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This supplementary material text is divided into three sections as listed in the

following table of contents. In Section 1, we provide the regularity conditions which

are needed for proving the main results discussed in the paper. In Section 2, we

provide some additional simulation results. Several issues about the condition number

of the information matrix of the estimators when estimating parameters in the Hill

model are discussed in Section 3.
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1. Regualrity conditions for the main results

For the asymptotic normality of the WME (Theorem 1, Lim et al. 2012a) which

are needed for proving Theorem 1 and 2 in the main paper, we require the following

sets of regularity conditions.

[S1]:

(i) limn→∞ n−1Γ1n(θ, τ) = Γ1(θ, τ), where

Γ1n(θ, τ) = γ2

n
∑

i=1

k2(zi, τ)fθ(xi, θ)f
T
θ (xi, θ).

(ii) limn→∞ n−1Γ31n(θ, τ) = Γ31(θ, τ), where

Γ31n(θ, τ) = σ2
ψ1

n
∑

i=1

k2(zi, τ)fθ(xi, θ)f
T
θ (xi, θ),

and Γ31(θ, τ) is a positive definite matrix.

(iii) maxi
{

k2(zi, τ)f
T
θ (xi, θ)Γ

−1
31n(θ, τ)fθ(xi, θ)

}

−→ 0, as n→ ∞

[S2]:

(i) limn→∞ n−1Γ2n(θ, τ) = Γ2(θ, τ), where

Γ2n(θ, τ) =
n

∑

i=1

{

2γ1 + γ3 − 1

σ2(zi, τ)
στ (zi, τ)σ

T
τ (zi, τ) +

1− γ1
σ(zi, τ)

Στ (zi, τ)

}

,

and Στ (zi, τ) = (∂2/∂τ∂τT)σ(zi, τ).

(ii) limn→∞ n−1Γ32n(θ, τ) = Γ32(θ, τ), where

Γ32n(θ, τ) = σ2
ψ2

n
∑

i=1

k2(zi, τ)στ (zi, τ)σ
T
τ (zi, τ),

and Γ32(θ, τ) is a positive definite matrix.

(iii) maxi
{

k2(zi, τ)σ
T
τ (zi, τ)Γ

−1
32n(θ, τ)στ (zi, τ)

}

−→ 0, as n→ ∞
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For the asymptotic linearity of WME (Lim et al. 2012b) which are needed for

proving Thoerem 1 and 2 in the main paper, we require the following regularity

conditions.

[S3]:

ψ is a nonconstant, odd function which is absolutely continuous and differentiable

with respect to θ.

[S4]: Let ǫ = {y − f(x, θ)}/σ(z, τ),

(i) Eψ(ǫ) = 0; Eψ2(ǫ) = σ2
ψ1 <∞; E{ψ(ǫ)ǫ} = γ1( 6= 0);

var{ψ(ǫ)ǫ} = σ2
ψ2 <∞

(ii) E|ψ′(ǫ)|1+δ <∞, E|ψ′(ǫ)ǫ|1+δ <∞, E|ψ′(ǫ)ǫ2|1+δ <∞ for some 0 < δ ≤ 1, and

Eψ′(ǫ) = γ2 ( 6= 0); E{ψ′(ǫ)ǫ} = 0; E{ψ′(ǫ)ǫ2} = γ3 ( 6= 0);

Eψ′(σ(z, τ)ǫ) = γ4 ( 6= 0);

[S5]: Let ǫ(θ, τ) = {y − f(x, θ)}/σ(z, τ),

(i) lim
δ1→0

lim
δ2→0

E

{

sup
‖∆1‖≤δ1,‖∆2‖≤δ2

|ψ (ǫ(θ +∆1, τ +∆2))− ψ (ǫ(θ, τ))|

}

= 0

(ii) lim
δ1→0

lim
δ2→0

E

{

sup
‖∆1‖≤δ1,‖∆2‖≤δ2

|ψ (ǫ(θ +∆1, τ +∆2)) ǫ(θ +∆1, τ +∆2)

−ψ (ǫ(θ, τ)) ǫ(θ, τ)|

}

= 0

(iii) lim
δ1→0

lim
δ2→0

E

{

sup
‖∆1‖≤δ1,‖∆2‖≤δ2

|ψ′ (ǫ(θ +∆1, τ +∆2))− ψ′ (ǫ(θ, τ))|

}

= 0

(iv) lim
δ1→0

lim
δ2→0

E

{

sup
‖∆1‖≤δ1,‖∆2‖≤δ2

|ψ′ (ǫ(θ +∆1, τ +∆2)) ǫ(θ +∆1, τ +∆2)

−ψ′ (ǫ(θ, τ)) ǫ(θ, τ)|

}

= 0

(v) lim
δ1→0

lim
δ2→0

E

{

sup
‖∆1‖≤δ1,‖∆2‖≤δ2

∣

∣ψ′ (ǫ(θ +∆1, τ +∆2)) ǫ
2(θ +∆1, τ +∆2)

−ψ′ (ǫ(θ, τ)) ǫ2(θ, τ)|

}

= 0
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[S6]:

f(x, θ) is continuous and twice differentiable with respect to θ ∈ ℜp.

[S7]: For j, l = 1, . . . , p

(i) limδ→0 sup‖∆‖≤δ

∣

∣

∣
(∂/∂θj)f(x, θ +∆)(∂/∂θl)f(x, θ +∆)

− (∂/∂θj)f(x, θ)(∂/∂θl)f(x, θ)
∣

∣

∣ = 0

(ii) limδ→0 sup‖∆‖≤δ

∣

∣

∣
(∂2/∂θj∂θl)f(x, θ +∆)− (∂2/∂θj∂θl)f(x, θ)

∣

∣

∣
= 0

[S8]:

σ(z, τ) is continuous and twice differentiable with respect to τ ∈ ℜq.

[S9]: For j, l = 1, . . . , q

(i) limδ→0 sup‖∆‖≤δ

∣

∣

∣(∂/∂τj)σ(z, τ +∆)(∂/∂τl)σ(z, τ +∆)

− (∂/∂τj)σ(z, τ)(∂/∂τl)σ(z, τ)
∣

∣

∣
= 0

(ii) limδ→0 sup‖∆‖≤δ

∣

∣

∣(∂2/∂τj∂τl)σ(z, τ +∆)− (∂2/∂τj∂τl)σ(z, τ)
∣

∣

∣ = 0

For the asymptotic results regarding PTE (Theorem 2, Lim et al. 2012a) which

are needed for proving Theorem 1(b) and 2 in the main paper, we require the following

sets of regularity conditions.

[S10]: Let ǫ = {y− f(x, θ)}/σ(z, τ). Then, Eψ′(σ(z, τ)ǫ) = γ4 ( 6= 0), Eψ2(σ(z, τ)ǫ) =

σ2
ψ3w1(x) <∞ and E{ψ(ǫ)ψ(σ(z, τ)ǫ)} = σ2

ψ4w2(x) <∞.

[S11]:

(i) limn→∞ n−1Γ4n(θ) = Γ4(θ), where

Γ4n(θ) = γ4

k
∑

i=1

nifθ(xi, θ)f
T
θ (xi, θ).

(ii) limn→∞ n−1Γ33n(θ) = Γ33(θ), where

Γ33n(θ) = σ2
ψ3

k
∑

i=1

niw1(xi)fθ(xi, θ)f
T
θ (xi, θ),
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and Γ33(θ) is a positive definite matrix.

(iii) limn→∞ n−1Γ34n(θ, τ) = Γ34(θ, τ), where

Γ34n(θ, τ) = σ2
ψ4

k
∑

i=1

niw2(xi)

σi
fθ(xi, θ)f

T
θ (xi, θ).

(iv) limn→∞ n−1G2n(θ, τ) = G2(θ, τ), where

G2n(θ, τ) =

















Γ31n(θ, τ) Γ34n(θ, τ) 0

Γ34n(θ, τ) Γ33n(θ) 0

0 0 2n2

k
∑

i=1

niw
2
i2

















,

wi2 is the second element of wi = (ZTZ)−1zi, and G2(θ, τ) is a positive definite matrix.

(v) maxi ch1

{

G1(xi, θ, τ)
(

G2n(θ, τ)
)−1

}

−→ 0, as n→ ∞, where

G1(xi, θ, τ) =













σ2
ψ1σ

−2
i Hi σ2

ψ4w2(xi)σ
−1
i Hi 0

σ2
ψ4w2(xi)σ

−1
i Hi σ2

ψ3w1(xi)Hi 0

0 0 2n2w2
i2













,

and Hi = fθ(xi, θ)f
T
θ (xi, θ).
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2. Some additional simulation results

(a) Overall FDR (b) Overall power

(c) FDR for homo data (d) Power for homo data

(e) FDR for hetero data (f) Power for hetero data

Figure S1: Estimated FDR and power for OME (dotted line), WME (dashed line),
PTE (solid line), NCGC (dash dotted line) and Parham (long dashed line) methods
when the proportion of heteroscedastic data is 0.10, 0.25 and 0.50. Here γ = 0.05
and α = 0.05/10, 000.
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Table S1: Estimated proportion of inconclusive (marginal) data among non-null and
null data based on NCGC and Parham methods with α = 0.05/10, 000.

γ Hetero. Method
Overall Homoscedastic Heteroscedastic

Non-null Null Non-null Null Non-null Null

0.05

0.10
NCGC 0.634 0.951 0.645 0.952 0.536 0.943

Parham 0.068 0.285 0.067 0.294 0.074 0.199

0.25
NCGC 0.615 0.950 0.647 0.952 0.516 0.943

Parham 0.071 0.271 0.069 0.295 0.078 0.201

0.50
NCGC 0.585 0.947 0.647 0.952 0.524 0.943

Parham 0.071 0.248 0.065 0.295 0.077 0.201
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3. Issues about the condition number of the information matrix

Figure S2 represents a simulated data generated from a Hill model with true

parameters, (θ0, θ1, θ2, θ3) = (−46, 39, 1.2, 31.01). The fitted curve is reasonable based

on the data and quite close to the true curve. However, the OME of θ1 and θ3

are 126.154 and 484.308, which are substantially different (very large) from the true

values (39 and 31.01), respectively. The standard errors of these estimates are also

very large, 361.50 and 3203.22, respectively. The underlying problem is that the

information matrix of OME is almost singular, with a condition number (ratio of the

largest eigenvalue to the smallest eigenvalue) of the order 109. Unfortunately, this is

a common phenomenon when fitting Hill models. Consequently, many toxicologists

discount data with either large slopes or large ED50 values since they can’t trust the

fit (Parham et al. 2009). This problem arises not because of model mis-specification,

since in this example we generated the data using the true Hill model, but possibly

because of the dose spacing and/or range of the doses. As seen in Figure S2, a visually

good fit does not always imply sensible estimates for parameters.
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Figure S2: Example of data generated from Hill model, true curve (dotted line), and fitted
curve using OME (solid line).
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Table S2: Empirical cumulative distribution of condition number for null and non-null
data.

log10(condition number)
Percentile

Null data Non-null data

2 0.01 0.06

3 0.08 0.43

4 0.23 0.64

5 0.40 0.78

6 0.56 0.86

7 0.69 0.92

To better understand the distribution of condition numbers, using the data from

the simulation experiment described in Section 3 of this paper, we estimated the

distribution functions of condition numbers based on OME under the null hypothesis

and under the alternative hypothesis. We used 9,000 and 90,000 samples to obtain

the empirical distribution functions of the condition numbers under the null and the

alternative hypotheses, respectively. The resulting empirical distribution functions

are plotted in Figure S3. Whether the data are homoscedastic or heteroscedastic,

the condition numbers for the non-null data appear to be stochastically smaller than

those of the null data. For the simulated non-null data, the median of the distribution

is 103.2; and the first and the third quartiles are 102.4 and 104.7, respectively. On the

other hand, for the simulated null data, the median is 105.6; and the first and the

third quartiles are 104.1 and 107.6, respectively. See Table S2 for some examples of the

empirical CDF under the null and alternative hypothesis. From our simulation study

it is clear that the condition number provides valuable information when assessing

the goodness of fit of a Hill model.
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(a) Empirical probability density function

(b) Empirical cumulative distribution function

Figure S3: Distributions of the maximum of the condition numbers of the information
matrix of OME and WME for the simulated non-null data (red line) and the simulated
null data (black line).
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