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1 Introduction

The purpose of this document is to detail the mathematical and statistical param-

eterization of the three submodels of the Tanentzap, Zou & Coomes birch invasion

model: 1) juvenile dispersal and recruitment; 2) juvenile growth and survival; and

3) adult growth and mortality; a section of text is devoted to each submodel. A

fourth section describes the relationships between deer browse pressure and deer

population counts at our study site, Creag Meagaidh National Nature Reserve,

Scotland. Within each section, we use separate subsections to report the methods

and results pertaining to the parametrization of each submodel. Operation of the

model is described in the accompanying User Manual.

2 Juvenile dispersal and recruitment

2.1 Spatial seedling dispersal behaviours

We used mapped stands of adult and juvenile trees at Creag Meagaidh to predict

juvenile dispersal using a deterministic model. We predicted the potential number

of seedlings produced by a tree as a function of tree height (Z, m; Ribbens et al.

1994):

g(Z) = STR
(
Z

8.5

)β
, (1)

where STR and β are estimated parameters that scale seedling production to

parent tree size and were relative to a 8.5 m tall tree, which was the mean across

adults. The minimum size for reproduction was set at 3 m (i.e. our definition for an

‘adult’ tree). The distribution of seedlings in relation to parent trees measured in

seedling plots was then fit to isotropic and anisotropic dispersal kernels employing

both Weibull (f1) and lognormal (f2) distributions (Greene et al., 2004). The

isotropic form assumes that dispersal is equally likely at the same distance in all

directions from a parent tree and the Weibull and lognormal kernels were of the

following forms (Eqs 2 and 3, respectively; Ribbens et al. 1994; Clark et al. 1998;

LePage et al. 2000; Greene et al. 2004):

f1(dij) =
1

η
eφd

γ
ij , (2)
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f2(dij) =
1

η
e
−

1

2

(
ln(dij/X0)

Xb

)2

, (3)

where dij is the distance from point i to the parent tree j, φ and γ are estimated

parameters, X0 and Xb are the estimated mode and steepness of the lognormal

kernel, and η is a normalisation constant equivalent to the arcwise integration of

the dispersal kernel. The Weibull model differs biologically from the lognormal by

assuming that seedling density is greatest at the base of parent trees. This may

arise, for example, if seeds are large and frequently collide with parent trees such

that their vertical acceleration and/or horizontal speeds are reduced, leading to less

distant dispersal (Greene et al., 2004; Pounden et al., 2008). Similarly, maximum

seedling densities at the base of trees may be identified in inverse modelling for

species of seeds dispersed by avian granivores that roost in trees of the same species

from which they have recently ingested seed (Schupp et al., 2002). Combining Eq.

1 with either Eq. 2 or Eq. 3 (i.e. fn) eventually allows us to predict the number

of seedlings (Ri) per m2 at a given point i:

Ri = STR
n∑
j=1

(
Zj
8.5

)β
fn(dij), (4)

In contrast, anisotropic kernels assume that dispersal distance depends on the

direction in which seeds are released from a parent tree because of the directional

effects of prevailing winds. Anisotropic and isotropic kernels are of the same

general form, except that the dispersal parameter φ of the Weibull kernel and the

mode of the lognormal kernel X0 are modified (Eqs 5 and 6, Gómez-Aparicio and

Canham 2008):

X ′0(d) = Xo − [A× cos(θ − δ)], (5)

φ′ = φ− [A× cos(θ − δ)], (6)

where A is the amplitude of the anisotropic effect, θ is the angle of the maximum

dispersal distance, and δ is the angle from each parent tree j to point i. A also

becomes incorporated into the normalization constant as η = η(A,X0, Xb).

Seedling densities depend on the establishment success of propagules in addi-

tion to the number of propagules that arrive at a given point (Ri). We predicted

the proportion of seeds that establish in each substrate type (gk) as follows (LePage
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et al., 2000):

Fi =
8∑

k=1

gkcik, (7)

where cik is the proportion of area (0.25 m2) at point i that is covered by sub-

strate type k, and Fi is the weighted substrate favorability for each point i. Fi

values scaled relative to each other by dividing each value by the largest esti-

mated Fi. Both the isotropic and anisotropic kernels (Eq. 4) were multiplied by

Eq. 7. Although we did not measure the influence of light on seedling establish-

ment (Caspersen and Saprunoff, 2005), the incorporation of different substrates

implicitly considers establishment under different levels of understorey light (e.g.

Calluna vulgaris versus Vaccinium myrtillus, Hester et al. 1991; Millett et al.

2006).

2.2 Model estimation and selection

We used maximum-likelihood methods to estimate parameters for models fit to

our seedling census (see main text). The negative log-likelihood of each model

was minimized with a Poisson error structure using 100 000 iterations of the simu-

lated annealing algorithm for the optim function in R (R Development Core Team,

2011). Simulated annealing is effective for approximating the global minimum of

the negative log-likelihood in a large search space (Belisle, 1992). Since the algo-

rithm decreases the search area with increasing numbers of iterations, we re-ran

the procedure with an additional 100 000 iterations using the estimates from the

first run as starting values in order to avoid being trapped in a local minima. Mod-

els were compared with the small sample unbiased Akaike Information Criterion

(AICc; Burnham and Anderson 2002), and the relationships between predicted and

observed values were summarized by calculating the percent of deviance explained

by each model (analogous with the proportion of variance in classical regression).

We also compared our models to two ‘null’ models that assume either a constant

seedling density per unit area (Ri = µ) or that seedling densities depend solely

on substrate favourability and not on parent tree distributions (Ri = µFi). We

estimated standard errors of model parameters, i.e. standard deviations of the

sampling distributions, from the inverse Hessian matrix, evaluated at the maxi-

mum likelihood parameter estimates (Ridout, 2009).
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2.3 Results of seedling dispersal models

Lognormal models were more strongly supported than Weibull models and ex-

plained the most deviance in observed seedling densities (Table 1). The spatial

distribution of parents was also important (substrate only model versus lognormal

models, Table 1), but the orientation of parents relative to dispersal kernels (i.e.

anisotropy) did not improve model support (AICc of the isotropic compared to

the anisotropic models, Table 1).

The exponent β, which scales seed production with parent tree height, was

0.07 for the isotopic lognormal model, which is considerably less than the expected

value of 3 derived from diameter-height relationships (Enquist et al., 1999). Thus,

we compared our most strongly supported model (isotropic lognormal) to one

where seedling production did not vary with parent tree height, i.e. β was fixed

at zero and 1 ≤ STR < ∞. A model without the effect of parent tree height

was by far most strongly supported among our set of candidate models (Table

1). Seedling densities declined exponentially with increasing distance from parent

trees, with the highest densities occurring less than 10 m from parent trees (Fig.

1). The most favourable substrate for seedling establishment was Agrostis-Festuca
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Figure 1. Seedling density (seeds m−2) dispersed by an adult Betula pubescens
predicted with the most strongly supported dispersal model (isotropic lognormal
with seedling density independent of parent tree height).
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Figure 2. Mean (+SE) for substrate favourability estimated with dispersal model
employing isotropic lognormal kernel.

grassland, although Calluna vulgaris was similarly favourable (overlapping SEs,

Fig. 2). Vaccinium spp. (predominantly V. myrtillus) were among the least

favourable substrates and this may be due to the fact that these species are asso-

ciated with low levels of understorey light penetration during moorland succession

(Hester et al., 1991), which subsequently inhibits the establishment of B. pubescens

seedlings (Atkinson, 1992). Extremely low favorability of moss contrasts with the

findings of Kinnaird (1974), but the relatively high susceptibility of exposed indi-

viduals to browsing on these substrates may explain their absence.

3 Juvenile growth and survival

3.1 Derivation of size-based matrix model

We estimated growth and survival of juvenile birch using five measurements con-

ducted at 2-year intervals of the numbers of juvenile trees in three size classes in

60 permanent plots at Creag Meagaidh. Our approach involved parametrizing a

matrix population model (A) from the abundance of juvenile trees in each height

8



tier i at time t (nt) to determine growth and survival of juvenile birch:

A =


s1 − g1 0 0

g1 s2 − g2 0

0 g2 s3

 , (8)

nt+1 = Ant, (9)

where nt
T = [ N1 N2 N3 ], Ni is the number of live trees in each plot in height

tier i, with tiers 1, 2, and 3 respectively corresponding with heights of 0 – 2, 2 – 3,

and >3 m, si is the proportion of trees in height tier i that survive from interval

t to t + 1 and gi is the proportion of surviving individuals that enter the taller

height tier, such that gi ≤ si. We sampled s3 from a normal distribution with

µ = 0.975 and σ2 = 0.003 (see Section 4).

One limitation with our approach is that Eq. 9 does not allow new trees to

establish within plots. We did not allow s3 to contribute to N1 directly since

our plots were only 100 × 2 m, and therefore, a large proportion of established

individuals are derived from parent trees outside of plots (i.e. given the dispersal

distances of adult birch, see Section 2). To overcome this challenge, we mapped

all adult trees (>3 m) within 300 m of each plot (n = 12 581 parent trees) in

November 2009. We then applied our most strongly supported model of juvenile

dispersal to predict the total number of juvenile trees <2 m in height that would

be expected to occur within each plot (NT ), given the dominant vegetation ground

cover recorded within each plot in 2009.

The total number of juvenile trees predicted by the dispersal kernel NT is a

function of the number of new trees recruited at each time period (i.e. NA) and

their survival (s1) and growth (g1) from the 0 – 2 m height tier from time t to

t + 1. NT will include juvenile trees of age 1 to T , where T is the maximum age

that a juvenile can reach in the 0 – 2 m height tier. We assessed T from 154

juvenile trees <2 m tall that we felled in 2008 across Creag Meagaidh, and from

which we cut thin (ca. 5 mm) basal sections that we sanded. Based upon counts

of annual growth rings using an optical microscope (Leica Microsystems GmbH,

Wetzlar, Germany), T was equal to 27 years. At a given time period t, the number

of trees that are newly arrived will therefore be equal to NA, and NA(s′1− g′1)1 for

trees that arrived in the previous year t− 1, where s∗1 =
√
s1 and g∗1 = 1−√g1 in

order to convert survival and growth estimates to annual rates. In other words, we

9



calculated the number of trees that arrived in the previous year × their probability

of survival to the second year – the number that grew into the taller height tier,

and extending this series to the full 27 years:

NT = NA(s∗1 − g∗1)0 +NA(s∗1 − g∗1)1 +NA(s∗1 − g∗1)2 + . . . NA(s∗1 − g∗1)27

= NA

[
(s∗1 − g∗1)0 + (s∗1 − g∗1)1 + . . . (s∗1 − g∗1)27

]
= NA

27∑
n=0

(s∗1 − g∗1)n. (10)

Eq. 10 is equivalent to the expanded form of the finite geometric Maclaurin

series and can be simplified as:

NT = NA

[
1− (s∗1 − g∗1)28

1− (s∗1 − g∗1)

]

NA = NT

[
1− (s∗1 − g∗1)

1− (s∗1 − g∗1)28

]
. (11)

Since a single NT was estimated for each plot based on surrounding adult trees,

implicit in Eq. 11 is the assumption that NA is constant among years. We then

added bT = [ NA 0 0 ] to Ant (Eq. 9):

nt+1 = Ant + b, (12)

where NA is defined by Eq. 11, for which NT is a known constant and s1 is

estimated.

3.2 Incorporation of deer browsing into matrix models

The proportion of browsed trees (D1,j,t) in a given plot j at time t in the 0 –

2 m height tier is a logical predictor of the impacts of deer, but unfortunately,

depends on the number of trees present in j. For example, the absence of browsed

trees (B1,j,t) in plot j at time t may not necessarily arise because the probability

of trees being browsed (p1,j,t) in j is zero. Rather, B1,j,t can be equal to zero

because there are no trees in that plot (N1,j,t), and so there is no way of knowing

whether there would be browsed trees given the opportunity. A similar situation

may arise when all trees are browsed in a plot, but N1,j,t is very small, i.e. =

1. The high value of D1,j,t (= 1) may not reflect the true probability of browsing

10



activity (p1,j,t) since there is only one ‘trial of whether browsing occurred in that

plot. To account for this uncertainty, we modelled p1,j,t from a binomial process

based on the total number of trees in a plot in the 0 – 2 m height range (N1,j,t),

which incorporates the entire vertical range of deer browsing, and the number that

were browsed (B1,j,t):

B1,j,t ∼ B(p1,j,t, N1,j,t),

logit(p1,j,t) = ψ + υj + υt, (13)

where p1,j,t was modelled based on the mean probability of a tree being browsed

across the landscape (ψ), and υj and υt respectively accounted for spatial and

temporal variation, which were each ∼ N(0, τυ) with a separately estimated τυ.

Eq. 13 is particularly ideal for our simulation model since it allows us to use a

mean landscape-level probability of browsing with random variation across the

landscape and among years, which can capture plot-level variation in factors such

as microtopography and climate-related foraging activity.

We used p1,j,t to incorporate the effects of deer browsing into our matrix model

(Eq. 12), specifically in terms of the survival (s1) and growth (g1) of juvenile trees

in the 0 – 2 m height tier. We defined the effects of deer through the coefficient

d′1,j,t, and fitted linear and non-linear relationships whereby:

d′1,j,t = 1− dp1,j,t, (14)

d′1,j,t = edp1,j,t , (15)

d′1,j,t is the estimated ‘strength’ of the deer effect in plot j at time t and ranges

between 0 and 1, and d is the effect of deer browsing, and p1,j,t is the probability

of trees being browsed in each plot j at time t in the 0 – 2 m height tier. We

multiplied the survival and forward transition probabilities of juvenile trees in the

browse layer (i.e. s1 and g1) by d′. To constrain d’ to values between 0 and 1, we

assumed that d ∈ [0, 1] for the linear model (Eq. 14), and that d ∈ (−∞, 0] for

the exponential model (Eq. 15). For all other height tiers outside of the browse

layer, we assumed no effect of deer, such that:

d′i,j,t = 1 for i ∈ {2, 3}.

11



Estimation of annual seed rain NA from NT in each plot j at time t should

also be affected by browsing. Converting the effect of deer to an annual rate d∗1,j,

where d∗1,j =
√

(d′1,j), leads to:

NT,j,t = NA,j[d
∗
1,j(s

∗
1 − g∗1)]0 −NA,j[d

∗
1,j(s

∗
1 − g∗1)]1 +NA,j[d

∗
1,j(s

∗
1 − g∗1)]2

+ . . . NA,j[d
∗
1,j(s

∗
1 − g∗1)]27, (16)

such that the survival s∗1 and growth g∗1 of juvenile trees depends on the effect of

deer browsing d∗1,j in plot j. We assumed that the mean effect of temporal variation

in deer browsing υt within a given plot j was equal to zero (Eq. 13), allowing us

to simplify d′1,j,t to d′1,j in Eqs 14 and 15. This assumption was important because

it allowed us to then re-apply the Maclaurin series simplification. Given that our

observed data also correspond to changes in juvenile tree counts over two-year

intervals, we calculated NA,j,t over two years and ensured that 1-year old seedlings

are affected by deer:

NA,j = NT,j

1− d∗1,j(s∗1 − g∗1)

1− [d∗1,j(s
∗
1 − g∗1)]28

[
1 + d∗1,j(s

∗
1 − g∗1)

]
,

which accounts for the number of newly arrived seedlings at time t and the number

that survived from the previous year, which are affected by deer browsing (d′1,j).

Our final model then took the following form:
N1,j,t+1

N2,j,t+1

N3,j,t+1

 =


d′1,j,t(s1 − g1) 0 0

d′1,j,tg1 s2 − g2 0

0 g2 s3



N1,j,t

N2,j,t

N3,j,t

+


NA,j

0

0

 . (17)

3.3 Dataset preparation

Given the potential implications of predictions derived from our model for land

management across the U.K., we attempt to be fully transparent in how we pre-

pared the Creag Meagaidh National Nature Reserve (CM NNR) dataset prior to

model estimation. Staff changes during the measurement of monitoring transects

are likely to have introduced inaccuracies into the dataset (R. Richardson pers.

comm.). In the Supporting Information, we provide both the original dataset, as

well as the modified version described here, as *.txt files. Briefly, we prepared

the dataset prior to model estimation as follows:
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1. We obtained raw counts of trees along six transects in originally four rather

than three height tiers, corresponding with 0 – 1, 1 – 2, 2 – 3, and >3 m

height tiers. We merged the 0 – 1 and 1 – 2 height tiers to collectively model

trees in the ‘browse’ layer. This approach minimized our concerns about

measurement errors we observed in the dataset, whereby trees appeared to

‘skip’ height tiers. For example, 0 and 1 tree(s) in the first and second height

tiers of plot 3 on transect 2 in 2002 became 1 and 3 trees in these height tiers

in 2004. This indicated that at least two trees grew >0.5 m yr-1 in height

immediately upon establishing within the plot. However, this growth rate

is highly unlikely based on measurements of juvenile height growth adjacent

to two of the transects in 2008 (n = 127), i.e. mean distance (± SE) from

the first terminal bud scar immediately beneath the apical meristem to the

apical meristem was 0.05 ± 0.01 cm yr-1 (A. J. Tanentzap unpub. data).

2. We removed 31 plot measurements from our dataset because of concerns over

consistency in recording methods. Measurements were along transects 2, 4,

7, and 8, and all were either from 2002 or 2004. Our concern was that the

number of trees damaged by deer in each of these plots was inflated because

any sign of browsing was used to classify a tree as damaged, rather than only

classifying trees as damaged if their leader stems were broken or stripped

of bark. Specifically, the mean proportion of damaged trees in these plots

(± SE) was 72 ± 3% compared with 5 ± 1% in the same plots averaged

over the other measurement years. There were no changes in deer culling

or mortality over this period that would have precipitated the dramatic

reduction in browse damage. Rather, CM NNR has pointed to staff changes

during this period as the cause for this discrepancy (R. Richardson pers.

comm.).

3. We removed measurements post-2005 for two plots. Plot 1 along transect 2

was not recorded after 2006 since juvenile tree densities were judged by CM

NNR staff as reaching a desirable level. Similarly, plot 8 on transect 3 was

recorded in 2010 but not in 2008. In 2006, both plots had unusually high

numbers of trees >3 m (42 and 17, respectively), representing increases of

35 and 17, respectively, over the previous two years. We also removed these

outliers from the dataset.
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4. We made 38 other small corrections to the dataset. These changes were

primarily intended to correct data entry or inconsistencies between time

periods (n = 16), prevent trees from jumping from the 0 – 2 m to >3 m

height tier within two years by re-assigning trees to the 2 – 3 m height tier

(n = 17 instances), and reduce the number of damaged trees in plots with

≤4 trees in 2002 to zero as we were fairly confident of over-estimation in

these cases (n = 5).

3.4 Derivation of model likelihood function

We were interested in inversely estimating the elements of matrix A (Eq. 8) given

the vectors nt and b. Eq. 8 is deterministic because n1 is sufficient to describe

the population dynamics of our entire time series. By introducing stochastic com-

ponents into Eq. 17 to account for measurement (or ‘observation’) error, we were

able to derive a probability model that could be used for deriving a likelihood

function from which to estimate A. We also allowed for error (εi,j,t) in the tree

counts Ni,j,t+1 within each height tier i at time t in plot j and assumed that:

Ni,j,t+1 ∼ Poisson(λi,j,t)

log(λi,j,t) = log(Aini,j,t + bi,j) + εi,j,t, (18)

where i is a given height tier and thus the ith row of matrix Ai and ith element

of vectors ni,j,t and bi,j. We also assumed that εi,j,t was ∼ N(0, τε) and υ1,j,t

was ∼ logN(0, τυ). The full conditional log-likelihood of observing Ni,j,t+1 trees in

height tier i at time t+1 in plot j could then be written as the Poisson probability

mass function:

logL(Ni,j,t+1|d′i,j,t, si, gi) =
n∑
j=1

t+y∑
t=t+1

3∑
i=1

[eεi,j,t(Aini,j,t + bi,j)

+ Ni,j,t+1e
εi,j,t log(Aini,j,t + bi,j)]. (19)

3.5 Parameter estimation

We used a hierarchical Bayesian framework to estimate Eq. 19 (Gelman and Hill,

2007). Our data correspond to a hierarchical design because trees were sampled

within three height tiers within each plot over multiple years. Bayesian methods
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are particularly attractive as they allow for robust estimation of both parameters

and their confidence intervals. These methods thus have the advantage of propa-

gating uncertainty and both temporal and spatial variation into predictions from

our simulation model.

We introduced variation into estimates of survival and recruitment through the

specification of prior distributions for model parameters. We allowed both survival

and growth to vary between height tiers i and among measurement periods t:

logit(si,t) = αi + υst ,

logit(gi,t) = βi + υgt ,

where si,t is the mean probability of survival in height tier i from time t to t+1, gi,t

is the mean probability of transitioning from height tier i to a taller tier at time t,

α and β are estimated parameters, and υst and υgt are the variance among years for

si and gi, respectively, and each is ∼ N(0, τt), with a separately estimated τt. To

ensure si,t and gi,t ∈ [0, 1], we used the logit function, which assumed that survival

and growth increased exponentially. Mean survival and growth probabilities could

simply be described by α and β, respectively, since the mean effect of temporal

variation was zero. We then used these mean values for the 0 – 2 m height tier (i.e.

time invariant s1 and g1) to calculate seed rain NA,j,t (Eq. 16) for the two-year

period between plot measurements, converting estimates to annual rates using

known effects for survival, growth, and deer browsing in that period. NA,j at

a given time t thus took the following form during parameter estimation, which

incorporated some degree of temporal variation by allowing for newly arrived,

1-year old seedlings to be affected by the annual survival (s∗1,t =
√
s1,t), growth

(g∗1,t = 1−
√

1− g1,t), and effect of deer at that specific time period t (d∗j,t):

NA,j,t = NT,j

1− d∗1,t(s∗1 − g∗1)

1− [d∗1,t(s
∗
1 − g∗1)]28

[
1 + d∗j,t(s

∗
1,t − g∗1,t)

]
.

We specified relatively uninformative priors for model parameters. We assumed

that all estimated means (ψ, α, β, d) were drawn from normal distributions with

µ = 0 and σ2 = 100, though we used a truncated normal distribution for d

depending on the model form (see Section 3.2). Variance parameters (τε, τυ, τt)

were ∼ U(0, 100).
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We fit our model to the corrected dataset (see Section 3.3) using Markov chain

Monte Carlo (MCMC) sampling by calling JAGS v3.1.0 (Plummer, 2011) from R

v2.13 (R Development Core Team, 2011) with the R2jags package (Su and Yajima,

2011). Five MCMC chains of 1 000 000 iterations were simulated for each model,

with a burn-in period of 1 000 000 runs. We sampled each chain 160 times to

generate a posterior density for each parameter comprised of 800 simulations, and

calculated posterior means and 95% credible intervals (CIs) for each parameter.

Convergence was assessed visually by chain traces and by calculating the potential

scale reduction factor, R̂, for each parameter from the 800 simulation subsets. R̂

predicts the extent to which a parameter’s confidence intervals will be reduced if

models are run forever; all our R̂ values were ≤1.1, which is considered acceptable

(Gelman and Hill, 2007). We also ensured that the effective number of simulation

draws, neff , a measure of the independence amongst the subset of 800 simulations,

always exceeded 100 (Gelman and Hill, 2007).

The JAGS code for the model is included in Appendix S1. We also tried fitting

our model to the original dataset, but the model failed to converge given the

discrepancies where trees appeared to ‘jump’ height tiers, e.g. trees from the 0 –

2 m tier were >3 m tall after two years (see Section 3.3).

3.6 Model assessment

We used 95% CIs to test the significance of model effects. Specifically, we compared

95% CIs for survival and growth (i.e. forward transition) probabilities between

height tiers to test whether s1,t = s2,t and g1,t = g2,t, i.e. non-overlapping intervals.

We also used this approach to determine whether deer affected juvenile trees. If

95% CIs for the estimated effect of browsing d overlapped zero (= overlapping with

1 for d′), we concluded that deer did not affect juvenile tree transitions. Finally, we

compared models fitted with linear versus non-linear effects of deer browsing (Eqs

14 vs 15) by comparing 95% CIs for the estimated model deviance. Since both

models have similar numbers of parameters, we chose the model with the lower

deviance as more strongly supported and for use in our simulation modelling.

We compared predicted and observed tree counts in each height tier in each

plot at each time period, and the proportion of trees that were browsed in the

0 – 2 m height. To assess model fit, we calculated a Bayesian R2 at the level of

our observed data, which is synonymous to the proportion of variance in classical
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linear regression (Gelman and Pardoe, 2006):

R2 = 1− E(V K
k=1εk)

E(V K
k=1yk)

,

where E is the posterior mean, V is the variance, εk are the residual errors of the

K observations, and yk are the predicted values for the response variable.

3.7 Conversion of parameter estimates to annual rates

Our dataset for juvenile trees corresponded to two-year intervals. Therefore, we

took the square root of estimated survival values and the effect of deer to convert

estimates to annual rates. For growth, we calculated g as 1−
√

1− g.

3.8 Results of juvenile growth and survival models

The forward transition probability (i.e. growth) of juvenile trees, and their suscep-

tibility to deer browsing, controlled population size structure. Juvenile survival

was high (mean within 0 – 2 and 2 – 3 m height tiers across years = 0.98 yr−1;

95% CIs: 0.70 – 1.00 yr−1), but few trees transitioned among height classes (mean

across tiers and years = 0.04 yr−1; 95% CIs: <0.01 – 0.17 yr−1; Table 2). Growth

did however vary among years and height tiers, while survival was invariant (95%

CIs, Table 2).

Deer browsing reduced annual growth and survival by an average of 10% (mean

effect of d′ = 0.90 yr−1; 95% CIs = 0.52 – 1.00, depending on proportion of trees

browsed; Fig. 3). Although there was no difference between linear and non-linear

models of browsing (overlapping 95% CIs for deviance; M1 vs M2, Table 2), we

adopted the non-linear model because empirical support for it is widespread in

the literature (e.g. Tremblay et al. 2006; Gill and Morgan 2010; Koh et al. 2010;

Koda and Fujita 2011). Consequently, few juveniles survived or transitioned to

taller height tiers when >50% of individuals were browsed (Fig. 3). The model

explained most of the variation in the observed data (Bayesian R2 ≥ 0.90; Fig

4), though there was considerably more unexplained variation in the probability

of browsed trees when we only considered observed values of ≤ 0.30 (Bayesian

R2 = 0.49). One explanation is that browsing decisions are also influenced by

factors such as the presence of other browse species, topography, sex and age
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structure of deer populations, and season (Palmer et al., 2003; Bee et al., 2008,

2010), in addition to the density of birch trees at a given site.
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Figure 3. Predicted relationship between probability of a tree being browsed by
deer and coefficient of deer effect d′, which reduces survival (s) and growth (g) of
juvenile trees. Points represent means of model predicted values. Dashed lines are
95% CIs.
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Figure 4. Comparisons of model predictions versus observed values for juvenile
matrix model with non-linear effects of deer. A) Probability of trees being browsed
in a plot (Bayesian R2 = 0.90). B) Juvenile tree counts (Probability of trees being
browsed in a plot (Bayesian R2 = 0.99). Solid line represents 1:1 relationship.
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Table 2: Estimated parameters (95% CIs) for two models of probability of juvenile

survival and growth (i.e. forward transition), with values representing changes over two-

year period. M1: Model estimated with linear effects of deer browsing; M2: Final model

used in simulation model and with non-linear effects of deer. Models were compared

based on deviance, with both models equally supported (i.e. overlapping 95% CIs for

deviance). A model fit with the uncorrected dataset failed to converge.

Estimated parameter M1 M2

Mean survival in 0 – 2 m height tier

(α1)

76.1 (4.34 – 211.0) 82.9 (5.55 – 237.0)

Mean survival in 2 – 3 m height tier

(α2)

84.5 (2.03–243.0) 82.9 (2.13 – 225.0)

Mean growth in 0 – 2 m height tier

(β1)

-5.04 (-7.10 – -3.64) -5.04 (-7.23 – -3.52)

Mean growth in 2 – 3 m height tier

(β2)

-2.22 (-4.48 – -0.60) -2.27 (-4.55 – -0.46)

Effect of deer browsing (d) 0.83 (0.44 – 0.99) -2.57 (-4.77 – -0.92)

Mean probability of deer browsing

(ψ)

-2.35 (-4.74 – -0.10) -3.04 (-4.94 – -1.05)

Inter-plot variance in probability of

browsing (τυj)

2.34 (1.65 – 3.36) 2.29 (1.62 – 3.18)

Temporal variance in probability of

browsing (τυt)

4.14 (1.28 – 13.2) 3.20 (1.09 – 10.1)

Temporal variance in survival (τs,t) 39.2 (1.80 – 96.7) 40.0 (1.74 – 95.1)

Temporal variance in growth (τg,t) 1.47 (0.23 – 6.18) 1.50 (0.25 – 5.31)

Residual variance (τε) 1.03 (0.86 – 1.22) 1.04 (0.87 – 1.23)

Survival in 0 – 2 m height tier, 2002

– 2004 (s1,1)

1.00 (0.97 – 1.00) 1.00 (1.00 – 1.00)

Survival in 0 – 2 m height tier, 2004

– 2006 (s1,2)

1.00 (0.99 – 1.00) 1.00 (0.99 – 1.00)

Survival in 0 – 2 m height tier, 2006

– 2008 (s1,3)

0.85 (0.45 – 1.00) 0.91 (0.46 – 1.00)

Survival in 0 – 2 m height tier, 2008

– 2010 (s1,4)

0.99 (0.76 – 1.00) 0.99 (0.83 – 1.00)
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Survival in 2 – 3 m height tier, 2002

– 2004 (s2,1)

1.00 (1.00 – 1.00) 1.00 (0.99 – 1.00)

Survival in 2 – 3 m height tier, 2004

– 2006 (s2,2)

1.00 (0.99 – 1.00) 1.00 (1.00 – 1.00)

Survival in 2 – 3 m height tier, 2006

– 2008 (s2,3)

0.86 (0.20 – 1.00) 0.88 (0.21 – 1.00)

Survival in 2 – 3 m height tier, 2008

– 2010 (s2,4)

0.99 (0.98 – 1.00) 0.99 (0.98 – 1.00)

Growth in 0 – 2 m height tier, 2002

– 2004 (g1,1)

0.01 (<0.01 – 0.03) 0.01 (<0.01 – 0.03)

Growth in 0 – 2 m height tier, 2004

– 2006 (g1,2)

0.01 (<0.01 – 0.02) 0.01 (<0.01 – 0.02)

Growth in 0 – 2 m height tier, 2006

– 2008 (g1,3)

<0.01 (<0.01 –

0.01)

<0.01 (<0.01 –

0.01)

Growth in 0 – 2 m height tier, 2008

– 2010 (g1,4)

0.01 (0.01 – 0.02) 0.01 (0.01 – 0.03)

Growth in 2 – 3 m height tier, 2002

– 2004 (g2,1)

0.13 (0.02 – 0.38) 0.13 (0.02 – 0.37)

Growth in 2 – 3 m height tier, 2004

– 2006 (g2,2)

0.15 (0.04 – 0.36) 0.16 (0.05 – 0.36)

Growth in 2 – 3 m height tier, 2006

– 2008 (g2,3)

0.06 (0.01 – 0.16) 0.06 (<0.01 – 0.15)

Growth in 2 – 3 m height tier, 2008

– 2010 (g2,4)

0.19 (0.07 – 0.39) 0.19 (0.07 – 0.38)

Deviance 1 224.0 (1 176.1 – 1

275.6)

1 224.6 (1 177.6 – 1

275.4)

4 Adult growth and mortality

4.1 Adult growth

We used measurements of adult trees at the Corrour Estate to estimate annual

radial growth (DG, mm yr−1) of adult birch trees from their diameter at breast
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height (D, cm; Eq. 20; Canham et al. 2004):

DG = DMe
− [log(D)−log(X0)]

2

2X2
b , (20)

where DM is the maximum potential radial growth rate (mm yr−1), X0 is the

diameter at which DM occurs (cm), and Xb controls the steepness of the function.

We assumed a Gaussian error structure. We estimated rates of mean annual height

growth (HG, m yr−1) from measurements of DG using the relationship between D

and the height of each tree (H, m). We modelled the relationship between height

and diameter both as a power function (Eq. 21) and as an asymptotic function

(Eq. 22; Russo et al. 2007):

H = γDδ, (21)

H = HM − eaD
b

, (22)

where γ, δ, a, and b are estimated parameters and HM is the estimated maximum

potential tree height. We assumed a lognormal error structure for these models,

and estimated HG as the first-order differential of either Eqs 21 or 22.

We estimated model parameters using maximum-likelihood methods. The neg-

ative log-likelihood of each model was minimized using 100 000 iterations of the

simulated annealing algorithm for the optim function (R Development Core Team,

2011). Simulated annealing is effective for approximating the global minimum of

the negative log-likelihood in a large search space (Bélisle, 1992). However, since

the algorithm decreases the search area with increasing numbers of iterations, we

re-ran the procedure with an additional 100 000 iterations using the estimates

from the first run as starting values in order to reduce the possibility of being

trapped in a local minimum. We estimated standard errors of model parameters

from the inverse Hessian matrix, evaluated at the maximum likelihood parameter

estimates (Ridout, 2009). We compared Eq. 20 to a model of mean growth rate

(DG = µ), and Eq. 21 with Eq. 22, using AICc.

4.2 Adult mortality

The most sensible approach for estimating adult mortality (M , %) for our dataset

was to utilize the relationship among DG,M , and the population size distribution,

n(D), which occurs at demographic equilibrium (Coomes et al., 2003; Kohyama
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et al., 2003; Muller-Landau et al., 2006). For a constant DG and M :

n(D) =
q

DG

e
− M
DG

(D−D0), (23)

where q is the annual recruitment rate and D0 is the mean minimum size of adults

(0.68 cm, estimated from Eq. 21 with H = 3 m). Eq. 23 represents an exponential

size distribution and thus has a probability density function of the form:

p(D) =
M

DG

e
− M
DG

(D−D0), (24)

where p(D) is the probability distribution for D. We were constrained in the

number of other potential approaches for estimating M since we lacked long-term

repeated measurements of adult trees or stand structure, and the relatively low

densities of mature trees at our site limited the availability of dead adults (cf .

Wyckoff and Clark 2000).

We used the fitdistr function in R (R Development Core Team, 2011) to fit an

exponential distribution to Eq. 24 with maximum-likelihood estimation. D −D0

was equal to the observed diameters at Corrour and the diameters estimated with

either Eq. 21 or 22 for adult trees in Creag Meagaidh seedling plots, where γ and δ

in Eq. 21, or a and b in Eq. 22, were randomly drawn from a normal distribution

with mean and standard deviation equal to the maximum likelihood estimate

fit to the respective equations. The estimated rate of the exponential function

was then multiplied by DG to derive M . We compared the exponential fit to a

probability distribution of size structure from kernel density estimation. Kernel

density estimation provides a non-parametric prediction of the probability density

function of a response variable, and is more appropriate for continuous data than

histograms that arbitrarily classify the response variable in data bins. The overall

kernel density estimate was the sum of individual Gaussian distributions around

each data point (density function in R, Silverman 1986).

We acknowledge that the assumption that the adult population was in demo-

graphic equilibrium was unlikely to be true at our site, and we tested the sensitivity

of M to changes in n(D). We simulated growth, recruitment, and mortality, in

our adult tree population for 100 and 500 years, after which we re-estimated mor-

tality from Eqs 23 and 24. For each year, we allowed trees to increase in size at

a rate of DG, and randomly removed trees from the population at a rate of M .
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We added new trees at the end of each year at rates ranging from 0.5M to 2.0M ,

where the coefficients of M increased in intervals of 0.1. Sizes of new trees were

randomly drawn from a uniform distribution on the range [D0, 1.2D0]. We re-ran

the simulation procedure 1 000 times for each recruitment rate to generate means

and standard errors.

4.3 Competition for light and density-dependent mortality

in adults

We recognize that as adult trees establish in our model, the canopies of individ-

uals may overlap, resulting in competition for light, and consequently, density-

dependent mortality. Since our primary objective was to develop a model of birch

invasion that operated over relatively short-time scales in relation to deer man-

agement (i.e. <100 years), and not to simulate the dynamics of forest stands, we

did not expect high levels of overlap in the canopies of adult trees. Our model is

only likely to generate competition for light among adults over long periods (i.e.

centuries) and at high levels of seedling survival. However, in order to mitigate

the possibility of this issue arising, we predicted the crown diameter of each adult

tree from tree height, and removed trees from the simulation when neighbouring

individuals overtopped 90% of their crown area (sensu Yoda 1963; Westoby 1984).

We predicted crown diameter (C, m) from measurements of tree height (H, m),

using the same power and asymptotic functions used to relate H to tree diameter

(Eqs 21 and 22). Models were estimated by minimizing the negative log-likelihood

of a lognormal distribution using 200 000 iterations of simulated annealing (optim

function in R) and compared using AICc. We estimated standard errors of model

parameters from the inverse Hessian matrix, evaluated at the maximum likelihood

parameter estimates (Ridout, 2009).

4.4 Results of adult growth and mortality models

Radial growth was invariant with size (AICc of size-based and mean-based mod-

els: 44.6 and 42.2, respectively; Fig. 5), consistent with other studies of Betula

spp. (Ward and Stephens, 1997), including at a nearby site (old-growth stands,

Mountford and Peterken 2000). Mean growth rate was 2.66 mm yr−1, compared

to a DG under a size-based model ranging from 2.66 – 2.67 mm yr−1 over observed
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Figure 5. Annual radial growth averaged over 2001 – 2008 for Betula pubescens
at Corrour Estate. Solid line is the mean model of radial growth (2.66 mm yr−1),
which was more strongly supported based on AICc than a size-based model (R2

= 0.54).

values of D of 2.6 – 72.2 cm. We used the estimate of mean growth rate in all

subsequent analyses.

The power function describing the height-diameter relationship was more strongly

supported than the asymptotic function and also had fewer parameters (AICc

respectively: 207.4 and 210.2). Overall, the power function explained a rel-

atively high proportion of deviance (66%, mean parameter estimates ± S.E.:

δ = 0.40 ± 0.05, γ = 3.47 ± 0.48; Fig. 6A) and the first-order differential was

used to predict height growth (i.e. HG = γδDδ−1DG).

Adult mortality was estimated at a rate of 2.5% yr−1 with a standard devia-

tion of 0.3% yr−1. The exponential distribution was a good fit to the empirical

probability distribution for trees >40 cm in diameter, estimated from kernel den-

sity (Fig. 7). However, we observed fewer trees 20 – 40 cm in diameter than

predicted from the exponential distribution (Fig. 8), and this may be due to size-

dependent processes operating in these size classes, i.e. herbivory (Coomes et al.,

2003). Historically high deer browse pressures at both of our sites have likely led

to predominantly bimodal adult size structures (i.e. many small saplings and some
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Figure 6. Allometric relationships of adult Betula pubescens at Corrour Estate.
A) Height-diameter relationship. B) Height-crown diameter relationship. Solid
lines represent mean estimates from power functions ± 95 confidence intervals.

large trees) with few saplings able to escape browse pressures into intermediate-

sized classes. Although this further suggests that our assumption of demographic

equilibrium may be tenuous, changes in size structure arising from simulated de-

mographic disequilibrium have relatively little effect on a constant estimate of

mortality, particularly over longer periods (Fig. 8).

The power function to describe height-crown diameter relationships was more

strongly supported than the asymptotic model and had one fewer parameter (AICc

respectively: 170.4 and 172.7). Mean parameter estimates ± S.E. were: δ =

1.18± 0.16, γ = 0.28± 0.11 (percent of deviance explained = 67%; Fig. 6B).

5 Measures of deer browse pressure

5.1 Indicators of deer browse pressure

Staff at Creag Meagaidh National Nature Reserve have continuously recorded the

proportion of juvenile Betula spp. damaged by deer along with monthly deer

population counts in eight sub-catchments since 2002. Damaged juvenile birch
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Figure 7. Probability distribution of Betula pubescens size structure at Corrour
Estate and Creag Meagaidh National Nature Reserve in 2008 predicted with kernel
density estimation (thin line) and from an exponential distribution (solid line).
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Figure 8. Mean (±SE) estimated mortality rate derived from fitting exponential
distribution to simulated Betula pubescens size structure at Corrour Estate and
Creag Meagaidh National Nature Reserve after A) 100 and B) 500 years at various
recruitment rates and with a constant growth rate of 2.66 cm2. Dashed line denotes
estimated mortality rate of 2.5% derived from observed data.
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trees were monitored along 16 permanently marked 1-km long transects (hereafter

‘tree transects’). Nine transects were located in areas where tree regeneration

was expected, while the remaining seven were randomly located throughout the

reserve. Each tree transect was measured in May or June every other year from

2002 to 2008, with all the intentionally-positioned transects measured in even years

and the randomly-located transects measured in odd years. Methods to estimate

the proportion of Betula trees damaged by deer along all 16 transects were identical

to those used for the six transects that were input in our matrix model. Since the

main text describes these methods, we do not repeat them here. Putman et al.

(2005) detail the methodology for deer population counts and the census zones.

Briefly, the total number of deer seen in each of eight counting zones (2.2 – 10.5

km2) was recorded monthly each year by at least one observer. Observers traversed

counting zones by foot over a period of varying length, recording deer numbers

from a distance not to disturb herds and risk double counting.

We derived an index of deer density (C, deer km−2 observers−1 hour−1) for

each deer counting zone i by averaging deer counts over a 24-month period (July

– June) preceding measurement of the transects. We standardized deer counts

(N , deer) for each month j by sampling effort, since the number of observers (O,

people) and time spent in each counting zone (T , hours) varied among months

and zones:

Ci,j =
24∑
j=1

Ni,j

AiOi,jTi,j
. (25)

Eleven of the sixteen tree transects were entirely located within one counting

zone, and we assumed that these transects were associated with the deer density

estimated for the respective counting zone. We assigned deer densities to the

remaining five tree transects by averaging values for the multiple deer counting

zones that a transect traversed.

5.2 Models relating deer damage to animal density

We tested whether deer browse damage could be predicted from the number of

deer seen per observer (D) hour using a linear mixed-model with binomial error

structure (lmer function in lme4 package in R, Bates and Maechler 2009). The

number of damaged and undamaged Betula trees <3 m tall along each transect

were the response variables. We allowed for variation in the model intercept among
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different transects and years by including a random effect of both transect and

year such that:

logit(pijk) = a+ bDijk + υj + υk, (26)

where pijk is the proportion of trees damaged by deer in plot i along transect j in

year k, a and b are estimated parameters, and υj and υk are random effects that

account for variance among transects and years, respectively, and are ∼ N(0, σj)

and ∼ N(0, σk), where σj and σk are estimated. We fit the model using maximum

likelihood (ML) and tested whether the effect of D was different from zero using

a likelihood-ratio test with a χ2 approximation. We could not use AICc for model

inference since it cannot be reliably calculated for mixed effects models estimated

with ML (Bolker et al., 2009).

We also tested whether the total density of trees <3 m tall in each plot (Nijk)

declined with D by re-fitting the model defined by Eq. 26 with a Poisson error

structure and log-link function. Nijk replaced pijk as the response variable, and we

added an individual-level random effect υijk to account for the fact that tree counts

were overdispersed, i.e. greater variance than predicted by Poisson process (Elston

et al., 2001). We compared models fit with and without D using a likelihood-ratio

test.

Our model defined by Eq. 26 resembles that used to predict the probability of

browsing for juvenile trees, i.e. Eq. 13. However, we could not use estimates of

deer density in our matrix model, because this would have necessitated data on

deer densities to predict the probability of browsing in the validation of our model,

and these data were unavailable prior to 1992 for the eight counting zones (Putman

et al., 2005); any predictors used for estimating the probability of browsing in

our matrix model must be available in the validation procedure. Additionally,

although we accounted for variance among transects and years in both Eq. 13

and Eq. 26, the datasets used to fit these functions are different, so parameter

estimates will be similar only if unbiased samples are drawn from the overall

population.

5.3 Relationships between deer browsing and density

Increasing deer densities negatively affected juvenile birch trees <3 m tall. Deer

browse damage increased with deer density, with strong increases in browse dam-

age above 0.10 deer km−2 (χ2 = 27.6, p < 0.001, Fig. 9A). Similarly, the density
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Figure 9. Relationship between deer density and the A) proportion of damaged
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of juvenile birch trees declined with deer density (χ2 = 7.7, p = 0.006; Fig. 9B).

Temporal variation was stronger than variation among measured transects for the

proportion of damaged trees but the reverse was true for tree density (ratio of

estimated temporal : spatial variance: 2.6 and 5.9× 10−3, respectively). Variance

estimates for the probability of browsing (υj = 1.38 and υk = 3.57 were similar to

those estimated for the matrix model in Table 2; υj = 5.41, υk = 0.03, and υijk =

0.08 for tree density model).
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