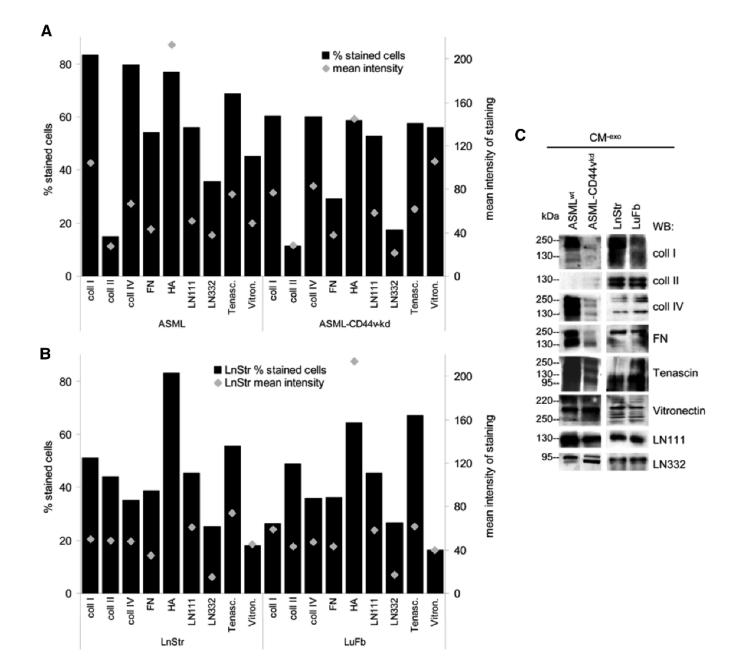
Table W1. List of Antibodies.

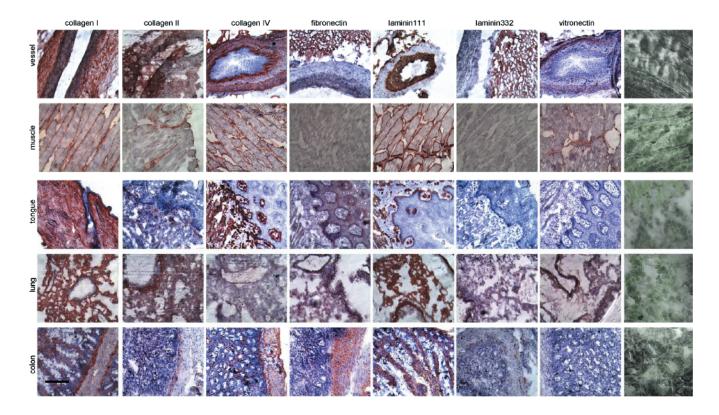
Antibody	Supplier	Antibody	Supplier
$\alpha_6\beta_4$	Clone B5.5 [1]	Hyaluronan	Rockland, Gilbertsville, PA
Akt	BD, Heidelberg, Germany	HGF	Santa Cruz, Heidelberg, Germany
ADAM10	Santa Cruz, Heidelberg, Germany	HGDF	Santa Cruz, Heidelberg, Germany
ADAM17	Santa Cruz, Heidelberg, Germany	HAdase	Santa Cruz, Heidelberg, Germany
ADAMTS1	Santa Cruz, Heidelberg, Germany	LNy1	Rockland, Gilbertsville, PA
ADAMTS5	Santa Cruz, Heidelberg, Germany	LNy2	BD, Heidelberg, Germany
ADAMTS8	Santa Cruz, Heidelberg, Germany	MMP2	Dianova, Hamburg, Germany
BAD	Santa Cruz, Heidelberg, Germany	MMP3	Santa Cruz, Heidelberg, Germany
Bcl2	BD, Heidelberg, Germany	MMP9	Dianova, Hamburg, Germany
BclXl	BD, Heidelberg, Germany	MMP13	Dianova, Hamburg, Germany
bFGF	Oncogene, Boston, MA	MMP14	Santa Cruz, Heidelberg, Germany
act.Caspase3	BD, Heidelberg, Germany	Osteopontin	Santa Cruz, Heidelberg, Germany
Caspase8	BD, Heidelberg, Germany	p38	BD, Heidelberg, Germany
cl.Caspase9	BD, Heidelberg, Germany	p-Akt	BD, Heidelberg, Germany
CD11b	Clone Ox42 (EAACC)	p-BAD	Santa Cruz, Heidelberg, Germany
CD11c	Clone Ox41 (EAACC)	p-c-jun	BD, Heidelberg, Germany
CD13	[2]	PDGF	BD, Heidelberg, Germany
CD18	BD, Heidelberg, Germany	PDGFR	BD, Heidelberg, Germany
CD29	BD, Heidelberg, Germany	p-ERK1,2	BD, Heidelberg, Germany
CD31	BD, Heidelberg, Germany	PI3K	Santa Cruz, Heidelberg, Germany
CD44s	Clone Ox50 (EAACC)	p-JNK	BD, Heidelberg, Germany
CD44v6	Clone A2.6 [1]	p-p38	BD, Heidelberg, Germany
CD49b	BD, Heidelberg, Germany	p-ras	BD, Heidelberg, Germany
CD49c	BD, Heidelberg, Germany	ras	BD, Heidelberg, Germany
CD54	Biozol, Eching, Germany	SDF1	Abcam, Cambridge, United Kingdom
CD104	BD, Heidelberg, Germany	Tenascin	LabVision, Fremont, CA
Coll I	Rockland, Gilbertsville, PA	TF	Santa Cruz, Heidelberg, Germany
Coll II	LabVision, Fremont, CA	Transforming growth factor β	Santa Cruz, Heidelberg, Germany
Coll IV	Rockland, Gilbertsville, PA	uPA	Calbiochem, Darmstadt, Germany
CXCR4	Santa Cruz, Heidelberg, Germany	uPAR	Calbiochem, Darmstadt, Germany
EGFR	Santa Cruz, Heidelberg, Germany	VEGF	Biotrend, Köln, Germany
ERK1/2	BD, Heidelberg, Germany	VEGFR1	Biotrend, Köln, Germany
FGFR	Santa Cruz, Heidelberg, Germany	Vimentin	BD, Heidelberg, Germany
FN	BD, Heidelberg, Germany	Vitronectin	Biotrend, Köln, Germany
		vWF	Abcam, Cambridge, United Kingdom
mIgG, mIgG, rabbit IgG,	goat 1gG, streptavidin ⁺		Dianova, Hamburg, Germany

[1] Matzku S, Wenzel A, Liu S, and Zöller M (1989). Antigenic differences between metastatic and nonmetastatic BSp73 rat tumor variants characterized by monoclonal antibodies. *Cancer Res* 49, 1294–1299.

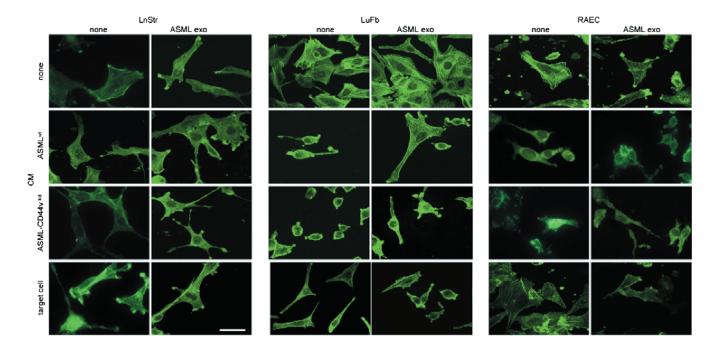
[2] Chang YW, Chen SC, Cheng EC, Ko YP, Lin YC, Kao YR, Tsay YG, Yang PC, Wu CW, and Roffler SR (2005). CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and enhance the motility of human lung cancer cells. Int J Cancer 116, 243–252.


EAACC, European Association of Animal Cell Cultures (Porton Down, United Kingdom).

*Secondary antibodies and streptavidin were FITC, PE, biotin, or HRP labeled.


Table W2. List of Matrix Proteins.

Matrix Protein	Supplier	Concentration
Coll I	Sigma, Munich, Germany	10 μg/ml
Coll II	Sigma, Munich, Germany	10 µg/ml
Coll IV	Sigma, Munich, Germany	10 µg/ml
FN	Sigma, Munich, Germany	2 µg/ml
HA	Sigma, Munich, Germany	100 µg/ml
LN111	Sigma, Munich, Germany	1 μg/ml
LN332	804G [1] supernatant*	10 µg/ml
Vitronectin	Sigma, Munich, Germany	1 μg/ml
Matrigel	Becton Dickinson, Heidelberg, Germany	1:1 dilution


[1] Homma Y, Ozono S, Numata I, Seidenfeld J, and Oyasu R (1985). α -Difluoromethylornithine inhibits cell growth stimulated by a tumor-promoting rat urinary fraction. *Carcinogenesis* **6**, 159–161. *804G cell culture supernatant was used as source of LN332. 804G cells were cultured (48 hours) in serum-free medium. Cleared supernatants (2 × 10 minutes, 500g; 1 × 20 minutes, 2000g; 1 × 30 minutes, 10,000g; 90 minutes, 100,000g) were centrifuged for vesicle depletion and concentrated. These serum-free, vesicle-depleted supernatants, highly enriched for LN332, are for brevity referred to as LN332.

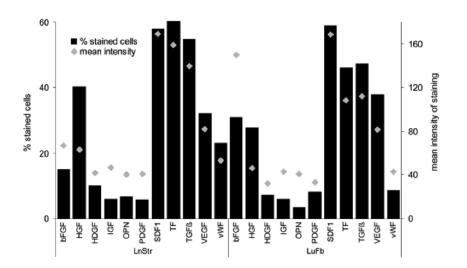

Figure W1. Recovery of matrix proteins in tumor and stroma cell CM. (A, B) $ASML^{wt}$, $ASML-CD44v^{kd}$, LnStr, and LuFb were stained with the indicated antibodies. The percent of stained cells and the intensity of staining were evaluated by flow cytometry. Mean values of triplicates are presented. (C) WB analysis of the indicated matrix proteins in CM^{-exo} of $ASML^{wt}$, $ASML-CD44v^{kd}$, LnStr, and LuFb.

Figure W2. ECM proteins in different rat tissues: Rats received an i.v. injection of 200 μ g of dye-labeled ASML^{wt} exosomes and were sacrificed after 48 hours (see Figure 1*E*). Sections of shock-frozen tissues were stained with the indicated antibodies and counterstained with H&E (scale bar, 100 μ m). Recovery of dye-labeled exosomes is shown for comparison.

Figure W3. TEX-modulated CM and cell spreading: LnStr, LuFb, and RAEC were seeded on cover slides coated with BSA, ASML^{wt}, ASML-CD44v^{kd}, or target cell CM^{-exo}. Where indicated, the CM^{-exo} was pretreated with ASML^{wt} exosomes. Four hours after seeding, cells were stained with phalloidin-FITC. Staining was evaluated by confocal microscopy (scale bar, 10 μ m). Representative examples are shown. ASML^{wt} and target cell CM promote cell spreading. ASML^{wt} exosome-treated CM supports the formation of focal adhesion clusters.

Figure W4. Cytokine and chemokine expression in stroma cells: Flow cytometry analysis of cytokine/chemokine expression in LnStr and LuFb cells. Mean values (three assays) of the percentage of stained cells and the mean intensity of staining are shown. LnStr and LuFb are rich in bFGF, HGF, SDF1, TF, and VEGF.