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INTRODUCTION conditions (54, 210, 289). Strategies such as overreplication

Many procaryotes contain plasmids in addition to their
chromosomes (10, 283). Such plasmids are normally circular
(exceptions are the linear forms found in Streptomyces
rochei, Borrelia species, and Thiobacillus versutus [15, 119,
353]) and range between a few and several hundred kilobases
(e.g., plSA from Escherichia coli is 2.2 kilobases [kb] long
[39], pZA2 from Zymomonas anaerobia is 1.7 kb long [362],
and megaplasmids of lithoautotrophic bacteria can be about
700 kb long [120]). Most plasmids are cryptic, but often they
provide their host with new phenotypic characteristics (for
reviews, see references 283 and 328).

Plasmids represent an important factor in bacterial evolu-
tion: they enable rapid short-term adaption of bacteria to
changing environmental conditions; they confer gene ampli-
fication; and they can be transferred within one or between
many species. Normally, plasmids are nonessential to their
hosts, conferring only an energy burden that can slow cell
growth (42, 369). However, plasmids can be stably main-
tained in a bacterial population even under nonselective
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(33), partition modes (5, 176), killing of plasmid-free segre-
gants (98, 118, 235), infectious conjugal transfer (165, 175),
and surface (entry) exclusion against conjugative entrance of
additional, related deoxyribonucleic acid (DNA) molecules
(334, 335) contribute to the maintenance of plasmids in a
bacterial population.

Some plasmids occur in only one or a few copies per cell;
others occur in several copies (for examples, see references
214 and 306). The maintenance of low-copy-number plas-
mids requires a tighter regulation of replication and of
segregation than does maintenance of multicopy plasmids
(176, 257). The existence of related plasmids in the same cell
line can be prevented by both types of regulation; however,
replication-based incompatibility is usually more stringent
than segregation-based incompatibility (47, 214, 257, 314).
The control mechanisms determining copy number and
replication-based incompatibility are usually plasmid inher-
ited (for an exception, see reference 361) and involve the
initiation of replication (144, 209, 214, 257, 304). In contrast
to elongation, the initiation of replication is molecule spe-
cific, and this step is therefore of great importance for the
propagation of a plasmid in a specific host (257).

In addition to plasmid-inherited determinants, replication
initiation is dependent on various host-encoded enzymes
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(257). Many plasmids can therefore replicate only in one or
a few closely related hosts (examples are given in reference
297). In contrast, promiscuous plasmids are adapted to a
wide range of bacteria and can be stably inherited in dis-
tantly related hosts (152, 230, 311).

In this review we describe the initiation of plasmid repli-
cation in gram-negative bacteria, with particular emphasis
on factors determining host range. Possible reasons for host
range limitations are discussed.

REPLICATION OF NARROW-HOST-RANGE PLASMIDS

Information regarding the replication of plasmids with a
restricted or narrow host range has been obtained mainly by
the examination of plasmids from members of the family
Enterobacteriaceae (for reviews, see references 40, 53, 81,
138, 139, 144, 211, and 257). Depending on the absence or
presence of a plasmid-encoded protein for replication initia-
tion (Rep protein) narrow-host-range plasmids can be di-
vided into two classes, example of which are ColE1 and
pSC101.

ColE1 and Related Plasmids

ColE1l is a 6.6-kb E. coli plasmid with a copy number of
nearly 20 (6, 38). Related multicopy plasmids of members of
the family Enterobacteriaceae include pl5A, pMBI,
RSF1010 (NTP1), CloDF13 (259), NTP16 (158), and other
coligenic plasmids (116, 196, 370, 371). Several multicopy
cloning vectors such as the well-known plasmids pACYC184
and pBR322 are derived from pl15A and pMB1 (13, 39).

Requirements for replication. The replication of ColEl is
initiated in a 0.6-kb region, the origin (ori), and progresses
unidirectionally in the 6-shaped manner of Cairns-type rep-
lication (6, 125, 220, 324-326). For the whole process, ColE1
requires only proteins from its host bacterium E. coli (64,
324). For initiation at the origin, a DNA-dependent ribonu-
cleic acid (RNA) polymerase, ribonuclease H (RNase H),
and DNA polymerase I (Pol I), as well as DNA gyrase and
topoisomerase I, participate (117, 126, 127, 193). Gyrase
participates in the opening of the DNA double strand and
may provide the topological driving force for movement of
the replication fork (193, 221). By modulation of plasmid
superhelicity, topoisomerase I may favor the recognition of
the primer promoter by RNA polymerase to make the primer
transcript (193). Normally, by the combined action of RNA
polymerase and RNase H, a processed primer transcript is
formed which is used by Pol I for the synthesis of the leading
strand over a length of about 400 nucleotides (127, 247) (see
below). Replication in vivo (140, 141, 204, 218, 219) and in
vitro (52, 182) can also start in the absence of RNase H and
Pol I by using alternative modes (see below).

Essential for extension of the leading strand and also for
discontinuous synthesis of the lagging strand are DNA
polymerase III (Pol III), single-strand binding proteins, and
the proteins of the primosome complex (86, 180, 193, 194,
284, 285), i.e., DnaB helicase (12, 163), DnaB-complexed
DnaC protein (23), DnaG primase, and the preprimosome
organizer i, n, n’, n” (269). Efficient lagging-strand synthesis
can be initiated by primosome formation on an n’ recognition
site 150 nucleotides downstream of the origin (rriA pas-BI)
(24, 179, 208, 368) or, alternatively, by formation of primo-
somelike DnaA-dependent complexes of DnaB, DnaC, and
DnaG proteins formed at a DnaA recognition box adjacent to
the origin (90, 261, 262). In vivo, both the DnaA box and the
n' site are dispensable (6, 182, 219).
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Mechanisms of primer formation and replication initiation.
At present, the only detailed model of replication initiation
and regulation that is supported by genetic and biochemical
data is that for ColE1-type plasmids (36, 53, 183, 321). They
are the only ones with a well-studied primer for leading-
strand synthesis (127, 319). The replication models for
ColE1-type plasmids, proposed mostly by Tomizawa and
co-workers, are depicted in Fig. 1 and Fig. 2.

Beginning 555 base pairs (bp) upstream of the ColE1 origin
(or at an appropriate position in the ori region of other
ColE1-type plasmids [196, 260]) and terminating heteroge-
neously downstream from the origin, RNA polymerase
transcribes a primer precursor nearly 700 bp long, called
RNA II (127, 322, 323) (Fig. 1 and 2). The 3’ ends of
approximately half of these nascent RNA II transcripts form
a persistent hybrid with their DNA template near the origin
(127, 260) (Fig. 1). This process, named coupling (321), is
dependent on the secondary structure of the 5’ end of RNA
IT (35, 183, 184, 355). If the specific conformation for
hybridization does not form (i.e., RNA II folds in another
way [Fig. 2]), coupling does not occur and priming aborts
(183, 184) (Fig. 1). Determined by structure X (Fig. 2), which
is the origin-proximal stem-loop of secondary-structured
DNA-hybridized precursor transcripts (183, 219), RNase H
recognizes and cleaves the coupled RNA II-DNA hybrids at
the origin within a sequence of five A’s and generates mature
primer molecules. These processed transcripts are the target
for Pol I, which adds deoxynucleotides to their 3’ OH ends
(127, 260) (Fig. 1, mechanism type I). Precursor RNA still
hybridized to DNA is then cleaved at secondary sites by
RNase H (Fig. 1, arrows) and digested by the 5’-3’-exonu-
clease activity of Pol I during DNA elongation. Further
cleavage by RNase H removes the RNA primer from the
newly synthesized DNA strand (260). The type I mechanism
of replication initiation seems to be the normal one, because
Pol 1 is essential for plasmid maintenance in bacteria that
contain RNase H (52, 137, 219) and in vitro initiation is
inhibited by RNase H in the absence of Pol I (52). In addition
to the main type I mechanism, there are two alternative
RNase H-independent pathways of unidirectional replication
(52, 182, 219) (Fig. 1, type II and type III) which act at the
same region as the RNase H-dependent replication initiation
(140). In both alternative pathways, transcription of RNA 11
and its hybridization to the template are necessary for
replication initiation both in vivo and in vitro (52, 204, 219).
In the absence of RNase H, RNA II may act as a transcrip-
tional activator which unwinds double-stranded DNA by
forming a DNA-RNA hybrid (52, 182, 219). Normally,
during transcription by RNA polymerase, about 17 bp of the
DNA-helix is opened and only a few nucleotides of the
nascent transcripts are hybridized to the DNA template
(342). This short single-stranded stretch is protected by the
RNA polymerase. Thus, enzymes like DnaG primase are
unable to initiate replication and helicases like DnaB are
unable to extend the single-stranded area to a length ade-
quate for assembly of proteins that mediate lagging-strand
synthesis. In contrast, in ColE1, the extensive elongation of
the stable RNA II-DNA hybrid allows a displacement loop
to form downstream from the origin (127, 182, 260), which is
sufficient for initiation of lagging-strand synthesis on the
nontranscribed single strand of DNA (182) (Fig. 1, type Il
mechanism). Replication initiation by lagging-strand synthe-
sis within the origin region requires an RNA II-DNA hybrid
having a corresponding single strand of at least 40 nucleo-
tides; the latter may be extended by the action of a helicase
(182). At the single strand, a replisome (i.e., a macromolec-
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FIG. 1. Schematic illustration of multiple mechanisms for the initiation of ColE1 replication (adapted from references 52, 182, and 183).
The type I mechanism is proposed for wild-type E. coli, the type II mechanism is proposed for RNase H-negative and DNA polymerase
I-positive or -negative strains (rnh polA and rnh polA™ strains, respectively), and the type III mechanism is proposed for RNase H-negative
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) are marked. The different folds of RNAs symbolize the secondary structure

of active and inactive primer transcripts (see Fig. 2). The direction of DNA synthesis is shown by arrows (further explanations are given in

the figure and the text).

ular protein-DNA complex which starts DNA synthesis
[150]) could be formed without the need for a primosome- or
DnaA-binding site (182, 219). Initiation of replication can
occur at various sites within the region extending approxi-
mately 500 bases downstream from the origin; however,

owing to the presence of the unhybridized part of RNA II,
replication always terminates at a site termed terH, 17
nucleotides upstream from the origin. Termination at terH
seems to account for the unidirectionality of ColE1 replica-
tion (52).
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I to the growing preprimer RNA II is illustrated. The first reversible kissing reaction between loops I, 11, and 111 of the complementary RNAs
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solid regions in the different RNA II structures) cannot pair to each other to form the hairpin IV (compare the Roman numerals and
stem-loops, respectively, of the different RNA II structure at the right), which is a prerequisite for primer processing. RNA 1I transcripts
longer than 185 bases possess stem-loop 1V (as shown in the third column), but it can be destroyed by the RNA I inhibitor. In the scheme,
the reaction of RNA I and RNA II at the stage of the greatest effect of Rom on the pairing of the countertranscripts is illustrated. Irrespective
of the binding of RNA I, the RNA II transcripts longer than 360 bases may form the hairpins VI, VII, VIII, IX, and X at their 3’ end, as
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and hybridized to the DNA can be processed by RNase H at the origin (marked by an arrow at the transcripts below the DNA double strand).
In the right corner, the putative secondary structure of an RNA II mutant (pri7 RNA II [184]) is shown, which is nonfunctional in template
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primer transcripts, denote regions which may be involved in a tertiary pairing during coupling of RNA 11 to its template.
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The type II initiation mechanism can occur in bacteria
lacking both RNase H and Pol I (rnh polA). In cells that
contain Pol I but lack functional RNase H (rnh polA™)
replication may start by the type III mechanism or by both
type II and III mechanisms (52) (Fig. 1). In the type II
mechanism, DNA synthesis is activated indirectly by the
persistent RNA II-DNA hybrid; in the type III mechanism,
the hybridized RNA II transcripts may be recognized as
primers by Pol I without previous cleavage of RNA II at the
origin (52). Normally, the type III mechanism using RNA
polymerase and Pol I is inefficient in vitro (127), because the
3’ ends of the usual RNA II transcripts of nearly 700 bases
are not used as primers by Pol I (52). Only short transcripts
with a hybridized section less than 50 nucleotides are effi-
ciently used, as has been demonstrated by the insertion of a
transcription terminator 9 bases downstream from the origin
(323) and by trimming the 3’ ends of RNA II transcripts with
nuclease (182). However, the type III mechanism may occur
in vivo in a group of ColE1l mutants that are defective for
replication in the E. coli wild type (204). This class of
mutants, having base alterations changing the structure VIII
of folded RNA II (Fig. 2) (183, 203), allows RNA II synthe-
sis, hybrid formation, and RNase H cleavage, but the RNase
H-cleaved RNA II cannot serve as a primer by Pol I (183).
Such mutant plasmids can replicate in RNase H-negative
strains (182, 202, 204), but not in RNase H-positive cells
unless hyperactivated by Pol I (204). Overproduced Pol I or
Pol I with altered properties might initiate DNA synthesis at
the DNA-hybridized RNA II before RNase H can act (204).

In contrast to the type I mechanism, in which RNase H
participates in the removal of primers (260), it is probably
removed in the type II and type III mechanisms by the
termination of leading-strand synthesis (52) (Fig. 1).

Regulation of replication initiation. The frequency of the
replication initiation at the origin depends in part on the
frequency of RNA II formation by RNA polymerase (34, 35,
96, 223, 244, 336); however, the main regulation of initiation
is exerted during the synthesis of RNA II by a 108-nucleotide
antisense transcript termed RNA I (319). By hybridizing to
the primer precursor, RNA I inhibits hybrid formation
between RNA II and its DNA template, leading to abortive
primers (156, 184, 320, 322). Because the synthesis of the
primer precursor takes place in 12 s, inhibition by RNA I in
vivo can occur only within a few seconds. This requires the
presence of relatively high concentrations of RNA I, which
is guaranteed because transcription of RNA I occurs five
times more often than transcription of RNA II. Hence, on
average, 1 in 20 preprimer transcriptions leads to a replica-
tion event (171). Inasmuch as the pairing of RNA I and RNA
II depends on the presence of the S’ end of RNA I (66, 84,
295, 317) (see below), inactivation of RNA I occurs when its
5" end is specifically removed by RNase E (316). This
cleavage of RNA I by RNase E seems to stimulate replica-
tion in vivo by reducing the number of active inhibitor
molecules (115, 316). Furthermore, depending on the phys-
iological state of the cells, regulation of the level of active
RNA I molecules might also occur by interactions of RNA I
with transfer RN As (tRNAs) with complementary sequences
to RNA I (361). This theory may be supported by the finding
that when certain amino acids are limited, plasmid amplifi-
cation in some E. coli strains (relA) results (112-114),
probably because the concentration of uncharged tRNAs is
increased (361). In addition, RNA I may be affected in an
unknown fashion by growth conditions, as occurs with
conditional high-copy-number pBR322 derivatives (130).

Transcription of RNA I is initiated 445 bp upstream from
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the origin, proceeds in the opposite direction to RNA II, and
is terminated a few bases before the RNA II start (Fig. 2)
(127, 195). The RNA 1 transcript assumes a tRNA-like
conformation (cloverleaf structure) composed of three stem-
loops and a 5’ single-stranded tail of 9 nucleotides (195, 294,
295, 361). Similar foldings (palindromes I, II, and III) occur
at the 5'-proximal region of the primer transcript shortly
after the start of the RNA II synthesis (319, 355). The folded
RNA I and RNA II molecules interact in an initial reversible
contact by a ‘‘kissing’’ between specific bases of the homol-
ogous single-stranded loops (157, 317, 318). This interaction
brings together the single-stranded 5’ end of RNA I and its
complementary RNA II sequence, causing a progressive
pairing between both RNAs by a zipping mechanism accom-
panied by the unfolding of their secondary structures (317,
318) (Fig. 2).

Palindrome III of the primer transcript partly overlaps
structure IV in RNA II (259) (Fig. 2, segments a and B),
which is characteristic for RNA II-DNA hybrids and deter-
mines the secondary structure of the downstream RNA II
region, i.e., the formation of stem-loops VI to X (184) (Fig.
2). As a result of RNA I pairing, palindrome IV of RNA II
cannot be developed, and therefore, far downstream of the
RNA I-binding region, the secondary structure of RNA II is
altered in the palindromes V, VII', and probably VIII',
preventing hybridization between the primer precursor and
its DNA template. Thus, for stem-loops VI and VII of RNA
II, an interaction with the DNA template is assumed which
probably acts as an signal for the downstream hybridization
of RNA II. Structure IX, in which tertiary base pairings with
a complementary loop of structure VII or possibly with the
DNA template occur within the RN A II-DNA hybridization,
also seems to be crucial for hybrid formation (184). Evidence
from point mutations shows that two G stretches, one in
stem-loop VII and the other in palindrome X, probably also
participate in hybrid formation. Alternatively, or in turn, the
G stretches may interact with a third region, e.g., with the
C-rich stretch opposite the poly(G) sequence in the stem of
structure X (183, 219). Finally, structure VIII may play only
a small part in the DNA-RNA interaction because (i) partial
digestion with RNases of DNA-hybridized and unhybridized
transcripts reveals no differences in the configuration of VIII
and VIII' (184); (ii) in contrast to the other stem-loops,
structures VIII in different ColE1-type plasmids show only a
slight sequence homology (184, 196, 259); and (iii) even with
base changes that influence the folding of VIII, RNA II is
capable of hybridizing to the DNA template (183). In con-
trast to this minor role in DNA-RNA interaction, structures
VIII and VIII' may influence the subsequent reaction of Pol
I as a result of their steric configuration (183).

The binding and the inhibitory effect of RNA I are
influenced by conformational variations dependent on the
length of the nascent primer transcript (319, 355) (Fig. 2).
Growing RNA I transcripts of between 110 and 360 nucle-
otides are sensitive to the inhibitory action of RNA I (319).
Longer transcripts also interact with RNA I but are immune
to the inhibitory effect on primer formation. Even if stem-
loop IV of RNA II is destroyed through the action of RNA I,
the configuration of the downstream region of RNA II,
which is essential for the hybridization to the DNA, becomes
stable (319). The period of inhibitory action of RNA I may be
extended by transcriptional pausing at or near the loop of
structure IV, as is suggested by RNA II mutants which are
resistant to RNA I inhibition (85).

On the other hand, the pairing of the complementary
RNAs is modified by a small protein dimer of 63 amino acids
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which is called Rom (RN A one inhibition modulator) or Rop
(repressor of primer) (4, 37, 155, 318, 319, 327). The Rom
protein is encoded downstream from the origin of some
ColEl-type plasmids (280, 332) (Fig. 2); in others it is
missing (196, 207). The deletion of the nonessential rom gene
as well as overproduction of Rom affects plasmid copy
number and incompatibility (215, 288, 335); both phenomena
are based on the RNA I-RNA II interaction (66, 84). Rom
enhances RNA I-RNA II binding in vitro about twofold (65,
327); the actual value depends on the length of the RNA II
transcript; frequently, it even inhibits binding (319). RNA I
chains longer than 135 nucleotides consistently bind more
strongly to RNA II in the presence of Rom. The binding of
smaller transcripts can be enhanced, reduced, or completely
abolished by Rom, depending on length differences of only a
few bases (319). As yet, the molecular basis of the Rom
interference with the RNA I-RNA II interaction is not
understood. Point mutations in RNA I suggest that the target
site of Rom is the stem-loop I of RNA I, which is the
counterpart of stem-loop III in RNA II (37, 65, 197) (Fig. 2).
New biochemical evidence shows that Rom specifically
interacts with all three stem sequences in RNA I, but
interaction with stem I is sufficient to ensure binding of RNA
I-RNA II. Rom was also shown to interact with structures I,
II, and IV of the RNA II transcript. The affinities of RNA I
and RNA II with Rom are similar, possibly indicating that
the protein interacts symmetrically with two complementary
RNAs (115) (Fig. 2). The monomer of Rom consists of two «
helices connected by a sharp bend, and the dimer forms an
a-helix dipole by using a coiled-coil protein architecture (14).
Owing to its symmetric structure, the dimer may function as
an adaptor between the two RNA types: each of its subunits
should bind to the stem(s) of one RNA and direct the
complementary loops to the correct position for the kissing
interaction. During this reaction, the twofold axis of sym-
metry of the Rom dimer and both the RNAs should form (36,
37, 115). This simple model of Rom reaction with comple-
mentary stem-loop configurations of RNA I and RNA II may
not explain all results; e.g., Rom causes the greatest increase
in the RNA I-RNA II binding when the RNA II transcripts
are larger than 135 bases (319) and therefore lack stem-loop
IIT (319, 355), which is complementary to stem-loop I of
RNA I. Thus, for the Rom reaction, a requirement for the
correct folding of complementary loops may not be neces-
sary in some steric configurations of RNA II. In contrast,
other transient configurations of RNA II may act as steric
barriers to the formation of the correct Rom-RNA com-
plexes, thereby suppressing RNA [-RNA II pairing.

pSC101

Regardless of which incompatibility group they belong to,
enterobacterial plasmids not related to ColE1 share similar
structures with respect to the replicon. They have a gene
encoding an essential replication initiation protein (rep
gene), a cluster(s) of direct repeats (iterons), binding sites for
the DnaA protein, and A+T-rich sequences (81, 173, 257).
One such plasmid is pSC101, originally isolated from Salmo-
nella panama and used as a cloning vector in the first
recombinant DNA experiment (45, 46). In contrast to the
ColE1-type plasmids, pSC101, as well as other plasmids with
a rep gene (159, 257), does not require Pol I for replication
initiation (32).

Structure of the basic replicon. pSC101 is a low-copy-
number (oligo-copy-number) plasmid, producing five copies
per E. coli chromosome (108). Replication of this plasmid,
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which is 9.26 kb long (21), is unidirectional, starting at a
unique origin (32, 359). The basic replicon, which has a
maximum size of 1.3 kb, consists of a 250-bp cis-acting
segment (the origin) and a sequence of about 1 kb encoding
the 37.5-kilodalton (kDa) initiation protein RepA (3, 44, 172,
339, 358, 359) (Fig. 3A). The chromosomal replication origin
(oriC) of E. coli and other members of the family Enterobac-
teriaceae show limited but significant homologies to the
cis-acting fragment of pSC101 (3, 358). The homologous
region consists of a 13-bp repeat together with the binding
site for the DnaA protein (27, 90) (Fig. 3A). The 13-mer
repeat is part of an 82-bp 84% A +T-rich region which carries
a binding site for the integration host factor (IHF) (94) (Fig.
3A). Three 18-bp iterons (Fig. 3A, numbers 1, 2, and 3),
which act as binding sites for the plasmid-encoded RepA
protein (339, 340), are located immediately adjacent to the
A+T-rich region (3, 339, 358). Additional binding sites for
the RepA protein are found outside the origin in front of the
repA gene (Fig. 3A, numbers 4, S', and 5) (173, 341, 357).

Replication initiation. The replication initiator protein,
RepA, functions in replication as a positive factor by binding
to the three direct repeats in the origin (340, 341, 357). This
binding may be the beginning of a replisome formation
(compare the events of replisome formation at oriC [27, 93,
258]). To form a correct protein-protein and protein-DNA
complex, RepA may interact with host proteins, which are
bounded to the origin (e.g., DnaA [90]). Alternatively or in
addition, RepA could direct such essential host proteins,
which are per se not able to interact with the DNA, to the
start site of replication.

For replication initiation, the host DnaA protein is essen-
tial not only for the E. coli chromosome but also for plasmid
pSC101 (27, 74, 87, 90, 109). Specific binding of DnaA to its
recognition site (DnaA box: TTATA/CCAA/CA [90]) has
been demonstrated for the chromosomal origin and for the
origin of pSC101 (90), but the function of DnaA in the
replication initiation in both cases is only insufficiently
clarified (258, 286). With respect to oriC, the DnaA protein
seems to be involved with the correct RNA-primer forma-
tion by RNA polymerase and/or DnaG primase (187, 239,
263); however, there are no clues about the mode of primer
generation and the action of DnaA in the initiation of pSC101
replication.

At oriC the binding of DnaA causes structural changes
(258) and mediates the formation of DN A-protein complexes
with DnaB, DnaC, and other proteins (93). The pSC101
origin already contains naturally bent DNA in the A+T-rich
region (286), which may be destined to melt rapidly (343) and
to form an anomalous DNA bend (146, 296) owing to its high
A+T-content and its poly(dA) - poly(dT) stretches (3, 94,
358). This natural bending in the pSC101 origin is enhanced
by binding of the IHF (286), which is an essential host
protein in pSC101 replication (94). The natural bending in the
pSC101 origin may not span the distance between DnaA and
RepA proteins, which are bounded to their recognition sites
at the flanks of the A+T-rich region (see schematic model in
Fig. 3B). As a consequence of the strong bending by IHF,
the binding sites for DnaA and RepA can be brought close
together and proper protein contacts between DnaA and
RepA may be established (286). A replisome may thus be
formed, which consists of a macromolecular complex of
DNA and the proteins participating in the replication initia-
tion such as DnaA, the DnaB-DnaC complex, and the RepA
protein (286) (see the model in Fig. 3B). This model may be
supported by several observations regarding pSC101 repli-
cation and/or host proteins: (i) DnaA and the DnaB helicase
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FIG. 3. (A) Schematic illustration of the 1.3-kb basic replicon of plasmid pSC101 (complied from reference 356 with data from references
27, 90, 92, 94, 286, 340, and 341). Structural features of the basic replicon are shown: a DnaA box (@) two 13-mer repeats (CI3), an
IHF-binding site (O), three direct repeats with the origin (4@ numbered 1, 2, and 3), and three similar repeats (] numbered 4, 5’, and 5)
in dyad symmetry in the promoter region (P,,,) of the repA gene (). Numbers at the end of the map refer to coordinates (in kilobases) of
the pSC101 standard map (21, 358). Above the map, the extents of the origin, of an A+T-rich sequence, and of a fragment responsible for
incompatibility and the direction of replication are shown. Below the map, the small arrows show the extent of sequences of dyad symmetry
in the repA promoter region (the thick arrow marks the direction of repA transcription). The DnaA protein, IHF, and the RepA protein are
shown. Broken lines point to the sites of their DNA-protein interaction. + and — mark the positive effect of RepA on replication and its
negative effect on expression of the repA gene, respectively. (B) Schematic model (compiled from reference 286 with data from reference 27)
showing the postulated role of IHF in the DNA bending and replisome formation by proteins encoded by the plasmid (RepA) and the host
(e.g., DnaA, DnaB, and DnaC). === DNA double strand; ——, single strands, corresponding to the position of the 13-mer repeats in panel
A and the putative site of the initial opening of the double strand. At the left side, the natural bending of the origin is illustrated by the curve.
Without binding of IHF, this curving may be not strong enough to bring together DnaA and RepA molecules if they are bound to their
recognition sites at the origin. Bending of the origin is strengthened by the binding of IHF to the DNA, as illustrated in the right-hand diagram.
In consequence, DnaA and RepA proteins could initially interact with each other, and then the DnaB-DnaC complex (bound to DnaA before

or after IHF-DNA interaction) may be directed to the position of the 13-mer repeats for opening the DNA double strand.

seem to interact in the replication initiation of pSC101 (88),
(ii) DnaB and DnaC are both essential proteins for the
pSC101 replication (109), and (iii) DnaB and DnaC have been
shown to operate together (23).

Bends or folds at replication origins and formation of
macromolecular protein complexes are associated in other
systems (e.g., oriC, bacteriophage \, and plasmid R6K) with
an opening of the DNA double strand (27, 60, 70, 200, 367).
The three tandem repeats of the 13-mer located in the oriC of
E. coli near a DnaA box are the sites where the opening of
the duplex is initiated (27). Starting from the protein-DNA
complex organized at the DnaA box, the DnaB helicase
probably recognizes the initial single-stranded DNA struc-
ture (27) and travels in both directions along the DNA helix,
during which time the complementary DNA strands are
separated (11). At the pSC101 origin, which has a similar
arrangement including the same 13-mer repeat near a DnaA
box as in oriC (27) (Fig. 3A), the initial opening of the DNA
strands may also start at these 13-mer sequences by the
DnaB helicase (Fig. 3B) as a prerequisite for primer forma-
tion. Apart from the E. coli oriC (187, 239, 241, 248), a

replication initiation of the pSC101 leading strand mediated
by RNA polymerase is unlikely for two reasons: first, a
promoter was found only with the opposite orientation to
replication, and second, transcription occurs only in the
opposite direction to replication (44, 94, 172). The function
of this antisense transcription in pSC101 replication is un-
known, but it may assist in activation of the replication
origin via an opening the DNA double strand (44). Such a
process of transcriptional activation is involved in replica-
tion initiation of phage \ (330) and probably also of the E.
coli chromosome (187). In the origin region of pSC101,
homologous sequences to the DnaG-binding site of phage G4
are found in both DNA strands (44, 358). Hence, primer
formation by DnaG primase, which is an essential protein in
pSC101 replication (71), might be needed not only for the
lagging strand but also for the leading strand. As yet, the
possibility of such a replication initiation by DnaG primase
has not been examined for pSC101.

Regulation of initiation by RepA. The RepA protein has a
positive role in the initiation of DNA synthesis by binding to
the iterons of the origin (341, 357), which is likely to be an



498 KUES AND STAHL

essential primary step for replisome generation. Apart from
this, the RepA protein negatively regulates the initiation of
pSC101 replication by its intracellular concentration (173,
341, 357). The promoter region (putative promoters [see Fig.
6]) of the repA gene is overlapped by a palindromic arrange-
ment of three repeats (341, 357, 358) (Fig. 3, numbers 4, 5,
and 5'), which are similar to the sequence of the iterons in
the origin (3, 339, 358). By binding to the inverted repeats,
RepA competes with RNA polymerase for the repA pro-
moter sequence and inhibits the repA transcription by auto-
regulation (173, 341, 357). Since the binding of RepA to the
promoter region has priority over binding to the origin (340),
the concentration of RepA can be maintained under a critical
level when the correct plasmid copy number is reached
(341).

Apart from the regulation of the copy number (3), the
RepA protein determines the incompatibility between
pSC101 and related plasmids by binding to the three iterons
of the origin (44, 172, 358). Such an incompatibility mecha-
nism could be explained by a passive adsorption of replica-
tion initiator proteins according to the titration model of
Tsutsui et al. (331).

REPLICATION OF BROAD-HOST-RANGE PLASMIDS

Some plasmids belonging to the E. coli incompatibility
groups IncC, IncJ, IncN, IncP, IncQ, and IncW are capable
of replication and remain more or less stable in diverse
unrelated gram-negative bacteria (152, 230). In particular,
the plasmids of the IncP and IncC groups (equivalent to the
IncP1 and the IncP4 groups, respectively, in Pseudomonas
spp.) display a very extensive host range (7, 8, 152, 311),
providing that they possess the complete IncP or IncQ
replication system in addition to incompatibility determi-
nants (246, 279). As far as is known, only in strains of
Myxoccocus xanthus (131), Bradyrhizobium japonicum (63),
and Bacteroides spp. (105, 270, 271) are IncP, IncQ, and
both groups of plasmids, respectively, incapable of autono-
mous propagation.

The plasmid-encoded replication functions of IncP and
IncQ plasmids and their control are far more complex than
those in narrow-host-range plasmids. They also differ in
being distributed in several regions of the plasmid genome
(9, 152, 230, 249, 300, 311, 364).

IncP Plasmids

Depending on the homology of their replication and trans-
fer functions, IncP plasmids are divided into the two sub-
groups, IncPa and IncPpB (43, 278, 356). Extensive investi-
gations have been made with the IncPa plasmids RK2 and
RP4. These plasmids cannot be distinguished from each
other or from RP1, R18, or R68 (31, 51, 287, 338).

Properties of the replicon. RK?2 is 60 kb long (161, 224) and
has a copy number of 4 to 7 in E. coli (76, 102) and 3 in
Pseudomonas aeruginosa (129). Three major areas partici-
pate in replication and initiation regulation. They are distrib-
uted in a region of 20 kb on the RK2 genome (16, 309, 312)
(Fig. 4) and are separated by a copy of the transposon Tn/
and by determinants of tellurite and tetracycline resistance
(26, 224). One of these three regions contains the replication
origin (188, 282); the others, designated 7rfA and trfB (trf
represents trans-acting replication and maintenance function
[300]), act in trans on replication initiation (zrfA) (75, 231,
307) and its regulation (#rfA and trfB) (255, 298, 307, 365).
Replication in various bacteria requires the replication origin
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(oriV) and the trfA* operon (250, 251), which is derived from
the 1rfA operon by deletion of a regulator determinant (zrfA
AkilD operon [251, 301]; see below). Nevertheless, for stable
maintenance of RK2 in Rhizobium meliloti, Agrobacterium
tumefaciens, Caulobacter crescentus, Acinetobacter calco-
aceticus, and Rhodopseudomonas sphaeroides, regulator
genes are necessary to a certain extent, whereas such genes
in E. coli, P. aeruginosa, P. putida, Azotobacter vinelandii,
and Alcaligenes eutrophus are not essential (251, 256).

Origin structure: requirements in different hosts. The 6
mode of replication starts in RK2 unidirectionally at oriV
between the coordinates at kb 12.2 and 13 on the plasmid
standard map (82, 188, 305). The molecular organization of
RK2 oriV shows no fundamental differences from those of
many narrow-host-range E. coli plasmids (81, 173, 257, 282,
305) (also compare Fig. 3 with Fig. 4, left side). The oriV
region consists of (i) eight 17-bp iterons in two clusters (of
three and five), (i1) a putative promoter surrounded by
DnaA-binding sites and a putative IHF-binding site (Table
1), (iii) a 49-bp A+T-rich sequence (74% A +T) with a further
DnaA box, and (iv) a 67-bp G+C-rich sequence (79% G+C)
(97, 277, 282). An additional copy of the 17-bp iteron
overlapping a putative promoter is situated upstream from
oriV (305), and two degenerated repeats in an inverted
orientation are found downstream (311). In the oriV region
three open reading frames are found (305); two of these are
associated with obviously trans-acting elements concerned
with copy number and incompatibility (Fig. 4, copAlincA
and copBlinc¢B) (305).

Generally, the same origin fragment is used for replication
in different bacteria; however, depending on the host, some
fine structures of oriV are not as important or can be totally
omitted. For replication initiation in E. coli, a 393-base-pair
Hpall fragment (Fig. 4, oriV*) carrying the DnaA boxes, five
of the iterons, and the A+T- and G+C-rich sequences is
sufficient (249, 282, 313). In contrast to the A+T-rich se-
quence, the G+C-rich area is not needed for replication (50,
152), but by creating secondary intrastrand folding (282)
and/or by using poly(dG-dC) stretches (143), it may cause a
dissociation of the A+T-rich region, which is possibly bent
by dA clusters (146, 282, 367).

Unlike E. coli, replication in Pseudomonas species re-
quires the presence of the whole oriV segment of 617 bp
(250), whereas for replication initiation only certain parts of
it are absolutely necessary. In E. coli, the ability to replicate
is lost if the last iteron located in the cluster of five in the
wild-type plasmids is destroyed; however, this is not the
case in P. aeruginosa, P. putida, or P. stutzeri (152, 153,
205). Minimal replicons consisting of oriV and the 7rfA gene
with a similar destruction of the fifth iteron or an interruption
in the sequence near the fifth repeat are unable to replicate in
P. putida and show a complete or partial loss of replication
ability in P. aeruginosa (50). Another host range mutant of
the wild-type plasmid which is able to replicate in E. coli, P.
aeruginosa, and P. putida, but not in P. stutzeri, interferes
with the iteron that overlaps the promoter outside of the oriV
region. It is therefore suggested that a gene product made
from this promoter is required by P. stutzeri but not by the
other bacteria (152, 205). Furthermore, hosts may differ with
respect to the involvement of the DnaA protein in replication
initiation, because insertions between the DnaA boxes and
the cluster of five iterons inactivate the oriV in E. coli and P.
putida, but not in P. aeruginosa (50, 152). This effect of
unnatural spacing may indicate either that there are different
specificities of DnaA proteins, which are, as far as is known,
highly conservative (216, 272) or that replication does not
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FIG. 4. Regions of broad-host range IncP plasmid RK?2 involved in replication initiation and its regulation (compiled from figures and data
in references 97, 148, 152, 188, 277, 282, 298, 304-306, 310, and 364; for further information, see the text). At the top of the figure, the loci
of the origin and genes involved in the initiation of replication and its regulation are shown according to the standard map (224) (¢rfA and trfB,
trans-acting replication functions; incC, incompatibility determinant; kil and kor genes, complex gene system of replication control). goPop
indicate promoters with a KorA operator (OA) and a KorB operator (OB); Py marks a promoter having only a KorB operator. Horizontal
arrows show the direction of gene or operon transcription. The sites of interaction of gene products are indicated by curved arrows. Positive
interactions are depicted by dashed lines; negative interactions are depicted by solid lines. Question marks signify proposed interactions of
unknown mechanisms. Some significant restriction sites (Bg, BglII; E, EcoRI; S, Sall; Ss, SstII) and the coordinates in kilobases are given
as reference points. At the bottom, at the left, a schematic illustration of the oriV region is shown. Arrows (4}, ) mark direct and inverse
repeats of 17 bp, which are the putative binding sites for the trfA proteins Al and A2; @, DnaA boxes; [J, putative IHF-binding site; O (P),
putative promoters. In addition, the extension of the minimal origin in most bacteria (oriV) and in E. coli (oriV* with five 17-bp repeats), the
length of a G+C-rich and an A+T-rich segment, the direction of replication, and the extension of elements involved in copy number control
and incompatibility are given. Dashed horizontal arrows show putative transcripts. At the bottom, at the right, the region coding for the
replication initiation proteins Al and A2 is illustrated. Horizontal arrows indicate transcripts with their direction of transcription, and the
boxes mark the extension of the putative kilD reading frame and of the reading frames for the trfA products Al and A2. The dashed curved
arrow represents the positive (+) action of proteins Al and A2 at the origin.

depend on DnaA in all hosts. It has recently been shown that
RK2 replication in E. coli is dependent on DnaA in vivo and
in vitro as well as that the DnaA-binding site in the A+T-rich
region is necessary (97, 228).

Replication initiation proteins of the #fA operon. The
different requirements of hosts concerning the fine structure
of oriV and the different effects of the destruction of the fifth
iteron in the wild type or in the minimal replicon (showing
the dependence of the presence or absence of regulator
genes) could be interpreted as an indication that in distinct
hosts, different rrfA gene products are required and/or that a
differential amount of the #rfA gene expression is necessary.
Similar conclusions can be drawn from the observation that
an interruption of the zrfA gene and its accompanying
promoter region by transposon integration prevents RK2
replication in E. coli but not in Acinetobacter calcoaceticus,

R. meliloti, or various Pseudomonas species (48, 152, 154).
Further support for this conclusion is given by #rfA mutants,
which are temperature sensitive for replication in E. coli but
not in P. aeruginosa or R. meliloti (123, 311, 329).

The trfA operon codes for three different proteins: one is
a regulator determinant called KilD, and the other two are
the replication initiation proteins Al and A2 (Fig. 4). The
proteins Al (43 kDa) and A2 (32 kDa) are products of the
same reading frame, but the synthesis of A2 starts 291 bases
downstream from the A1l start codon (69, 149, 267, 268, 275).
A2 is an essential and efficient protein for RK2 replication
initiation in E. coli (149, 268) as well as in P. putida, R.
meliloti, Agrobacterium tumefaciens, and Azotobacter vine-
landii (69). In contrast, RK2 replication in P. aeruginosa
requires the gene for the larger protein, Al (and probably A2
as well) (69). Al and A2 possess homologies to double-
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TABLE 1. Putative IHF-binding sites in the basic replicons of plasmids coding for a Rep protein®

Plasmid” Position” Sequence? Characteristics of surrounding sequences Reference
pSC101 547-559 TAAcccaTTGAaT Located between a DnaA box, two 13-mer tandem repeats, and RepA- 94
binding sites, surrounded by long poly(T) and poly(A) stretches
R6K vy 61-73 TAAgt tgcTGATT Adjacent to five interons in a 113-bp A+T-rich region (79% A+T) 280
76-88 TAttaatTTtATT
262-258 CAACCtgTTGATA Flanked directly by five iterons and two putative Dam methylation sites
P1 557-569 TgAcgggTTGeTA Overlapping the third iteron in a cluster of five between two Dam 2
432-420 TAtggaccTGATT methylation sites, near two DnaA boxes
1831-1843 TcAccagTTGATA Adjacent to a cluster of nine iterons
R1 1528-1540 acAcctgTTtATA Adjacent to RepA-binding sites. separated by three TTTAAA repeats 178
1549-1561 aAActacTTaATT in two turns of the helix
1558-1570 aAttacaTTcATT
R751 171-183 TAtgtccTTGATcC Located between a group of three iterons and a DnaA box 276
RK2 260-272 aAAacgccTGATT Located between a group of three iterons and a DnaA box, flanked by 281
A and T stretches in turn of the helix
pBE-2 648-660 TAAaacgTTaAaT Adjacent to a DnaA box and a cluster of four iterons of 19 bp, Kiies et al., in
663-675 gAAggcgTTaAaA surrounded by three direct 13-bp repeats preparation
672-660 TAAcgccTTctTA

“ Not complete. In addition, sites had been found by the authors, e.g.. in the plasmids. F, P4, pUC1, R485, and Rtsl. R751 and RK2 are broad-host-range
plasmids (277); pBE-2 is a narrow-host-range plasmid of Methylomonas clara (177); all others are E. coli plasmids.
» Dependence in replication and binding of IHF is shown for pSC101 and R6K vy (78, 94, 286).

< Coordinates of nucleotides according to the references.

< Boldface letters mark the positions conserved in IHF-binding sites: capital letters show nucleotides which agree with the IHF consensus sequence

YAA- - - -TTGATW (95, 164).

stranded DN A-binding proteins and may form the secondary
structure characteristic of these protein types (275). They
are presumably analogous in their function and may bind to
the 17-bp iterons in the oriV region (152, 278). As yet, there
is no experimental evidence for this assumption, although
both proteins are detected together with others in replicating
DNA-membrane-protein complexes from E. coli minicells
(148). Analogous to the procedures in the oriC of E. coli and
to the model of pSC101 replication initiation, proteins Al
and A2 bound to the oriV region and also oriV-linked host
proteins (e.g., DnaA [97]) may associate with a protein-DNA
complex under deformation of the DNA. If the proteins are
correctly assembled and DNA curvature is correct, this
complex may act as a replisome. It is not yet known whether
the same replisome must form in all hosts. Different repli-
somes seem more likely because, for example in P. aerugi-
nosa, the DnaA protein appears to be superfluous and this
bacterium is the only one with a detectable requirement for
Al (see above). Further arguments for variations in the
replisome structure are supported by the differences in
sequence requirements for oriV function in different bacte-
rial species, as discussed above. One might also speculate
that in the same host some variations in the replisome, e.g.,
fluctuations in the use of Al and A2, may occur, because in
P. aeruginosa containing only A2 some residual replication
takes place (69).

Replication initiation. At present, only limited knowledge
relating to the replication initiation process in the RK2 origin
and the host enzymes involved is available. In E. coli Pol T is
not required (300, 309), whereas the DnaA protein, DnaB
helicase, DnaG primase, gyrase, and Pol I are (97, 228).
This situation is similar to the replication initiation of nar-
row-host-range plasmids coding for their own initiator pro-
tein (for examples, see references 106, 142, 178, 201, 222,
and 350 and references therein). Owing to the presence and

position of an ITHF recognition site in the RK2 oriV (Fig. 4;
Table 1), participation of the IHF in replication in E. coli is
suggested; binding of the E. coli DnaA protein to the origin
has been shown to occur (97).

Both biochemical and ultrastructural evidence from using
DNA-membrane complexes isolated from E. coli supports
the involvement of RNA polymerase in RK2 replication
initiation in vitro (82, 83, 148). Since replication also occurs
in soluble extracts of E. coli under RNA polymerase-inhib-
iting conditions, a primer formation independent of RNA
polymerase is plausible (229, 311). However, this observa-
tion cannot exclude the possibility of an RNA polymerase-
dependent priming, since, similar to the E. coli oriC, alter-
native pathways via primases or RNA polymerase could
exist (187, 372).

In the membrane-dependent in vitro system, in addition to
primer formation, the requirement for the RNA polymerase
can be explained by transcription and translation of the #rfA
and the rfB proteins, which occur at the same time as
replication initiation (83, 148). Proteins associated with the
DNA-membrane complex and synthesized de novo are the
essential Rep proteins, Al and A2 (69, 148, 149, 267), and the
38- and 30-kDa trfB proteins B1 and B2, which are respon-
sible for the trans incompatibility effect of the incC determi-
nant (20, 148, 189, 303, 310) (Fig. 4, top). Possible functions
of B1 and B2 could be (i) a fine regulation of the replication
initiation events within the origin, (ii) a transcription or
translation modulation of trfA operon expression, or (iii) an
effect on the stability of trfA proteins A1 and A2 (303).

Regulation of replication by the kil-kor genes. In addition to
the proposed regulation of the 1fA protein level by the incC
determinant (303) (see above), the expression of trfA operon
is negatively influenced by the products of korA, korB, and
korF (20, 297, 303, 363, 364), which are located together with
incC in the trfB operon (147, 275, 299, 304, 310).
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korA (also called korD or trfB [268, 298)), korB, and korF
are part of the complex regulation network organizing the
adaptation of the RK2 basic replicon to the prevailing host
conditions and to autonomous maintenance in the different
gram-negative bacteria (251, 255, 308). The regulation net-
work (Fig. 4) consists of various kil determinants potentially
lethal to the host cells and of kor products (kor genes are
kil-override genes) preventing the lethal action of the kil
determinants (20, 363, 364). Altogether, five kor determi-
nants (korA, korB, korC, korE, and korF) and four kil
determinants (kilA and kilB [synonym to kilB2] [19, 273];
kilC, and kilD [synonym to kilB1] [233, 274]) are known (304,
364).

One key step of the kil-kor regulation is exerted by the
101-amino-acid basic KorA polypeptide (19). KorA has a
negative influence on the rfA-kilD expression and kilA
expression and inhibits 7#fB operon expression by autore-
pression (298, 365). KorA acts positively on the expression
of the korC product (363), which, in turn, negatively controls
the kilC gene (77, 363). The second regulator protein, KorB,
with a molecular mass of 39 kDa (147, 299) (former estima-
tions were 49 to 52 kDa [20, 276]), represses the trfA operon
(255, 268, 307), the trfB operon, and the expression of kilB
(77, 232, 268). The kilA gene is influenced by KorB only in
the presence of KorA (17, 364). KorB can be replaced by
KorE in its function as a corepressor of the kilA gene (364).
KorF has similar effects as KorB on the expression of the
trfA and trfB operons (304). KilD, which is probably en-
coded by the 116-amino-acid open reading frame of the 7rfA
operon (267, 275), can counteract the korA-korB repression
of the 7rfA operon, although at present this mechanism is not
established (255, 298). Such regulation effects have not been
reported for other kil genes whose molecular mechanism of
action(s) are also unknown.

The regulation system, with the multiple repression of the
trfA operon essential for replication, is significant for the
broad-host-range character of RK2. Reductions of the host
range or instabilities can be induced by changes in the
natural arrangement of the regulator genes or by deletions of
singular components (16, 17, 251, 255, 298, 302, 308).

Promoters of genes involved in replication and its regula-
tion. The genes underlying both KorA and KorB repression
are characterized by strong homologous promoters with two
operatorlike palindromes (19, 275, 298, 365). One palin-
drome (called OA [Fig. 4]), which overlaps the —10 se-
quence of the promoters, causes the KorA sensitivity (298,
365); the other (called OB [Fig. 4]) is located near the —35
region and seems to be the KorB target site (273). The
putative kilB promoter is somehow an exception, since it is
regulated only by KorB with an operator which overlaps the
—10 region in a palindrome (267, 268, 273).

The promoter structures of the trfA operon and of regula-
tor determinants are important not only in gene regulation
but also for the replication capability or RK2 in different
bacteria. The promoter intensity of the trfA operon is quite
similar in E. coli, P. aeruginosa, and P. putida (229). It is
therefore not unlikely that the promoters of the regulatory
genes, which show considerable homology to the trfA pro-
moter (see Fig. 6), direct similar levels of transcription in
these three and probably other strains, too (229, 230).

IncQ Plasmids

The best-known representatives of IncQ plasmids are the
8.7-kb multicopy plasmids RSF1010, R1162, and R300B,
which are obviously identical but were independently iso-
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lated from different hosts (18, 103, 104). RSF1010 and R1162
are used mainly for replication studies in vivo and in vitro.
These plasmids have a copy number of 10 to 12 per chromo-
some in E. coli and 30 to 60 in P. aeruginosa (18, 166); other
reports give values of 10 to 50 (103), 9 to 28 (253), and 40 to
60 (190) per E. coli chromosome. Replication in E. coli starts
uni- or bidirectional with the same frequency from an origin
2.9 kb from the unique EcoRI site (55) (Fig. 5). In P.
aeruginosa, replication starts preferentially from the same
region (253).

Basic replicon and structure of the origin. The basic repli-
con of RSF1010 is composed of two trans-acting regions and
one cis-acting region, which are separated by mobilization
genes and a transfer origin (28, 191, 244) (Fig. 5). The cis
sequence (430 bp between positions 5.9 and 6.3 kb [Fig. 5])
containing the origin comprises two regions, of 210 and 220
bp. Their relative orientation and distance can be altered
without the loss of replication ability in vivo, but in vitro a
reduction of replication has been reported (134, 169). Nev-
ertheless, measurable in vivo instabilities and copy number
reduction occur when the two elements are more than 2 kb
apart (134, 169).

The larger of the cis-acting fragments regulates replication
and determines incompatibility (167-169, 192, 226). It is
composed of three and one-half direct repeats of 21 bp, a
40-bp A+T-rich (68% A+T) sequence, a 60-bp G+C-rich
(68% G+C) sequence (168, 169), and a putative nonfunc-
tional DnaA box within the A+T-rich region (unpublished
work of E. Scherzinger, cited in reference 230). The struc-
ture of this region is similar to regions in the origin of IncP
plasmids (Fig. 5 and Fig. 4, bottom), and there are strong
homologies in the iteron sequences of both groups of plas-
mids (168, 192). For the broad-host-range characteristic,
these similarities seem to be insignificant because sequence
similarities are also found in the direct repeats in IncP
plasmids and in E. coli plasmid of six different incompatibil-
ity groups (277). In addition, similarities in the iteron se-
quences could be detected among IncQ and IncP plasmids,
the E. coli plasmid F, and the Methylomonas clara plasmid
pBE-2 (U. Kiies et al., manuscript in preparation).

The second fragment (210 bp) in the RSF1010 origin has a
large inverted repeat which may be joined to make a stem of
46 or 60 bp (including some mispairs) with an intervening
loop of 37 bp (167), producing a cruciform structure. The
formation of such a cruciform structure may be supported by
the presence of dA clusters in-turn to the helix, which are
interrupted by GC sequences (an arrangement predeter-
mined for DNA bending [146, 367]) and/or by destabilization
of homologous strand pairing through Pur - Pyr stretches
(348), both found in the palindromic sequence (170). The
inverted repeat and probably its secondary structures are
important for replication initiation, because on deletion of
one palindrome half, the origin DNA is disabled or only a
rest activity of replication remains (170; P. Scholz, Ph.D.
thesis, Free University of Berlin, 1985). Replication starts at
two points within a conserved 10-bp sequence at the base of
the 60-bp stem (170), where two plasmid-specific single-
strand DNA initiation signals (designated ssiA and ssiB or
oriL and oriR) are located in opposing directions (122, 254).

Replication initiation. Replication initiation in vitro and in
vivo depends on the three proteins RepA, RepB, and RepC,
which are encoded in the two trans regions of the basic
replicon (56, 136, 249) (Fig. 5). RepC recognizes the origin
and positively regulates the replication initiation by binding
to the iterons of the larger cis region (107, 136). On the basis
of sequence homologies between gene 12 of phage P22, the
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dnaB gene of E. coli, and the repA gene of RSF1010 and on
the basis of structural similarities between the product of
gene 12, the DnaB protein, and the RepA protein, it has been
postulated that repA codes for a helicase (9; P. Scholz, Ph.D.

thesis). Recently, an adenosine triphosphatase activity, an
adenosine triphosphate-dependent single-stranded DNA-
binding activity, and a helicase activity were demonstrated
for purified RepA protein (254). The RepB protein (38 kDa),
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like its related larger protein RepB* (70 kDa), has an
RSF1010-specific primase activity in vitro (9). If single-
stranded DNA is used, primase activity can be observed; in
this case, the proteins RepA and RepC are not required
(254).

The replication of RSF1010 is dependent on host DNA Pol
IIT and gyrase but is independent of DnaA; the primosome
proteins DnaB, DnaC, and DnaG; and RNA polymerase (56,
107, 230, 253). As the primosome proteins functions are
taken over by the plasmid proteins, it is assumed that RepA,
RepB, and RepC form a primosomelike replisome, which
operates in replication initiation (9, 56, 107). As suggested by
the model in Fig. S, after specific binding to the iterons,
RepC may be directed to the inverted repeat of the second
cis domain of the origin (169), perhaps assisted by the action
of the RepA helicase. RepB primase could then be added to
the protein complex as soon as RepA and RepC reach the
palindromic sequence. This protein replication complex
might recognize the cruciform structure of the inverted
repeats or promote and stabilize its formation. Simulta-
neously, the replisome could initiate DNA synthesis at both
strands at the conserved 10-bp sequence at the base of the
60-bp stem (Fig. 5B). Alternatively, by the action of the
protein complex, the two initiation points could be brought
together by looping of the intervening 47-bp palindrome
before it starts replication at both points by the action of the
RepB primase (170). After the initial stages of initiation are
mediated by RepB, the decision about uni- or bidirectional
replication may occur (170).

In contrast to the idea of initiation by a cooperation
between both start points, the function of the single-strand
initiation signals of oriV, ssiA, and ssiB have been observed
to be independent of each other (122). However, another
mechanism of replication initiation is conceivable concern-
ing observations at the E. coli oriC, or the origin of pSC101,
N, and R6K v (27, 59, 60, 70, 199, 258, 286, 367). By this
mechanism, the binding of RepC to the one region of the
RSF1010 origin may alter the DNA structure of the other cis
element, offering RepA helicase a chance for entry into the
DNA helix. In consequence, double-stranded DNA may be
opened and one or both single-stranded initiation signals
may be used by the RepB primase for replication initiation.

In all the models, bidirectional replication of IncQ plas-
mids can be explained simply by the existence of the two
inverted initiation points, whereas unidirectional replication
may be determined by the relative positions of the two cis
regions. The priming of DNA synthesis, or chain elongation
at the start point nearer to the RepC-binding sites, i.e., ssiA,
is a prediction of the models (122, 170), consistent with the
preferred direction of undirectional replication found in vivo
(55, 253). In contrast, it was recently shown by subcloning
the initiation points separately in an M13 mutant that ssiA is
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more efficient than ssiB, irrespective of its position relative
to the RepC-binding site (122).

Expression of the Rep proteins. Both the Rep proteins,
which make primer formation independent of host enzymes,
and precise regulation of the rep gene expression are respon-
sible for the broad-host-range character of IncQ plasmids
(9). The RepA and RepC proteins are encoded by the same
operon, i.e., one of the trans regions, sometimes called repl.
The repB and repB* genes are localized in another regulator
unit, i.e., in the second trans region (also called repll) (9,
135, 249) (Fig. SA). Alternatively, starting at the promoter of
the repll operon (Fig. 5, promoter P,), all the rep genes
could be transcribed simultaneously, giving a polycistronic
messenger RNA (9).

Each transcription unit is autoregulated by small gene
products, whose reading frames are located directly behind
their operon promoters and in front of the coding sequences
of the rep genes (Fig. SA). The promoter of the repll operon,
P,, is probably regulated by a 10-kDa protein. A 7-kDa
protein specifically binds to the promoter of the repl operon,
P,. The regulation of P, seems to influence replication in P.
putida, whereas P, seems to be fundamental for gene regu-
lation in E. coli (9).

As well as regulation of the expression of RepA on the
transcriptional level, another negative regulation factor is
known on the translational level. This is a 75-base RNA
which is antisense to the 5’ end of the repA-repC transcript
and prevents the synthesis of the RepA protein (and proba-
bly of RepC) (134). In addition, expression of repC, which is
rate limiting in replication (107), may be hampered by a
thermodynamically stable structure overlapping the ribo-
some-binding site in front of the repC gene (254).

REASONS FOR HOST RANGE SPECIFICATIONS

Plasmid replication in gram-negative bacteria depends on
host enzymes and on plasmid-encoded and plasmid-con-
trolled cis and trans determinants. Some plasmids have
determinants that are recognized in almost all gram-negative
bacteria and act correctly in each host during replication
initiation and regulation. Other plasmids possess this ability
only in some bacteria. The reasons for these host-dependent
properties of plasmids are at present only partly understood.

Replication Initiation at the Origins

The sequence and structure of plasmid origins and basic
replicons and, in addition, some regulatory mechanisms of
replication initiation are reasonably well known. However,
with the exception of ColE1-type plasmids and, to a certain
degree, RFS1010, the sequence of events in replication
initiation at the origins is not well understood. Little is
known about the role of the host in plasmid replication.

FIG. 5. (A) Basic replicon of broad-host-range IncQ plasmid RSF1010 (compiled from data and figures in references 9, 107, 122, 134, 135,
167, 169, 170, and 249; for further information, see the text). The bold lines above the map mark the extension of the essential rep genes (the
repl and the repll operon) and of the origin (oriV). P,, P,, P, and the small boxes designate promoters for the rep operons. Horizontal arrows
show different transcripts and the direction of their transcription. Symbols: €. reading frames of different proteins. The proteins are shown
as follows: @ (the 7-kDa repressor, the 10-kDa repressor, and the RepC protein), @ (RepA protein), and @ (primases). Dashed arrows mark
sites of interactions (positive [+], negative [—], or putative [?]). E, Hp, and P (EcoRI, Ps11, and Hpall, respectively) are restriction sites used
as reference points to the map of RSF1010 (161, 170, 254). In the expanded segment, the structural features of the origin are shown: three
and one-half repeats of 21 bp (@3 ). a nonfunctional DnaA box (@), and an inverted repeat of 46 bp ({3J) or 60 bp (C®), respectively. The
borders correspond to the start sites of replication. Horizontal arrows indicate directions of replication. The extensions of the origin, of the
incompatibility determinant, and of a G+C-rich and of an A+T-rich fragment are shown. (B) Model of uni- and bidirectional replication
initiation of RSF1010 (by using data from reference 170). The DNA double strand is schematically shown by two lines. Symbols: @, 21-bp
repeats; M, start sites of replication; @, & . @ . proteins; =w-. leading-strand synthesis; —-—, lagging-strand synthesis (further
information can be found in the figure and the text).
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For ColEl-type plasmids, there are indications that host
range restriction depends on initiation of replication. For
example, ColEl cannot replicate in cell-free Pseudomonas
extracts, but it shows a partial replication ability when
purified E. coli gyrase and DNA polymerase I are added.
Therefore, in gram-negative bacteria, differences in these
enzymes (and possibly other factors) seem to be responsible
for the restriction of ColEl replication to members of the
family Enterobacteriaceae (56) and, somewhat surprisingly,
members of the unrelated family Legionellaceae (73). For
plasmids such as pSC101, which require the DnaA protein
for initiation, the restriction may be due to other host
proteins, e.g., DnaB, which cannot be replaced by a DnaB-
like helicase from P. aeruginosa in the replication of E. coli
phage $X174 in vitro (67).

In contrast, the broad-host-range IncQ plasmid RSF1010
seems to have gained extensive independence from host
enzymes; this plasmid carries out the first priming step in the
absence of significant host proteins (9). At present, there is
no evidence for similar host independence for primer forma-
tion at the origins of the broad-host-range IncP plasmids.
Indeed, RK2 codes for its own primase, which can act during
vegetative replication (160, 162); however, the encoding
gene is located outside the region that is essential for
vegetative broad-host-range replication (161); the primase is
required for conjugative plasmid transfer (152, 186, 206).

The basis for the broad-host-range replication initiation of
RK2 is not clear, because the structure of the minimal
replicon does not differ significantly from that of the enter-
obacterial plasmid pSC101 and those of other narrow-host-
range E. coli plasmids. In addition, with regard to host
range, it should be mentioned that only a few plasmid-
encoded proteins are functionally characterized: (i) the
RSF1010 Rep proteins (see above); (ii) the initiation protein
O of phage A and the 7 protein of the E. coli plasmid R6K,
which, by binding to their corresponding origins, induce
conformational alterations and helix destabilization (199,
200, 252, 366, 367); and (iii) protein P of phage \, which, in
association with protein O, directs the assembly of host
proteins such as DnaB and DnaG to the origin and leads to
the formation of a replisome (60, 89, 351). It is not known
whether the function(s) of the trfA proteins Al and A2 at the
origin of RK2 is comparable to that of the initiator proteins
of narrow-host-range plasmids, but this can be assumed.
However, with two types of initiator proteins, RK2 may
have a more extended flexibility for adaptation to different
hosts. Depending on the specificities of the host enzymes,
both proteins may alternatively act in the same way as an
inductor and/or a part of the replisome (69, 267). Using the
strategy of two protein types, a better adaptability to dif-
ferent hosts may also be gained for RK2 replication by the
two IncC proteins, the putative replication fine regulators Bl
and B2 (303), and for RSF1010 by the two different RepB
primases (9). Even though the RSF1010-encoded Rep pro-
teins seem to be sufficient for the replication initiation, some
unknown host factors, e.g., for modifying the origin DNA
structure, may exist which, depending on the host, influence
the use of the two RepB species.

Factors involved in replication initiation in E. coli which
strengthen DNA curvatures (30, 57, 234, 243, 286) and
destabilize the helix (72, 237) could be DNA-binding histone-
like proteins such as IHF (27, 94) and protein HU (27, 58,
217) or methylases such as Dam (1, 244, 360). HU and most
of the histonelike proteins interact nonspecifically with
DNA (68). Specific recognition sites for IHF (YAA — — — —
TTGATW [95, 164]), as for Dam (GATC [110]). are found in
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different amounts among E. coli plasmids and broad-host-
range plasmids (Table 1). Since these factors do not gener-
ally modify the DNA conformation (57, 95), the necessity of
the recognition sites for IHF and Dam and their function in
changing the DNA structure remain to be determined for
most of the origins. However, one should except IHF also to
be involved in replication initiation of plasmids other than
pSC101 (94, 286) and R6K (78), e.g., because the putative
IHF-binding sites are located (often in clusters) adjacent to
sequences important for replication (e.g., DnaA boxes, Dam
methylation sites, binding sites for Rep proteins, and tandem
repeats in A+T-rich sequences). In addition, the IHF-
binding sites are often found in or near sequences prone to
natural bending [e.g., by poly(dA) stretches in-turn to the
helix]. Similar sequences to the E. coli IHF-binding sites are
located adjacent to a DnaA box and a group of iterons in the
origin fragment of the Methylomonas clara narrow-host-
range plasmid pBE-2 (Table 2). At present, nothing is known
about the involvement of factors such as IHF and other host
proteins such as DnaA in replisome formation and replica-
tion initiation of pBE-2 in Methylomonas clara. Differences
in the structure or the use of those proteins in E. coli and
Methylomonas clara could disturb replisome formation at
the pBE-2 origin in E. coli and may account for the inability
of pBE-2 to replicate in E. coli (177).

In general, the ability to form a replisome is an important
step for the replication capacity of a plasmid in a bacterial
host. In the precise recognition of a replication origin and the
first steps of replisome formation, at least five elements are
involved (compare the synopsis in reference 68): (i) the
nucleotide sequence of the origin itself, (ii) proteins recog-
nizing specific sites within this sequence (e.g., DnaA, repli-
cation initiation proteins such as pSC101 RepA, RK2 A1 and
A2, and RSF1010 RepC), (iii) proteins modifying the DNA
structure of the origin (IHF, HU, and Dam), (iv) DNA
supercoiling (27, 91, 92, 252), and (v) bends in the DNA.
Further proteins, e.g., helicases and primases, should bind
to the prereplisome formed in the first steps, and if the
macromolecular DNA-protein complex is correctly formed,
replication should begin. Since a lot of factors participate in
correct prereplisome and replisome composition, it could be
assumed that essential factors are missing or mistakes in
their action and interaction occur if plasmids invade bacteria
beyond their usual host range.

In this context, the interesting observation should be
mentioned that the = protein of the narrow-host-range mul-
ticopy IncX plasmid R6K of E. coli (13 to 38 copies per cell
[145]) can complement repA gene-deficient derivatives of the
broad-host-range low-copy-number IncW plasmid pSa (two
or three copies per cell [292]) in E. coli (293). The initiator
proteins of both plasmids seem to recognize the same
palindromic arrangement of binding sites in the pSa origin
(293). Since the R6K = protein interacts well with the
heterologous origin of pSa, one wonders why these plasmids
are so different in their host ranges. For the variation found
in the host range extension of R6K and pSa, three explana-
tions (not mutually exclusive) are presented, as follows. (i)
R6K has three different origins (49), all dependent on the w
protein (81). Origins « and B are preferentially used in vivo
with approximately equal frequencies (49), but the activities
of both depend on the existence of the vy origin in cis (81).
Probably by binding to two different origins, dimers of the
protein mediate a tertiary interaction between them as
shown in vitro for the y and B origins (199). Hence, a
replisome formed at R6K origins may have a more complex
structure and may be more susceptible to incorrect protein-
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TABLE 2. Codon usage of genes coding for replication initiation proteins and comparison of the
average usage of E. coli and P. aeruginosa

Avg usage”  RK2 trfA¢
Amino RSF1010 R401 pSC101
- Codon P. " - -
acid E.  aeru- Al A2 repC’ repA repA

coli .
ginosa

Avg usage”  RK2 trfA¢
Amino RSF1010 R401 pSC101
. Cod P. ) .
acid odon vo.li aeru- Al A2 repC* repA¢  repA‘
ginosa
Phe uuu 10 1 79 3.5 3.5 34.7 22.2
Phe uucC 20 31 31.4 389 21.3 20.8 28.5
Leu UUA 5 1 0 0 0 17.4 38.0
Leu UUG 6 8 13.1 14.0 7.1 6.9 19.0

Leu CUU S 52 7.0 10.6 27.8 15.
Leu CUC 5 23105 105 1
1
2

ho

Leu CUA 1 26 35
Leu CUG 6 61 523 596 63.8 27.8 9.5

Ile AUU 17 2 52 7.0

Ile AUC 41 39 314 28.1 . .

lle AUA 0 0 26 35 3.5 243 2
Met AUG 23 21 28.8 24.6

vVal GUU 32 3 3

vVal  GUC 9 33 1. . 0
vVal GUA 22 S 0 0 10.6 3.5 9.5
Val GUG 18 30 8. 9.5

Ser UCU 17 1 26 35 0 27.8 9.5
Ser UCC 14 16 15.7 14.0 3.5 0 32
Ser UCA 3 1 0 0 0 17.4 95
Ser UCG 3 16  28.8 24.6 3.5 10.4 6.3

Pro CCU 3 1 52 35 106 104 95
Pro CCC 2 16 105 0 21.3 3.5 3.2
Pro CCA 7 1 52 35 7.1 17.4 6.3
Pro CCG 25 30 183 246 248 6.9 3.2
Thr ACU 20 2 26 0 0 17.4  19.0
Thr  ACC 25 39 340 316 142 10.4  19.0
Thr ACA 4 1 0 0 0 104 222
Thr ACG 5 6 399 526 7.1 3.5 190
Ala  GCU 46 8 52 35 213 69 15.8
Ala GCC 14 62 445 351 319 17.4 3.2
Ala  GCA 28 3 105 35 142 243  19.0
Ala  GCG 28 32 288 246 56.7 10.4 3.2

Tyr UAU 7 S 52 7.0 7.1 20. 253
Tyr UAC 15 29 209 246 17.7 174 19.0

o0

His CAU 7 6 26 35 142 10.4 127

His CAC 13 20 183 246 177 3.5 6.3
Gln  CAA 9 6 105 3.5 14.2 243 253
Gin  CAG 31 37 36.6 38.6 284 69 158
Asn  AAU 6 3 79 7.0 7.1 17.4 285
Asn  AAC 31 36 105 14.0 142 10.4 411
Lys AAA 52 4 183 246 3.5 66.0 69.6
Lys AAG 20 35 523 59.6 532 313 253
Asp GAU 21 8 157 140 142 382 285
Asp GAC 31 52 445 456 355 24.3 9.5
Glu GAA 50 23 340 316 17.7 52.1  53.8
Glu GAG 18 37 445 456  39.0 17.4  31.6
Cys UGU 3 1 0 0 7.1 3.5 3.2
Cys UGC 4 13 157 211 7.1 0 3.2
Trp UGG 7 12 157 21.1 17.7 6.9 127
Arg CGU 38 6 157 7.0 3.5 17.4 0

Arg CGC 19 42 393 456 28.4 10.4 6.3
Arg CGA 1 2 131 140 106 139 6.3
Arg  CGG 1 9 157 140 42.6 0 3.2
Ser AGU 4 2 0 0 3.5 20.8 222
Ser AGC 10 24 131 105 248 10.4 9.5
Arg AGA 1 1 0 0 71 69 127
Arg AGG 0 2 26 0 0 10.4 19.0
Gly GGU 41 10 26 0 14.2 13.9 6.3
Gly GGC 31 71 314 38.6 63.8 17.4 6.3
Gly GGA 3 3 52 35 7.1 3.5 6.3
Gly GGG 4 S 52 35 213 104 0

“ Numbers refer to the number of times a specific codon occurs per 1,000 codons.
b Data for E. coli and P. aeruginosa were obtained from references 337 and 349: bold numbers indicate rare codons in E. coli (264), and underlined numbers

indicate rare codons in P. aeruginosa (349).

< Data for rep genes were determined from sequences in references 254, 275, 291, and 339; bold numbers indicate codons which are highly used in a rep gene
but are rare in E. coli, and underlined numbers indicate codons which are often present in rep genes but are rare in P. aeruginosa.

DNA interactions than a replisome formed at the relatively
simple pSa origin; pSa has 3 13-bp repeats in its minimal
replicon, whereas the R6K + origin exclusively has 14 of
these 13-bp repeats (293) or, including this 13-mer, eight plus
two half copies of a 22-bp repeat (281). These additional
sequences of the R6K +y origin, which are strong binding sites
for the w protein (81, 99), may frequently sequester the R6K
origins in nonproductive DNA-protein-DNA complexes.
This may be a normal mechanism for copy number control of
plasmids (304), but in nonpermissive hosts it could suppress
replication initiation totally. (ii) Compared with those of
R6K, RepA and/or the origin of pSa may have a more
extended flexibility concerning the affinity of replisome-
involved host enzymes of different bacteria. (iii) In contrast
to pSa RepA, the expression of R6K w protein may be
deregulated or may not occur in hosts unrelated to E. coli
(see below).

Replication Control

It is important for replication control systems to maintain
the frequency of initiation at a relatively low level, because
overreplication or runaway replication of plasmids will kill
the bacterial host (100, 197, 198, 333, 336). It has also been
shown that overproduction of initiator proteins can reduce
or inhibit plasmid replication (41, 80, 81). Failure of replica-
tion initiation control determinants may be another explana-
tion for the inability of plasmids to replicate in all bacteria.

Expression of replication initiation proteins. In plasmid P1,
which has a copy number equal to that of the E. coli
chromosome (233), 20 RepA dimers are found per plasmid
copy in vivo (290); for the F factor, having a copy number of
1 or 2, the upper limit of the concentration of the RepE
protein is estimated to be 100 = 50 molecules per cell (139).
The 1 protein of R6K is estimated to be present at between
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3,500 and 10,000 dimers per cell (80), i.e., about 90 to 770
dimers per plasmid copy, which might be an overestimation
(225). The intracellular concentrations of Rep proteins for
other plasmids are not as yet known, but it is generally
accepted that initiation proteins are present in the cell in
small and replication rate-limiting amounts.

Most replication control systems are closely connected
with the transcriptional regulation of expression of plasmid
rep genes either by autoregulation, as in the case of pSC101
(see above) and F, P1, or R6K (22, 41, 79, 133, 181, 240,
315), or by the action of (small) repressors, as in the case of
IncP and IncQ plasmids (see above) and also IncFII plas-
mids (61, 212). In bacteria that are not hosts of a particular
plasmid, an inadequate masking of promoters by (auto)re-
pressors for RNA polymerases may be one reason for the
incorrect amount of rep genes being transcribed. Indeed, a
promoter itself may not be recognized by RNA polymerases
per se in different species (229). The promoter of the RK2
trfA operon, postulated to be a broad-host-range promoter,
functions efficiently in diverse species (229). The same is
proposed for other RK2 and RSF1010 promoters (229). If
one compares these ‘‘broad host-range promoters’ with
those involved in the replication of narrow-host-range plas-
mids of E. coli (such as ColEl or pSC101), no striking
differences can be found with respect to the homology of the
promoter consensus sequences in E. coli and P. putida (Fig.
6). It is therefore doubtful whether the proposed broad-
host-range property is really specific for the RK2 and
RSF1010 promoters. Nevertheless, these broad-host-range
promoters may have a better buffer capacity in the correct
regulation of gene expression than those of narrow-host-
range plasmids. This buffer capacity may be improved by the
complex system of transcription regulator genes, as in RK2
(see above) and other IncP plasmids (311) and probably also
in the IncN plasmid pKM101 (R46) (352). In contrast, for
RSF1010, a buffer capacity could exist through the possibil-
ity of two different transcription starts for the rep genes,
which are preferentially selected in different organisms (9).

In the posttranscriptional stage, the intracellular concen-
tration of Rep protein could be regulated by the messenger
RNA (mRNA) half-life (29) or by protein stability (101). Both
may vary among different bacteria and may be decisive for
the ability of a plasmid to replicate. However, the amount of
translation of a rep mRNA depends not only on its relative
stability, but also on the further transcript properties; e.g.,
the distance of the Shine-Dalgarno sequence from the start
codon causes impaired translation if it is shorter than 5 or
longer than 9 nucleotides (151). In contrast, the homology
between a rep transcript and the 16S ribosomal RNA (rRNA)
may have a minor influence on the translation efficiency in E.
coli as long as three bases of the favored CUCC sequence of
the 16S rRNA are present (151). According to an analysis of
the Shine-Dalgarno sequences based on spacer length and
homology to the 16S rRNA (Fig. 7), the translation of rep
transcripts may be poor in E. coli (and perhaps in other
bacteria), which is consistent with a low and rate-limiting
intracellular level of replication initiation proteins. An ex-
ception seems to be repC of RSF1010, which should be
highly expressed according to the criteria stipulated in Fig.
7, but a thermodynamic stable secondary structure may
mask the Shine-Dalgarno sequence in the repC mRNA (254),
and this would negatively interfere with its translation (151).
In contrast, regulator proteins or nonlimiting products of rep
genes such as RepA of RSF1010 could be highly expressed
(Fig. 7).

Translation could also be influenced by the start codon of
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FIG. 6. Homologies of broad-host-range promoters (224, 225)
and of (putative) promoters of some E. coli plasmids (44, 230, 259,
291, 357) to the proposed promoter consensus sequences of E. coli
(111) and P. putida (124, 185). Symbols: %, homologous nucleotides
to the E. coli consensus sequence; #, ¢, homologous nucleotides to
the different P. putida consensus sequences.

the gene. Some rep genes start with GUG (RepC of RSF1010
[254], RepAl of NR1 [354] and R100 [242], RepAl of P307
[245], and RepA of ColV2-K94 [347]) or UUG (RepA of Rts1
[132]), which both have a lower translation efficiency than
the most common start codon, AUG (174, 236).

Another possibility of posttranscriptional regulation could
be mediated by codon usage. Codons used in the rep genes
of E. coli narrow-host-range plasmids, in contrast to those of
the broad-host-range plasmids, are mostly not common in P.
aeruginosa (Table 2). The influence on the translational rate
in P. aeruginosa is unknown, since, e.g., the tRNA content
of P. aeruginosa has yet not been determined (349). Rare
codons of E. coli interfering with a minor tRNA level, which
are found more frequently in genes having a low expression
level rather than in those having a high expression level
(264), are found to a high degree in genes of Rep proteins
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Regulator proteins
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*
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RK2, korA
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3“terminal sequences of 16S rRNA

AUUCCUCCAACPyY * E.coli
AUUCCUCUCPY # P. aeruginosa
UCUUUCCUPyY + C. crescentus

FIG. 7. Ribosome-binding sequences of different genes coding for proteins involved in replication of plasmids or its regulation. Sequences
are from references 9, 19, 135, 254, 275, 291, 310, and 357. The signs +, #, and % show nucleotides complementary to the 3’-terminal
sequences of 16S rRNAs of E. coli (+), P. aeruginosa (#), and C. crescentus (%) (266). The point (*) marks G - U pairing. The spacer length
between Shine-Dalgarno sequences and start codons (boldface letters) is marked by a horizontal line above the sequence.

(Table 2). For example, the rare codon, AGG, which may
negatively influence translation in E. coli (25, 238), occurs at
an unusually high level in the rep genes of pSC101 or R401
(Table 2). However, there is no clear opinion for or against
a regulation of gene expression by codon usage (see, e.g.,
references 25, 121, 238, and 265). On the basis of high
variations in the G+C content among gram-negative bacteria
(213), it is an obvious suggestion that codon usage in rep
genes can influence the maintenance of plasmids in bacteria.

However, pre- and posttranscriptional regulation mecha-
nisms of Rep proteins are necessary to maintain a low-level
translation of replication initiation genes. There are various
strategies which stringently control the expression of rep
genes in E. coli. In addition to those mentioned above, they
include transcriptional pausing (62, 354), a dependence of a
minor class of RNA polymerase involving the o32-factor
(344, 345), or a counteraction of gene translation to an
RNA-RNA annealing (227, 346). It may be possible to
resolve some aspects of host control in plasmid replication if
it is clarified whether and at what stage differences in pre-
and posttranslational regulation occur in specific hosts.

CONCLUDING REMARKS

At present, the knowledge concerning events in replica-
tion initiation of plasmids in gram-negative bacteria and
reasons for variation in host ranges is very incomplete. The
examples discussed in this review (ColE1l, pSC101, RK2,
and RSF1010) account for most of the progress that has been
made in understanding replication and its control. It can be
assumed that more than one of the reasons discussed above
or factors which are at present undiscovered could be
responsible for the propagation of plasmids in gram-negative
bacteria. The ability to replicate in a specific host may
depend on the stage of initiation and/or regulation of plasmid
replication. Further investigations of replication initiation of

narrow- and broad-host-range plasmids and their regulation
mechanism in different bacteria should bring further clari-
fication. To examine the relationship between plasmid
replication and host range, replication initiation of narrow-
host-range plasmids in hosts unrelated to E. coli (e.g.,
Methylomonas clara [U. Kiies et al., submitted]) should help
to further clarify the situation.
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