 

Westergaard et al (18) because the patients were women who had just undergone an abortion, 

and this is a very unrepresentative population. The study by Morre et al (19) is excluded 

because of uncertainty about the adequacy of outcome assessment (20). Finally, four of the 

studies shown in table 1 are excluded from the modelling because of a lack of a control group 

(21-24). 
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Web Appendix 2: Sensitivity analyses 

We performed 3 sets of sensitivity analysis 

 

First, the proportion of patients in the Scholes trial who were assumed to have been tested 

during the trial was lowered from 32% to 15%. This had no measurable effect on results of 

the final synthesis (results not shown). 

 

The effect on key model results of changing the infection and reinfection rates for both the 

one and two rate models is shown in Web Table 1. The results show clearly that in the full 

synthesis the assumed infection/re-infection rates have a minimal impact on the results 

altering the estimates of κ , the probability that an incident CT episode causes PID, by at 

most a multiplicative factor of 4%. 

 

In summary, we found that results from the full synthesis models were insensitive to these 

modelling assumptions.  
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Web Appendix 3. Development of functional relationships 

Note that the notation used in the paper is extended here to facilitate a full mathematical 

description of the non-homogenous model. 

1. Relationships between model parameters and data estimands. 

Note: in our analyses the values of Iλ , 'u ,  u , 
−CTθ  and hence any functions of them such as

( )ijp t  are all study dependent but the s  subscript has been dropped for ease of reading. 

 

Expression in a homogenous model: 

In a single rate model CTθ +  is constant over time and the data from women who are CT+ and 

the women who are CT- at baseline in study s  inform the transition probabilities ( )13p t  and 

( )23p t  respectively where t  is the mean follow-up time of the study. These transition 

probabilities are obtained by solving equation 2 numerically in each iteration of the MCMC 

simulation using the Runge-kutta method in WBDiff. 

 

Expression in a two step piecewise homogenous model: 

We use a 1 day discrete time approximation to the underlying continuous process to simplify 

the calculations. It is necessary to extend the notation used in the paper. Let ,i hπ  be the state 

occupancy proportion for state i  in day h  of the study. The proportion in state 1 i = is further 

subdivided into the proportion ,
hi
i hπ  who are subject to developing PID caused by CT at rate 

1  δ , and the proportion ,
low
i hπ  who develop PID caused by CT at rate 2  δ where:  
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1, 1, 1,
low hi

h h hπ π π= +  

Finally hi
ijp and low

ijp  are the daily transition probabilities from state i  to state j , for women 

who are subject to developing PID caused by CT at rates 1  δ and 2  δ respectively. hi
ijp and 

low
ijp are calculated using equation 2, and solved using WBDiff,  with the appropriate 

expression for CT
sθ

+ substituted into equation 1. The observed data inform the proportions 

3,Hπ  calculated for each arm where H  is equal to the follow-up period of the study in days. 

So 3,Hπ is the proportion of patients in state 3 at the end of the study which is the parameter 

in the Binomial likelihood. Equations for the state occupancy proportions on day h  of the 

study can be written as follows: 

1, 1, 1 11 1, 1 11 2, 1 21

2, 2, 1 22 1, 1 12 1, 1 12

3, 2, 1,

. . .

. . .
1

low low hi hi hi
h h h h

hi low low hi hi
h h h h

h h h

p p p

p p p

π π π π

π π π π

π π π

− − −

− − −

= + +

= + +

= − −
 

Where 1,0 1,0 1,0 2,0 1,0 3,0,   1 ,   0low hiπ π π π π π= + = − = . It just remains to specify equations 

for 1,
hi

hπ  and 1,
low

hπ , which depend on whether the study is clinic or screening based. To speed 

up the processing time the code is written in WBDev (27), an add-on package for WinBUGS 

that can be used to specify new functions using component Pascal.  

 

Clinic based studies: 
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}

( ) ( )

( )
}

1, 1,

1, 2, 1 21 11
1

1, 1, 2,

                                         1,...,

.          1,...,
h i

hi
h h

h
hi hi hi

h i
i h B

low hi
h h h

h B

p p h B H

π π

π π

π π π

−

−
= + −

= =

= = +

= −

∑
 

Recall from the main text that B is the number of days for which patients are subject to the 

rate 1  δ of PID caused by CT after entering state 1 if they don’t leave during this period. So in 

clinic based studies all women in state 1 during the first B days are subject to the rate 1  δ . 

The second equation shows the proportion of women who are in state 1 and progress at rate 

1  δ for each day h in the study after B days have elapsed. The equation sums over all patients 

who have moved to state 1 in the last B days multiplied by the probability they have 

remained there until day h. In the case arm 1,0 1hiπ =  and, 1,0
lowπ  and 2,0π  equal 0. In the control 

arm 1,0
hiπ  and 1,0

lowπ equal 0, and 2,0π equals 1. 

 

Screening based studies 

In screened populations women who are CT+ have already been infected for a period of time 

before recruitment. We assume that a proportion, φ , of incident CT cases are symptomatic 

and treated, clearing at rate Tλ , and the remaining infections, 1-φ , are asymptomatic and 

clear at rate Cλ . The probability bw  that a recruited patient was recruited exactly b days after 

infection is: 

( ) ( ) ( )1 1
. exp . exp . 1 . exp . exp .

365 365 365 365
T T C C

b

b bb bω ϕ λ λ ϕ λ λ
   − −      = − − − + − − − −                     
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The proportions in the high and low rate groups are: 

( ) ( ) }

( ) ( )

( )
}

1, 1 1,0 11 2, 1 21 11
1

1, 2, 1 21 11
1

1, 1, 2,

. . .   1,...,               (A.1)

.                           1,...,        (A.2)

h i

h i

B h
hi h hi hi

h B i i
i h i

h
hi hi hi

h i
i h B

low hi
h h h

p p p h B

p p h B H

π ω π π

π π

π π π

−

−

+ − −
= =

−
= + −

= + =

= = +

= −

∑ ∑

∑

 

Equation A.1 calculates the proportion of women who are in state 1 and subject to the first 

causal progression rate 1  δ on each day h of the study from 1 to B. The first term is the 

proportion of women who began the study as CT positive and were infected within 60 days of 

day h multiplied by the probability they have remained in state 1 until day h. This term is not 

included in A.2 because after B days all of the remaining patients move to the 2  δ rate. The 

second term sums over all patients who have moved to state 1 by day h multiplied by the 

probability they have remained there until day h. Equation A.2 is the same as for clinic based 

studies. In the CT positive group 1,0
1

B
hi

b
b

π ω
=

=∑ , 1,0 1,01low hiπ π= − , and 2,0π  equals 0. In the CT 

negative group 1,0
hiπ  and 1,0

lowπ equal 0, and 2,0π equals 1. 

 

2. Proportion of CT related PID that is prevented by screening 

We consider an annual screening programme, in which women are screened at exactly 365-

day intervals. We derive an expression for the proportion of episodes of PID prevented by 

annual screening in women who become infected with CT. We assume that treatment is 

administered 14 days after testing (the results are fairly insensitive to different reasonable 

assumptions about this time period). Women are screened within a year of infection with 
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each day having an equal probability (1/365) of this occurring. The expression differs 

between the one and two rate models.  

One rate model 

The probability that an episode of PID is caused by a CT episode exactly b  days after 

infection is: 

( )( )( ) ( )
( )( )( )

( ) ( )( )( ) ( )
( )( )( )

0 0 1

0 0 1

. 1 exp . 1 exp( . .

        1 . 1 exp . 1 exp( . .

b b

b b

T T
b u u u u T

C C
u u u u C

t t

t t

δκ ϕ λ δ λ δ
λ δ

δϕ λ δ λ δ
λ δ

−

−

= − − + − − − + +
+

− − − + − − − +
+

 

 

Under the assumptions outlined above, the probability SCNκ a CT infection causes an episode 

of PID in a woman who is screened at random annually is: 

( ) ( )
14 379

' '
1 15

14
1                                         A.3

365
SCN

b b
b b

b
k κ κ

= =

− 
= + − 

 
∑ ∑  

And the proportion of PID episodes that are caused by CT, in women with CT, that are 

prevented by annual testing, χ , equals: 

1                                                                             (A.4)
SCNκχ
κ

= −  

Two rate model 

In a two rate model the probability that an episode of PID develops exactly b days after 

infection equals: 
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b B
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≤

>

 

Where B = 30, 60, 90 days the proportion of PID cases prevented by screening is calculated 

from equations A.3 and A.4 as before. 
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Web Appendix 4: Estimation 

A ‘burn-in’ period of 50 000 iterations was used for the MCMC simulation and the Brooks-

Gelman-Rubin statistic (28) demonstrated convergence of all parameters within a few 

thousand samples. The results reported in the paper are summary means and credible 

intervals of the marginal distributions from this joint posterior based on samples of 200 000.  
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Web Appendix 5: Computer code 
 
WinBUGS program for the 2-rate model. 
 
model { 
# chlamydia informative priors 
r.phi ~ dbin(phi,129) 
lambda.c ~ dnorm(0.743,193) 
dur.symp ~ dunif(0.077,0.15)  # 4 - 8 weeks 
lambda.t <- 1 / cut(dur.symp) 
 
# Prospective PID analysis constant progression rate 
# Likelihood 
for (s in 1:4) { 
 for (i in 1:2) { 
  r[s,i] ~ dbin(p[s,i],n[s,i]) 
  } 
 } 
# transistion probability calulations  
for (s in 1:4) { 
 for (i in 1:2) {   
  for(j in 1:3) {  
   theta[s,1,index[i,j]] <- lambda[s,1,i,j] 
   theta[s,2,index[i,j]] <- lambda[s,2,i,j] 
   } 
  }  
 lambda[s,1,1,1] <- - lambda[s,1,1,2] - lambda[s,1,1,3] 
 lambda[s,1,1,3] <- theta.CTpos1[s] 
 lambda[s,1,2,2] <- - lambda[s,1,2,1] - lambda[s,1,2,3]  
 lambda[s,1,2,3] <- theta.CTneg[s] 
 
 lambda[s,2,1,1] <- - lambda[s,2,1,2] - lambda[s,2,1,3] 
 lambda[s,2,1,3] <- theta.CTpos2[s] 
 lambda[s,2,2,2] <- - lambda[s,2,2,1] - lambda[s,2,2,3] 
 lambda[s,2,2,3] <- theta.CTneg[s] 
 } 
 
# Infection rate 
for (s in 1:2) { 
 lambda[s,1,2,1] <- 0.0 
 lambda[s,2,2,1] <- 0.0 
 } 
 
for (s in 3:4) { 
 lambda[s,1,2,1] <- 0.0 
 lambda[s,2,2,1] <- 0.0 
 } 
 
# Clearance + treatment rate 
lambda[1,1,1,2] <- lambda.c + 0.64 
lambda[1,2,1,2] <- lambda.c + 0.64 
 
lambda[2,1,1,2] <- lambda.c + 0.43 
lambda[2,2,1,2] <- lambda.c + 0.43  
 
lambda[3,1,1,2] <- lambda.c + 0.32  
lambda[3,2,1,2] <- lambda.c + 0.32 
 
lambda[4,1,1,2] <- lambda.c + 0.32 
lambda[4,2,1,2] <- lambda.c + 0.32  
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# Models for rates  
for (s in 1:4) { 
 theta.CTpos1[s] <- alpha[s] + delta[1] 
 theta.CTpos2[s] <- alpha[s] + delta[2] 
 theta.CTneg[s] <- alpha[s] 
 } 
 
# Other data 
r.sch ~ dbin(pi.sch,n.sch) # Scholes - ct prevalence 
r.ost ~ dbin(pi.ost,n.ost) # Ostergaard - ct prevalence 
 
# Priors 
delta[1] ~ dexp(0.00001)  
delta[2] ~ dexp(0.00001)  
for (s in 1:4) { 
 alpha[s] ~ dexp(0.00001) 
 } 
pi.sch ~ dbeta(1,1) 
pi.ost ~ dbeta(1,1) 
phi ~ dbeta(1,1) 
 
# Calculation of parameters in the likekihood 
for (s in 1:4) { 
 solution1d[s,1,1:dim] <- three.state(init[1:dim],time,theta[s,1,1:n.par], 
                  origin, tol) 
 solution1d[s,2,1:dim] <- three.state(init[1:dim],time,theta[s,2,1:n.par], 
        origin, tol) 
 for (i in 1:2) { 
  for (z in 1:6) { 
   vectorforwbdev[s,i,z] <- solution1d[s,1,z] 
   vectorforwbdev[s,i,z+6] <- solution1d[s,2,z]  
   } 
  vectorforwbdev[s,i,13] <- round(t[s] * 365) 
  vectorforwbdev[s,i,14] <- B 
  vectorforwbdev[s,i,15] <- lambda.c 
  vectorforwbdev[s,i,16] <- lambda.t 
  vectorforwbdev[s,i,17] <- phi 
  vectorforwbdev[s,i,18] <- clinorscreen[s] 
  vectorforwbdev[s,i,19] <- caseprop[s,i] 
 
  p[s,i] <- generatep(vectorforwbdev[s,i,1:19]) 
  } 
 caseprop[s,2] <- 0 
 } 
caseprop[1,1] <- 1   
caseprop[2,1] <- 1  
caseprop[3,1] <- pi.sch   
caseprop[4,1] <- pi.ost  
 
clinorscreen[1] <- 0 # clinic based study 
for (s in 2:4) { 
 clinorscreen[s] <- 1 # screening studies 
 } 
 
# Residual Deviance 
for (s in 1:4) { 
 for (i in 1:2) { 
  dev[s,i] <- 2 * (r[s,i] * log(r[s,i] / (p[s,i] * n[s,i])) + 
                  (n[s,i] - r[s,i]) * log((n[s,i] - r[s,i]) / 
                  (n[s,i] - (n[s,i] * p[s,i])))) 
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  } 
 } 
 
dev.sch <- 2 * (r.sch * log(r.sch / (pi.sch * n.sch)) +  
               (n.sch - r.sch) * log((n.sch - r.sch) / 
               (n.sch - (n.sch * pi.sch))))  
 
dev.ost <- 2 * (r.ost * log(r.ost / (pi.ost * n.ost)) +  
               (n.ost - r.ost) * log((n.ost - r.ost) / 
               (n.ost - (n.ost * pi.ost))))  
 
sumdev <- sum(dev[ , ]) + dev.sch + dev.ost 
 
 
# Results  
kappa  <- (1 - phi) * (  
          (1 - (exp( - (lambda.c + delta[1]) * (B / 365)))) * 
           delta[1] / (lambda.c + delta[1]) + 
           exp( - (lambda.c + delta[1]) * (B / 365)) * 
           delta[2] / (lambda.c + delta[2]) 
           ) + 
           phi * ( 
          (1 - (exp( - (lambda.t + delta[1]) * (B / 365)))) * 
           delta[1] / (lambda.t + delta[1]) + 
           exp( - (lambda.t + delta[1]) * (B / 365)) * 
           delta[2] / (lambda.t + delta[2]) 
           ) 
 
# proportion of PIDs prevented by annual screening  
# assumes two-week delay between test and treatment  
for (i in 1:B) { 
 temp1[i] <- phi * ( 
        ((1 - exp(-(lambda.t + delta[1]) * (i/365))) - 
         (1 - exp(-(lambda.t + delta[1]) * ((i-1)/365)))) * 
         (delta[1] / (lambda.t + delta[1])) * 
         (1 - (max(0,(i-14)) / 365))) + 
   (1 - phi) * ( 
   ((1 - exp(-(lambda.c + delta[1]) * (i/365))) - 
         (1 - exp(-(lambda.c + delta[1]) * ((i-1)/365)))) * 
         (delta[1] / (lambda.c + delta[1])) * 
         (1 - (max(0,(i-14)) / 365))) 
 } 
for (i in B+1:379) { 
 temp1[i] <- phi * ( 
        ((1 - exp(-(lambda.t + delta[2]) * (i/365))) - 
         (1 - exp(-(lambda.t + delta[2]) * ((i-1)/365)))) * 
         (delta[2] / (lambda.t + delta[2])) * 
         (1 - (max(0,(i-14)) / 365))) + 
   (1 - phi) * ( 
   ((1 - exp(-(lambda.c + delta[2]) * (i/365))) - 
         (1 - exp(-(lambda.c + delta[2]) * ((i-1)/365)))) * 
         (delta[2] / (lambda.c + delta[2])) * 
         (1 - (max(0,(i-14)) / 365))) 
 } 
prop.prevent <- 1 - (sum(temp1[ ]) / kappa) 
 
# Bayesian p-value  
test <- delta[1] - delta[2] 
B.p <- step(test) 
} 
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# Data 
list( 
# PID (1 month) prospective 
# 1. Rees 
# 2. POPI  
# 3. Scholes 
# 4. Ostergaard 
 
r=structure(.Data=c( 
8,3, 
7,1, 
33,7, 
20,9 
),.Dim=c(4,2)), 
 
n=structure(.Data=c( 
67,62, 
74,63, 
1598,645, 
487,443 
),.Dim=c(4,2)), 
t = c(0.125,1,1,1), 
B = 60,   # If this were set above 365 WBDEV code would need changing 
r.sch = 44, 
n.sch = 645, 
r.ost = 43, 
n.ost = 867, 
r.phi=30, 
time = 0.00274, 
 
# forward equations 
dim=6,origin=0,tol=1.0E-4, init=c(1,0,0, 0,1,0),n.par=6, 
index=structure(.Data=c(1,2,3, 
    4,5,6), .Dim=c(2,3)) 
) 
 
 
# Initial values - 1 
list( 
# Prospective 
phi = 0.23, lambda.c = 0.74, delta = c(0.2,0.1), 
alpha = c(0.01,0.01,0.01,0.01), 
pi.sch = 0.051, pi.ost = 0.07, dur.symp = 0.1 
) 
 
# Initial values - 2 
list( 
# Prospective 
phi = 0.7, lambda.c = 2, delta = c(0.1,0.6), 
alpha = c(0.15,0.15,0.15,0.15), 
pi.sch = 0.2, pi.ost = 0.2, dur.symp = 0.145 
) 

WBDiff Program to calculate the transition probabilities 

MODULE WBDiffThreeState; 
 
  IMPORT 
   WBDiffODEMath, 
   Math; 
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  TYPE 
   Equations = POINTER TO RECORD (WBDiffODEMath.Equations) END; 
   Factory = POINTER TO RECORD (WBDiffODEMath.Factory) END; 
   
  CONST 
 
   nEq = 6; 
   nSt = 4; (* one higher as arrays start at zero*) 
 
 
  VAR 
   fact-: WBDiffODEMath.Factory; 
   
 PROCEDURE (e: Equations) Derivatives (IN theta, C: ARRAY OF REAL; n: INTEGER; t: REAL; 
     OUT dCdt: ARRAY OF REAL); 
  VAR 
 
   index: ARRAY nSt, nSt OF INTEGER; 
 
  BEGIN 
 
(* define index of parameters (look-up table) *) 
  index[1,1] := 0; 
  index[1,2] := 1; 
  index[1,3] := 2; 
  index[2,1] := 3; 
  index[2,2] := 4; 
  index[2,3] := 5; 
 
(* define system of nEq Differential Equations *) 
  dCdt[index[1,1]]:= C[index[1,1]]*theta[index[1,1]] + C[index[1,2]]*theta[index[2,1]]; 
  dCdt[index[1,2]]:= C[index[1,1]]*theta[index[1,2]] + C[index[1,2]]*theta[index[2,2]]; 
  dCdt[index[1,3]]:= C[index[1,1]]*theta[index[1,3]] + C[index[1,2]]*theta[index[2,3]]; 
   
  dCdt[index[2,1]]:= C[index[2,1]]*theta[index[1,1]] + C[index[2,2]]*theta[index[2,1]]; 
  dCdt[index[2,2]]:= C[index[2,1]]*theta[index[1,2]] + C[index[2,2]]*theta[index[2,2]]; 
  dCdt[index[2,3]]:= C[index[2,1]]*theta[index[1,3]] + C[index[2,2]]*theta[index[2,3]]; 
   
   
  END Derivatives; 
   
  PROCEDURE (equations: Equations) SecondDerivatives (IN theta, x: ARRAY OF REAL; 
                                  numEq: INTEGER; t: REAL; OUT d2xdt2: ARRAY OF REAL); 
  BEGIN 
   HALT(126) 
  END SecondDerivatives; 
 
PROCEDURE (equations: Equations) Jacobian (IN theta, x: ARRAY OF REAL; 
  numEq: INTEGER; t: REAL; OUT jacob: ARRAY OF ARRAY OF REAL); 
  BEGIN 
   HALT(126) 
  END Jacobian; 
 
PROCEDURE (f: Factory) New (option: INTEGER): WBDiffODEMath.GraphNode; 
  VAR 
   equations: Equations; 
   node: WBDiffODEMath.GraphNode; 
  BEGIN 
   NEW(equations); 
   node := WBDiffODEMath.New(equations, nEq); 
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   RETURN node 
  END New; 
  
  PROCEDURE Install*; 
  BEGIN 
   WBDiffODEMath.Install(fact) 
  END Install; 
   
  PROCEDURE Init; 
  VAR 
   f: Factory; 
  BEGIN 
   NEW(f); fact := f 
  END Init; 
  
 BEGIN 
  Init 
 END WBDiffThreeState. 

 

WBDEV code to calcuate the Binomial likelihood probabilities of PID for the 2-rate model 

MODULE WBDevgeneratep; 
 
 IMPORT 
  WBDevScalar, 
  Math; 
    
 TYPE 
   Function = POINTER TO RECORD (WBDevScalar.Node) END; 
   Factory = POINTER TO RECORD (WBDevScalar.Factory) END; 
    
  VAR 
   fact-: WBDevScalar.Factory; 
    
 PROCEDURE (func: Function) DeclareArgTypes (OUT args: ARRAY OF CHAR); 
  BEGIN 
   args := "v"; 
  END DeclareArgTypes; 
 
 PROCEDURE calculation (func: Function; OUT output: REAL); 
  VAR 
   term1, term2, omega, omega_cum,pi_hi, pi_low:     ARRAY 366 OF REAL; 
   pi:        ARRAY 4,366+1 OF REAL;  
   p_hi, p_low:       ARRAY 3,4 OF REAL; 
   H,B,h,i,b:           INTEGER; 
   Hin, Bin, lambdaC, lambdaT, phi, clinicorscreen, caseprop: REAL; 
  BEGIN 
   (* Read in the parameter values *) 
   p_hi[1,1] := func.arguments[0][0].Value(); 
   p_hi[1,2] := func.arguments[0][1].Value();   
   p_hi[1,3] := func.arguments[0][2].Value();       
   p_hi[2,1] := func.arguments[0][3].Value(); 
   p_hi[2,2] := func.arguments[0][4].Value();   
   p_hi[2,3] := func.arguments[0][5].Value();   
   p_low[1,1] := func.arguments[0][6].Value(); 
   p_low[1,2] := func.arguments[0][7].Value();   
   p_low[1,3] := func.arguments[0][8].Value();       
   p_low[2,1] := func.arguments[0][9].Value(); 
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   p_low[2,2] := func.arguments[0][10].Value();   
   p_low[2,3] := func.arguments[0][11].Value();       
   
   Hin := func.arguments[0][12].Value(); 
   Bin := func.arguments[0][13].Value(); 
   lambdaC := func.arguments[0][14].Value(); 
   lambdaT := func.arguments[0][15].Value(); 
   phi := func.arguments[0][16].Value(); 
   clinicorscreen := func.arguments[0][17].Value(); 
   caseprop := func.arguments[0][18].Value(); 
  
   (* Converts H and B to integer format *) 
   FOR i:= 1 TO 5000 DO 
    IF (Hin = i) THEN; 
     H := i; 
    END; 
   END;  
   FOR i:= 1 TO 5000 DO 
    IF (Bin = i) THEN; 
     B := i; 
    END;  
   END;  
    
   (* Sets B to equal H if follow-up time is shorter than B - Note the program would need changing if a   
      screening study with a follow-up time shorter than B was included *)   
   IF (H < B) THEN; 
    B := H; 
   END; 
    
   (* Calculates the proportion of cases in screening studies infected in the last c = 1 to C days *) 
   IF (clinicorscreen = 1) THEN; 
    omega_cum[0] := 0; 
    FOR b := 1 TO B DO  
     omega[b] := phi * (Math.Exp( - lambdaT * (b - 1) / 365) - Math.Exp( - lambdaT * b / 365)) +  
                         (1 - phi) * (Math.Exp( - lambdaC * (b - 1) / 365) - Math.Exp( - lambdaC * b / 365));  
  omega_cum[b] := omega_cum[b-1] + omega[b]; 
    END; 
    
   (* specifies the proportion of women in each state at time zero *) 
    pi_hi[0] := caseprop * omega_cum[B];    
   ELSE 
    pi_hi[0] := caseprop; 
   END; 
   pi[1,0] := caseprop; 
   pi[2,0]:= 1 - pi[1,0]; 
   pi[3,0] := 0; 
   pi_low[0] := pi[1,0] - pi_hi[0];  
  
   (* main analysis *) 
   FOR h := 1 TO B DO; 
    pi[1,h] := pi_low[h-1] * p_low[1,1] + pi_hi[h-1] * p_hi[1,1] + pi[2,h-1] * p_hi[2,1]; 
    pi[2,h] := pi[2,h-1] * p_hi[2,2] + pi_low[h-1] * p_low[1,2] + pi_hi[h-1] * p_hi[1,2]; 
    pi[3,h]:= 1 - pi[2,h] - pi[1,h]; 
 
    IF (clinicorscreen =0) THEN; 
     pi_hi[h] := pi[1,h];   
     pi_low[h] := 0  
    END; 
     
    IF (clinicorscreen =1) THEN; 
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     term1[h] := 0; 
     FOR i := h TO B DO 
      term1[h] := term1[h] + omega[B+1-i] * pi[1,0] * Math.Power(p_hi[1,1],h); 
     END; 
     term2[1] := 0; 
     IF (h >= 2) THEN; 
      FOR i := 1 TO h DO 
       term2[h] := term2[h-1] + (pi[2,i-1] * p_hi[2,1]) * Math.Power(p_hi[1,1],h-i);  
      END;   
     END; 
     pi_hi[h] := term1[h] + term2[h];    
     pi_low[h] := pi[1,h] - pi_hi[h];  
    END; 
   END; 
    
IF (H > B) THEN; 
    FOR h := B+1 TO H DO 
     pi[1,h] := pi_low[h-1] * p_low[1,1] + pi_hi[h-1] * p_hi[1,1] + pi[2,h-1] * p_hi[2,1]; 
     pi[2,h] := pi[2,h-1] * p_hi[2,2] + pi_low[h-1] * p_low[1,2] + pi_hi[h-1] * p_hi[1,2]; 
     pi[3,h]:= 1 - pi[2,h] - pi[1,h]; 
 
     term1[h] := 0; 
     FOR i := h+1-B TO h DO 
      term2[h] := term2[h-1] + (pi[2,i-1] * p_hi[2,1]) * Math.Power(p_hi[1,1],h-i); 
     END;  
     pi_hi[h] := term1[h] + term2[h];     
     pi_low[h] := pi[1,h] - pi_hi[h]; 
    END;  
   END; 
   output := pi[3,H]; 
   
  END calculation;    
 
 
   
  PROCEDURE (func: Function) Evaluate (OUT value: REAL); 
  VAR 
   output:     REAL; 
    
  BEGIN 
   calculation(func, output); 
   value := output; 
  END Evaluate; 
   
  PROCEDURE (f: Factory) New (option: INTEGER): Function; 
  VAR 
   func: Function; 
  BEGIN 
   NEW(func); func.Initialize; RETURN func; 
  END New; 
   
  PROCEDURE Install*; 
  BEGIN 
   WBDevScalar.Install(fact); 
  END Install; 
   
  PROCEDURE Init; 
  VAR 
   f: Factory; 
  BEGIN 
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   NEW(f); fact := f; 
  END Init; 
   
 BEGIN 
  Init; 
 END WBDevgeneratep. 
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Web Table 1 – Effect on Key Results of Altering the Assumed Infection and Reinfection Rates 

Infection rate 
(Scholes, 
Ostergaard) 

Re-infection 
rate (POPI, 

Rees) 

Mean 
Residual 
Deviance 

Causal rate 
Of PID 

Probability CT 
causes clinical PID 

Proportion 
prevented by 

screening 

One-Rate model 
– All controlled 
studies 

     

0 0 10.8 0.19 (0.06,0.36) 0.16 (0.06,0.26) 0.61 (0.55,0.67) 

0 0.05 10.7 0.19 (0.06,0.36) 0.16 (0.06,0.26) 0.61 (0.55,0.67) 

0 0.1 10.6 0.19 (0.06,0.35) 0.16 (0.06,0.26) 0.61 (0.55,0.67) 

0.05 0.1 10.6 0.19 (0.06,0.35) 0.16 (0.06,0.26) 0.61 (0.55,0.67) 

0.05 0.15 10.7 0.19 (0.06,0.34) 0.16 (0.06,0.25) 0.61 (0.55,0.68) 

0.05 0.20 10.8 0.19 (0.06,0.34) 0.15 (0.06,0.25) 0.61 (0.55,0.68) 

0.1 0.15 10.6 0.18 (0.06,0.31) 0.15 (0.05,0.24) 0.61 (0.56,0.68) 

0.1 0.20 10.7 0.18 (0.05,0.31) 0.15 (0.05,0.24) 0.62 (0.56,0.68) 

Two-Rate models 
All controlled 
studies –  60 days 

     

0 0 10.3 
1  δ   0.74 (0.07,1.72) 0.20 (0.09,0.31) 0.40 (0.13,0.68) 
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2  δ  0.16 (0.03,0.33) 

0 0.05 10.4 
1  δ  0.62 (0.05,1.46) 

2  δ  0.17 (0.03,0.34) 

0.19 (0.09,0.30) 0.43 (0.16,0.69) 

0 0.1 10.8 
1  δ  0.48 (0.03,1.18) 

2  δ  0.17 (0.04,0.34) 

0.18 (0.08,0.28) 0.48 (0.20,0.70) 

0.05 0.1 10.6 
1  δ  0.32 (0.02,0.68) 

2  δ  0.18 (0.04,0.35) 

0.16 (0.07,0.26) 0.54 (0.30,0.72) 

0.05 0.15 10.9 
1  δ  0.29 (0.02,0.64) 

2  δ  0.18 (0.05,0.35) 

0.16 (0.07,0.26) 0.55 (0.32,0.72) 

0.05 0.20 11.2 
1  δ  0.25 (0.01,0.60) 

2  δ  0.18 (0.05,0.35) 

0.16 (0.07,0.25) 0.57 (0.34,0.72) 

0.1 0.15 11.0 
1  δ  0.18 (0.01,0.38) 

2  δ  0.19 (0.05,0.36) 

0.15 (0.06,0.25) 0.61 (0.43,0.73) 

0.1 0.20 11.1 
1  δ  0.17 (0.01,0.37)  

2  δ  0.19 (0.05,0.36) 

0.15 (0.06,0.24) 0.61 (0.44,0.73) 
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