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Errors arising from spatial inhomogeneity of cells on slides.

Our measurements were performed on large coverslips (24X60 mm) that are approximately
50% confluent with cells (Figure 1).

60 mm

}7 24 mm 4{

Figure 1: Hela cells fixed on a 24 X 60mm coverslip. Cells are routinely imaged for four different fluorophores, DAPI
(DNA), mAZ-hGem (Geminin degron), Alexa-647 SE (protein mass) and a fourth fluorophore related to signaling
(e.g. cMyc).

An assumption of our experimental system is that measured properties of a cell are not
influenced by its spatial coordinates on the coverslips. Otherwise, the coordinates of a cell
would constitute a confounding factor that may influence statistics. Such a possibility of spatial
clustering of cells with similar properties could, for example, arise if certain regions on the
coverslip are highly dense (confluent) to an extent that affects cell cycle (e.g. contact
inhibition). To test for local spatial inhomogeneities in our measurements we systematically
plotted, for each of the measured coverslips, the coordinates of cells and used a color scheme
to show the basic measured properties (cell size, DNA, and Geminin) (Figure 2). This analysis
demonstrated that while in the majority of coverslips cells are homogenously distributed
(Figure 2, A-C), some coverslips contained significant spatial in homogeneities (Figure 2, D-F). To



guantitatively estimate the extent of spatial homogeneity we plotted the average cell size, DNA
and Geminin levels as a function of both dimensions (Figure 2, G).

To avoid artifacts arising from spatial inhomogeneities, all coverslips with local clustering of
cells with similar properties (such as shown in Figure 2 D-F) were excluded from further

analyses.
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Figure 2: Spatial distribution of cells in coverslips. The location of each cell (HeLa) on 3 example coverslips is
plotted and color coded for the cells’ level of Geminin, DNA and size. Slide 1 (A-C) exemplifies a homogeneous
distribution of cells with respect to all measured properties. Slide 2 (D-F) exemplifies nonhomogenous



distributions: one can see a region of cells that have likely exited cell cycle, having low levels of both Geminin and
DNA. Such slides were excluded from analyses in our study. To quantify the extent of spatial homogeneity on a
slide we plotted the level of DNA, Geminin and cell size averaged for the horizontal and vertical coordinates (G)

Testing the ergodic assumption, variability between slides and reproducibility of the
measured distributions.

A criterion for application of ERA is that the distribution of any of the measured variables does
not change with time. We tested this criterion.

To test the first, multiple coverslips were placed on a single 15cm tissue culture dish and
seeded with cells. After letting cells settle for 24 hours, we collected coverslips and at different
times where time t=0 hrs was defined as 24 hours after plating. Each collected coverslip was
fixed and imaged for cell cycle stage based on DAPI (DNA), mAG-hGem (Geminin) and Alexa647-
SE (protein mass). Figure 3 shows a quantile-quantile plot comparing distributions of Geminin
and DNA between each time point to time t=0 (24 hours after plating). Results are shown on
Hela cells but similar measurements were performed on all four cell lines obtaining
qualitatively identical results. Figure 7 shows that trends calculated by ERA from coverslips
collected at different time points remain unchanged.



Distributions from coverslips collected at different time points from a single proliferating

population.
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Figure 3: A quantile/quantile (Q-Q) plot comparing distributions of Geminin from slides collected from the same
proliferating culture at different times. The coverslip for t=0 hrs was collected 24 hours after cells were plated; the
coverslip for t=3 was collected 27 hours after plating, and so on. Each of the boxed plots compares the results for a

different time point to the results for t=0.
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Figure 4: Comparing distributions of DNA levels taken from a single population at different times as in Figure 3.

Distributions from coverslips collected from experiment repetitions.

Variation in experimental conditions could theoretically alter the distributions in cell cycle stage
and cell size. To test this we asked: to what extent do measured distributions of cell size and
cell cycle stage vary in experiment repetitions? To test this we performed pair-wise
comparisons of distributions of Geminin and DNA for all coverslips used in analyses in our study
(Figure 5). As above, we used quantile-quantile plots as means of comparison. The main
advantage of this method is that it is uninfluenced by scaling that occurs, for example, when
microscope lamp is brighter or dimmer. Due to the large sample size used in our study,
methods like the Kolmogorov-Smirnoff test are inadequate, as differences on the order of a few
percent (which are typical for biological measurements) would be identified as statistically
significant, despite having no biological significance. As a more biologically relevant test for
reproducibility, we also compared whether trends calculated by ERA from measurements of
experiment repetitions and from a time course experiment (figures 6 and 7) were similar.
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Figure 5: Quantile-Quantile pairwise comparisons of the distributions of DNA and Geminin between all coverslips
used in our study. Comparisons are separated based on cell lines (A-B, RPE1; C-D, HT1080; E-F, Hela). Diagonal
plots show the marginal distributions of DNA and Geminin in each coverslip.



Testing the ergodic assumption on distributions of cell size and the reproducibility of the
protein mass measurements.

To test reproducibility, we asked whether the trend of protein mass as a function of the cell

cycle trajectory, ¢, is similar in different experiments. To test this we calculated, for each of the

coverslips used in the study, the distribution of protein mass along the cell cycle trajectory, 7.

We then plotted the pairwise comparison of this distribution for all pairs of coverslips in
HT1080 cells (Figure 6, A), RPE1 cells (Figure 6, B) and Hela cells (Figure 6, C).
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Figure 6: Comparison of the protein mass as a function of the cell cycle trajectory, £, obtained from different
experiments in HT1080 cells (A), RPE1 cells (B) and Hela cells (C).
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Figure 7: Growth curves of cells collected from a single proliferating population at 24 (black), 30 (red) and 36 (blue)
hours after plating are compared for Hela cells (A-C), HT1080 (G-1), RPE1 (M-0O) and L1210 (S-U). Also shown are
comparisons of growth curves from 8 different independent starting batches (experiment repetitions) of Hela cells
(D-F), 4 different starting batches of HT1080 (J-L) and 7 different starting bathes of RPE1 cells (P-R). Curves were
calculated by ERA and procedures from the main article text to describe cell size as a function of time (first
column), growth rate as a function of cell size (second column) and the feedback spectra (third column). Each
curve represents data calculated from a single coverslip.

Parameterization of cell cycle stage - calculation of ¢

To obtain a unique solution for the ERA equation (Eg. 2, main text) we reduced the
dimensionality of our DNA/Geminin measurement into a single variable, ? , which represents a
continuous measure of cell cycle stage (Figure 8). The following description and MATLAB code
provides a simple method of doing this; for more detail about another approach that was also
used, see Supplementary material #1.

Log Geminin

DNA

Figure 8: Parameterization of cell cycle. A scatter plot of DNA vs Geminin in Hela cells together with the probability
density function (black contour lines) calculated by the Parzen method 2 with a Gaussian kernel. Also shown (red)
is the curve passing through the density ridge. This curve represents the path of an “average” cell and is used to
parameterize cell cycle stage and reduce the 2D DNA/Geminin representation into a 1D curve. We use the

notation, £ to describe a cells’ position on the red curve.



To calculate the curve 7, we applied the following recursive search algorithm: The first point on

¢, £, is arbitrarily chosen as the global density maximum at G; (Figure 9). This choice is
convenient as this maxima is simple to identify. To find the second point, /, we calculate the
probability density on the perimeter of a circle with radius R centered on /, (Figure 9). The
maximum of this probability density is used to specify the point /,. This procedure is then
repeated recursively to identify any point ¢, from /. In other words, to identify the position
of any point /,, we draw a circle around the previous point, /, ; and ask which point on that

circle is associated with the largest cell count.

Probability
density

'.l"

Geminin
(mAG-hGem-deg

DNA

Figure 9: the algorithm for calculating the cell cycle trajectory, ¢ (see text)

Once the curve, 7, has been calculated, we use a standardized Euclidian distance to associate
each single cell with a discrete point on ¢ (Figure 10). Initially, the cell cycle stage of each single
cell is specified by a 2D coordinate system, e.g. the cells’ joint levels of Geminin (MAG-hGem-
deg) and DNA (DAPI). Based on a standardized Euclidean distance measure, we ask for each cell
which is the point on ¢ to which it is closest. The endpoint of this calculation is that the cell
cycle stage of each cell is specified with a single 1D variable, 7.
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Figure 10: Each cell is associated with the point on ¢ to which it is closest. Distance is standardized Euclidean
distance.

Matlab code for generating a loop:

[ell]=GenerateLoop (DNA, Gem)
figure (1)
minDNA=0.7;
maxDNA=2.5;
minGem=3;
maxGem=13;
N=101;
dna_axis=linspace (minDNA, maxDNA,N) ;
gem_axis=linspace (minGem, maxGem,N) ;

[discDATA ] = bin_raw([DNA' Gem'], {[dna_axis] [gem_axis]});
f=imfilter (discDATA, fspecial ('average',5));
LengthScale=round(0.1*sqgrt (prod(size(£f))));

imagesc (f)

title('click starting pos and press enter')
[x0, y0] = getpts;

imagesc (f)

title('click ending pos and press enter')
[xe, ye] = getpts;

clf

imagesc (f)

Z=zeros (size(f));

Z (round (x0) ,round(y0))=1;

Z=imdilate (Z,strel('disk',LengthScale));
I=find (Z>0) ;

[srt,srtil=sort(£f(I), 'descend"');

[y0,x0] = ind2sub(size(f),I(srti(1l)));

[DNAO, Gem0] = SwitchCoords (y0,x0,N,minDNA, maxDNA, minGem, maxGem) ;
Z=zeros (size(f));

Z (round (xe) ,round(ye))=1;

Z=imdilate (Z,strel('disk',LengthScale));
I=find (Z>0) ;
[srt,srtil=sort(£f(I), 'descend"');

[ye,xe] = ind2sub(size(f),I(srti(1l)));
[DNAe, Geme] = SwitchCoords (ye, xe,N, minDNA, maxDNA, minGem, maxGem) ;
hold on

StepSize=1;

[directions,RHO, THETA]=FindAngle (£, [x0 y0]1,0,1);
[dx,dy]=pol2cart (pi/180* (directions-180),0);

plot (x0+dx, y0+dy, "wo')

ell=[DNAQO GemO];
[dx,dy]=pol2cart (pi/180* (directions-180),StepSize);

x=x0+dx;

y=yO0+dy;

[dnai,gemi] = SwitchCoords(y,x,N,minDNA, maxDNA,minGem, maxGem) ;




ell=[ell ; [dnai gemil]];
plot(x,y, 'ko")
D=100;
counter=0;
D>StepSize
counter=counter+1;
Previous_direction=directions;
[directions]=FindAngle (f, [x y],Previous_direction-180, counter) ;
[dx,dy]=pol2cart (pi/180* (directions—-180), StepSize);
figure (1)
plot (x+dx,y+dy, "k.")
text (x+dx, y+dy+3, num2str (counter), 'fontsize',5)
disp (counter)
pause (0.05)
x=x+dx;
y=y+dy;
[dnai,gemi] = SwitchCoords(y, x,N, minDNA, maxDNA,minGem, maxGem) ;

ell=[ell ; [dnai gemil];
D=sqrt ( (x—-xe) "2+ (y-ye) *2);

[tt,rr]=cart2pol(ell(:,1),ell(:,2));
[11,12]=pol2cart (smooth(tt,10, "loess'),rr);
ell=[11 12];
[directions, RHO, THETA]=FindAngle (f, pos, ExcludedAngle,E11l_1i)
LengthScale=0.1*sqgrt (prod(size(£f)));
[X,Y] = meshgrid(l:size(f,1),1l:size(£,2));
[THETA,RHO] = cart2pol (X-pos(l),Y-pos(2));
THETA=ceil (180*THETA/pi)+180;
RHO=ceil (RHO) ;
rho=1:max (RHO(:))
theta=1:360
theta>=351
I=find (RHO>rho & RHO<rho+10 & (THETA<theta+10-360 | THETA>theta));

I=find (RHO>rho & RHO<rho+10 & THETA>theta & THETA<theta+10);

M(rho, theta)=mean (£ (I));

IntensityProfile=smooth (nansum(M(1l:LengthScale, :)),15);
IntensityProfile=IntensityProfile(IntensityProfile>0);

[mn, mni]=min (IntensityProfile);
ShiftAxis=[mni:length(IntensityProfile) l:mni];
ShiftedIntensityProfile=IntensityProfile(ShiftAxis);

Xvals=1l:length(ShiftedIntensityProfile);
[pks,pksi]=findpeaks (smooth(ShiftedIntensityProfile, 10),
'MINPEAKDISTANCE', 20, 'MINPEAKHEIGHT', 2*mean (abs (diff (ShiftedIntensityProfile))));
[srt,srti]=sort (pks, 'descend");
EstimatedDir=ShiftAxis (pksi(srti(l:2)));

[mx, mxi]=max (min([360-abs( EstimatedDir-ExcludedAngle) ; abs(EstimatedDir-
ExcludedAngle)]));

EstimatedDir=EstimatedDir (mxi) ;
directions=EstimatedDir;

[DNAi,Gemi] = SwitchCoords (x,y,N,minDNA, maxDNA, minGem, maxGem)
DNAi=minDNA* (N-x) / (N-1) +maxDNA* (x-1)/ (N-1) ;
Gemi=minGem* (N-y) / (N-1)+maxGem* (y—-1)/ (N-1) ;




Calculation and error analysis of the distribution, f(/), of cells in cell cycle.

Definition and calculation of f and F

We define f (/) as the fraction of cells associated to points on /.

number of cells at { =/,

fi)= Eq. S1

total number of cells

Further, let F'(¢) be the cumulative probability distribution describing the frequency of cells that
are either at cell cycle stage ¢, or at earlier cell cycle stages:

F() = G'f<¢)d¢

F(,)=> f() Eq. S2

Errorsin fand F
Errors in f and F result from two factors: (1) errors in assigning a correct value of ¢ to individual
cells, and (2) sampling errors.

Notation
We will use the notation 60X to describe the errors in a variable, X.

Errors in fand F that result from errors in localizing cells to L.
A prerequisite for calculation of the proportion of cells, f(/), at each value of 7 is the correct

assignment of a specific cell cycle position, /,, for each cell. To calculate the extent to which
errors propagate from this assighnment to the probability functions, f(¢) and F(¢), we used a

randomization method akin to bootstrapping. Specifically, each cell was shifted in cell cycle



assignment from its calculated cell cycle stage ¢, to a nearby cell cycle stage, 7, ., whererisa

itr?

L
random variable, r ~ N(u,0) with £ =0 and ng where L is the length of /. By doing this,

cells are reshuffled randomly to nearby cell cycle positions. After each reshuffling, we
recalculated the function f. This procedure was repeated numerous times to generate a
distribution of values for f and F. We use the standard deviations of f and F that result from this
sampling procedure as measures of the errors, df, and JF, associated with mis-localizing cells

on /.

Sampling errorsinfand F

An estimate for the sampling errors, d f, and OF,, were calculated using standard approaches

described in > and are given by:

OF, = /M Eq. S3
N
_ [fA=1)
ofs = N Eq. S4

where N=N.F, n=N,f and N, is the total number of cells in the population.

Total errorin fand F
The total errors in f and F are the sums of the errors resulting sampling statistics and errors
resulting from mistakes in the cell cycle parameterization, ¢ and are given by

of =0f, +9F, Eq. S5

OF =0F, +0F, Eq. S6



To express the fact that Jf, is an error that is propagated from ¢ we rewrite that term as:

oy = —()F of
ol
|75

Resulting with

of
Of =0f. +|—=—|of Eq. S7
f f;nl ag q
OF
OF =0F,, +|—| o/ Eq. S8
int ag q

Figure 11 shows the errorin F and f in RPE1 cells calculated using Eq. S7 and Eqg. S8.
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Figure 11: The error in the probability density function, f, and in the cumulative probability function, F, from data
collected for RPE1 cells. Note that due to the large cell counts, errors fall below 2% in both cases. Also, note that

the cumulative distribution function has significantly lower errors, again due to increased cell count compared to
the non-cumulative distribution.



Calculation and errors in the rate of cell cycle progression,

Eg. 2 in the main article text describes ERA expressed in a single dimension () in integral form.
It can be derived from the more general Eg. 1 in the main article text. Here we will take a
simpler route and derive Eq. 2 directly in its 1-dimensional integral form using very simple and
intuitive formalism.

A simplified derivation of the ERA equation.

Figure 12 shows how cells distribute along the cell cycle axis, 7, in RPE1 cells.

J, =2aN,
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Cell cycle stage ({)

Figure 12: Cell growth and cell division balance to shape the distribution of cells along £ . The distribution of cell

progression is shown as a function of the cell cycle progression axis, £ . A state (£ = 40 ) is arbitrarily chosen
(border of gray region) to illustrate explanations in the text. The flux of cell growth and cell division are shown
(blue arrows)

In steady state f (/) does not change with time. This time invariance results from a balance

above between two fluxes: the flux, J;, of newborn cells entering G;, and the flux, J,, of cells
exiting to a later cell cycle stage. For example, cells continuously exit G, (Flux: J;). Nevertheless,
the proportion of cells in G is held constant because the flux of cells leaving G; to later cell
cycle stages is balanced by a continuous flux of newborn cells that enter G; from M-phase. In
fact, at steady state, the incoming flux of newborn cells entering G; is larger than the flux of



cells leaving G; into S-phase. To understand this one must recall that while the proportion of
cells in G1 (or any other cell cycle stage) is constant with time, the number of cells increases

exponentially. This latter point is important as it forms the basis for the balance equation that
will be used to derive ERA.

In steady state the number of cells in G; is given by:

Ng = N,f(G)) Eq. S9

where N, is the total number of cells in the population and f(G,) is the proportion of cells in

G;. Since
N, = Nye™ Eq. S10

and since at steady state f(G,) does not depend on time, the number of cells by which the G;

subpopulation increases per unit time is given by:

d

E[NGI]: aN,f(G)) Eq. 511

A generalization of this, illustrated by Figure 12, is that the increase in cell count within any cell
cycle interval ¢ </ (gray region in Figure 12) is given by

d

E[Nwo] —aN,F(() Eq. 512

To derive ERA consider the subpopulation of cells that are at or before cell cycle stage, 7, (i.e.
¢ </,). This subpopulation increases by aN,F({) cells per unit time (Eq. S13). This net

increase is the consequence of a balance between fluxes as described above:

J; =2aN, Eq. S14

J, =wfN, Eqg. 515

The factor “2” in flux J, arises from the fact that every cell division event results in two
newborns being added to the interval / </,



Combining Eqg. S12 with Eqg. S14 and Eq. S15 gives:

aN,F =2aN, —w [N, Eq. S16

Upon rearrangement, Eq. S17 yields:

w=a"—— Eq. 518

where « is the exponential constant of population expansion (proliferation) and is obtained
from plotting the number of cells vs. time and fitting to exponential kinetics. & can be

interpreted as the fraction of cells dividing per unit time and is given in units of '/

time *

Matlab script for calculating the rate of cell cycle progression.

function [w]=ERA(f,F,alpha)

% the ERA transform

% F — the cumulative probability density as a function of El11.
% Thus, F(1)=0 and F(end)=1. F(i) is the proportion of cells

% with Ell<=1i.

% f - the probability density as a function of Ell. f (i) is the
% proportion of cells at cell cycle stage "Ell==i".

% alpha - the proportion of cells dividing per unit time.

% v — the rate of cell cycle progression as a function of El11l
w=alpha* (2-F)./f;

Error analysis of the rate of cell cycle progression.

Since the rate, w, of cell cycle progression is calculated exclusively from f (Eq. S1) and F (Eq. S2)
(o is a scaling factor and does not affect the shape of the resulting curves), errors in w are
propagated solely from errors in the functions f and F. Applying the method of propagation of
errors®, the total error in w is therefore given by:

‘— Of +|— 5F Eq. S19




Errors in the parameterization of cell cycle (/) are propagated into d@ from Eq. S7 and Eq. S8.
Introducing Eqg. S18 into Eq. S19 results in:

OF

0 (2-F

) +25F
! i

o\ f

2-F

2

=

o=«

2

F5f+%5F Eq. S20

Eqg. S20 can be solved by using values for §f and OF (shown in Figure 11) calculated above.
Assumptions of the ERA calculation

One: the appropriateness of the labeled coordinate system.

To perform ERA, single cells are co-labeled for two types of targets differing in their roles in the
ERA calculation. First, one must label the target or targets that are under investigation. In the
case of the present study this target was the total cellular protein mass. The second type of
labeled targets function not as a focus of research but as an “axis of representation”, i.e. “a
coordinate system”. In our case, these targets were the Geminin degron (mAG-hGem) and DNA
(DAPI). The function of the measured levels of DNA and Geminin in this study was to form a
coordinate system quantifying progression through cell cycle. For accurate ERA, one must
assume adequate knowledge of the behavior of the targets that are selected to function as a
coordinate system. For example, in the case of the present study, interpretation of the data was
based on prior knowledge that the levels of neither DNA nor mAG-hGem decrease until the M-
phase stage of cell cycle. In general, the quality of ERA largely depends on the appropriateness
the chosen coordinate system.

Test of validity: This assumption requires some understanding of the biological system that is
studied. In our case, the cell cycle dependency of Geminin and DNA have been sufficiently



characterized to be used as cell cycle markers. We know, for example, that neither DNA levels
nor Geminin levels go down until mitosis. To establish this for the mAG-hGem, we recorded
movies by time lapse microscopy of Geminin accumulation during cell cycle in single cells (Fig.
3, main text).

Two: average cell dynamics match averaged cell dynamics

In cases where ERA is implemented by reduction in dimensionality, as done in the current
study, we assume that the individual cell dynamics are closely approximated by the averaged
cell dynamics determined by the calculated parameterized trajectory. An example where this
condition is not satisfied is when the measured protein levels in individual cells oscillate with
time but the population average remains roughly constant (for example, p53, NF-xB).

Test of validity: This assumption is not mathematical but biological. It assumes prior knowledge
about the system studied. For example, in our case we assume that Geminin levels do not
oscillate.

Three: the weak ergodic assumption

We assume that the distributions of all variables in which we are interested are not dependent
on time. For example, the distribution of cell size as a function of the reaction coordinate, 7,
does not vary with time.

Test of validity: Distributions of the levels of labeled targets can be measured at different times
after plating to establish time-invariance as in Figure 4 and figure 7 in this supplementary file.

Four: the strong ergodic assumption.

We assume a homogeneity in the population in the sense that the dynamics of each of our
measured (labeled) targets (e.g. Geminin, protein mass, etc.), averaged over the parental
lineage of any single cell would be equal (or sufficiently close to) the average dynamics of all
cells in a population at a signal time point. This criterion would not hold, for example, if there
are inheritable differences (genetic or non-genetic) that affect the dynamic behavior of these
targets in the population.



Test of validity: This assumption requires that the population is homogenous and that the
averaged calculated dynamics represent a single population. The assumption can be tested by
comparing calculated dynamics to actual measured dynamics, as we have done in Fig. 3 in the
main article text.

Five: reliability of the measurements.

As with every experimental method, biases and artifacts in measurement could lead to false
interpretations.

Test of validity: In the case of our study, cell size measurements were justified by comparison
with size measurements collected by QPM, an alternative measurement method (fig 3E, main
text). Dynamics of Geminin were characterized by time lapse microscopy (Fig. 3, main text).

A note on averaged rates.

Suppose that the population is composed of multiple subpopulations that progress along cell
cycle at different rates (but the same population exponential growth rate, in keeping with the
weak ergodic assumption). The calculated value of @ at a given point along cell cycle measures
the arithmetic average of the velocity of all cells at that point along cell cycle; however this
would not be the arithmetic average of the two averaged velocities of cells from each of the
two subpopulations. @ would lie between those two velocities and would be approximately
their harmonic mean, in the same way that in the one-dimensional case the frequency f is

approximately the reciprocal of velocity.

Calculation and error analysis of the time axis, t.
The ERA transform - transforming the parameterized cell cycle curve into a time axis.

To transform the parameterized cell cycle axis, ¢ into a time axis, t, we use Eq. 3 from the main
manuscript (Eq. S21 and Eq. S23 in this document).

|
ij— Eq. S21



Substituting Eg. S18 into Eq. S21 we obtain

1

LY T Eq. 522
a’2-F

Solving the integral we get

t=lln 2 . Eq. S23
o 2-F

where o and F are as defined above. The transformation given in Eq. $S23 is shown in Fig. 1B
from the main text. The equation relates any point on ¢ to a time from G (# =0 represents G;).

Error analysis of the time axis.

From Eq. S23 it is clear that the time axis, t, is calculated exclusively from the cumulative
probability function, F, which describes the probability of cells to be at or before cell cycle stage
L. Therefore, the error in t is propagated exclusively from errors in F by:

a

or= oF . Eq. S24
dF

Introducing Eg. S23 into Eg. $S24 we obtain

ot=——0F Eq. S25

A point about Eq. S25 is that since the error in the calculated time axis, t, depends only on the
error in F and since the error in F is very small (see Figure 11, cumulative functions have lower
error), there is a very small error associated with t.
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Figure 13: The percent error in the calculated time axis from a measurement on a fixed population of Hela cells.

Calculating feedbacks: a simplified derivation

Eqg. 4 in the main text describes the rate of cell size increase as a function of cell size for any
position on ¢ (i.e. any stage in cell cycle). For a simple derivation of Eq. 4, consider the
DNA/Geminin phase space (Figure 14). We will derive the calculation based on the assumption
that progression along the DNA/Geminin axis is not a function of cell size, though results from

the calculation are interpretable more generally.

Geminin

AL

Al

Region B ‘

DNA

Figure 14: A cartoon depicting the joint probability distribution of DNA and Geminin. A region is marked for
calculation of the feedback analysis as described in the text.



Consider Figure 14. We want to calculate the growth rate dependency for cells at the cell cycle
stage Al (blue region in the figure). To do this we will separate cell cycle into three regions; A,
Al and B. For these three regions we will, at first, consider two fluxes:

1) The number of cells per unit time transitioning from region A to region Al: J4_,py

2) The number of cells per unit time transitioning from region A/ to region B: Jx,_,p

Calculation of flux 1: J4_,as

From Eq. S12, the rate of increase in cell count in region A is given by

d at
P A\ Ne ]:oz)\AN,

where A, is the fraction of cells in Region A and o is the fraction of cells dividing per unit time.
In contrast, the number of newborn cells entering region A per unit time is 2aN, . So, the

number of cells per unit time leaving region A is:

Ja—ar =20N, —aN, Ay

Note that J4_,A¢ is a number and not a function of /

Calculation of flux 2: Jas_sp

Similar to the calculation of flux 1, we have
Jar—sB=Ja—nr—ON A
where A4, is the fraction of cells in the region A/. After substituting, the above Eq. becomes:



The size dependent flux

The total number of cells transitioning from region A to region Al per unit time isJ4_,5,. The

proportion of cells transitioning from A to A/ that have a size smaller than or equal to s, is

F(s,|Al"), where F(s,|Al") is the cumulative probability distribution of cell size at the

entrance to the interval, A¢ (marked red in Figure 14).

Thus, the number of cells with s <s, that enter region A/ per unit time is:
JasarF (so 1 ALT)

=(2aN, —-aN,A,) F(s, | Al")

=aN, (2—-4,)F(s, 1 Al") Eq. S26

Similarly, the number of cells with s <, that exit region A/ per unit time is:
JarsgF(sg 1 ALT)

=(2aN,—aN A, —aN,A, ) F(s, | Al7)

=aN,(2-A4,—A,)F(s,1Al7)

Eq. S27

Cell growth

From Eq. S26, the number of cells with size S<Sq that enter region A/ per unit time is (Figure 15):

InFlux=aN, (2—A4) F(sy | ALT) Eq. S28

From Eqg. S27, the number of cells with size S<Sg that exit region Afper unit time is:



The net accumulation of cells with size S<Sq in region Al is aN,P(s <sy,Al), where
P(s < sy, Al) is the proportion of cells in region A¢ with size smaller than s,. By the conditional

probability rule:

P(s <s9,Al) = F(sg | Al)Ng ,

since A, is the fraction of cells in the region A/.

Thus,
NetAccumulation = aN,F (sy | Al)\g Eq. S30
»1=100 OutFlux
i)l»:a:;-
.’-.1.,:;.' GrowthFlux
L._._»L—///\l_ )
1-0 A=2(
1 InFlux
>
Cell size

Figure 15: Feedback calculation. The size distribution of cells at any interval, A, in cell cycle is the outcome of a
balance between three fluxes: the flux (number of cells per unit time) of small cells entering A¢ from a previous
cell cycle stage, the flux of cells leaving Af to a later cell cycle stage, and the flux of cells growing out of any size
bin.



From equations Eq. S28 to Eq. S30 we can formulate a balance equation (Figure 15):

NetAccumulation = InFlux — OutFlux — GrowthFlux

Substituting Egs. S24-S26 and rearranging we get:

(2=2) F(sg ALY —(2=X 4 = Ag ) Fsg | ALT)— F(so | ADNg
vV=a Eq.S31

f(SO | AE)AB

To calculate the feedback spectra, ¢(/), from Eq. S31 we used least squares to calculate the

slope of v vs. s for every value of /¢ (Figure 16).

o) = slope(v,s)

f=40

> @) =slope(v,s)
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Figure 16: Calculation of feedback spectra from Eq. S31. Eq. S31 yields growth rate as a function of cell size for
every interval on the cell cycle axis, £ . From each such plot we estimate the best fitting linear approximation using
least squares. The slope of growth rate vs. cell size (resulting from the least square fit) is set as ¢(f) .

Error analysis of the feedback calculation



To estimate the uncertainty in the measurements of @¢(/), we used resampling, as direct

calculations using error propagation are infeasible.

We used 800 iterations of bootstrapping without replacement, making the following
calculations at each iteration i:

1) Randomly sample 75% of the observed cells (20% for the substantially larger L1210
dataset)

2) Calculate the 2-dimensional probability distribution from this sample

3) Calculate the loop 7, and loop assignment based on this probability distribution

4) Calculate the rate of progression through /,, and derive the time axis #; for this loop
5) Calculate the size-dependent growth rate v(s,/,) and the slope ¢,(/,)

6) Plotg, as afunction of time ¢, along the loop /,.

Given the 800 slope functions ¢, we interpolated them to a common set of 50 time points, and

then took the mean and standard deviation of the 800 values of ¢ at each time point.

We then used the time axis ¢ to convert these time points back to locations on the loop ¢
determined from the full data set. This give us, at 50 points along ¢, the mean and standard
deviation of the bootstrap calculation of ¢(/) .

Confidence intervals for ¢(/) calculated with the above approach are shown in Fig. 6 in the
main article text. The horizontal axis represents the loop ¢ as used with the full data set, and
vertical axis represents growth rate vs. cell size. The line in red represents the function ¢ of
slopes as computed with the full data set. The shaded area represents the interval one
standard deviation on either side of the mean of the bootstrap calculation of ¢(/). For the
Hela cells, the variation was much higher; in that case we plot 1.645 standard deviations on
either side of the mean to show that with 90% confidence, the slope does become negative at
the G1/S transition.

Some technical notes:

1) sampling without replacement was used because the kernel density estimator used in
step 5, based on [kde *], chooses an extremely small smoothing parameter when
duplicated data is present.

2) Switching from 7, to ¢, to align the functions ¢, and then switching back to ¢ for the

plot in the figure, will only serve to increase the width of the error bars.



Matlab script for feedback calculation:

function [SI,Rsqare,EllAxis]=NegativeFeedBackCalculator(Ell,P,ResP,W,w)

% Calculate the negative feedback plot along the trajectory Ell (Fig. 6 in manuscript).
% input arguments:
%

% P - a vector with values of protein mass (cell size) for each individual
Y% cell. The length of P is equal to the number of cells measured.

% Ell - the cell cycle parametrization. Ell is a vector with

% length(Ell)==length(P). Each cell-size P(i) is associated with a cell
% cycle position, EII(i).

% ResP - the resolution of the calculation (number of bins of cell size).

Y% Larger values for ResP would correspond to better resolutiion and worse
% acuracy (more noise).

% W - the width of the intervals in which the negative feedback is

% calculated

%o W - width of the bounding intervals (see text)

% output arguments:

% Sl - the slope of growth rate vs cell size as a function of Ell. The
% length of Sl is the same as the length of Ell

% Rsqare - quality of the linear estimate

% EllAxis - The value of Ell that corresponds to each value of SI

sc=linspace(prctile(P,5),prctile(P,95),ResP);
windowSize=W;

BoundingSize=w;

L=0;

counter=0;

for i=BoundingSize+1:1:310
counter=counter+1;
la=find(Ell<i);
laExit=find(Ell>i-BoundingSize & Ell<i);
Ib=find(Ell>=i & Ell<i+windowSize);
IbExit=find(Ell>=i+windowSize & Ell<=i+windowSize+BoundingSize);
SaExit=(P(laExit));
Sb=(P(lb));
SbExit=(P(IbExit));
PhiA=length(la)/length(Ell);
PhiB=length(Sb)/length(Ell);
[v,fb,faExit,fbExit]=RateCalculator3(Sb,SaExit,SbExit,PhiA,PhiB,sc);
pcr=prctile(Sb,[10 90]);
ii=find(sc>pcr(1) & sc<pcr(2));
[fresult,gof]=fit(sc(ii)',v(ii)','poly1','weights',fb(ii), robust’,'on");
Sl(counter)=fresult.p1;
Rsqare(counter)=gof.rsquare;
Interc(counter)=fresult.p2;
mV(counter)=(2-length(la)/length(Ell))/length(lb);
EllAxis(counter)=mean(Ell(Ib));
L=L+length(ii);
disp(i)

end

Calculation and error analysis of growth rate vs cell size.




Figs 4 in the main text shows the averaged dependency of growth rate on cell size for cells from
mid G; to G,. This dependency was calculated by Eq. S31 (Eq. 4 in main text) with A{ being from

late G1 (APC inactivation) to G2. In the following we provide an analysis of errors associated
with the calculation.

Calculation of growth rate vs. cell size

The equation providing growth rate as a function of cell size is:

(2=A4)F(sl0,)—(2=A,—A4,)F(slt,)=AF(s1¢,)
ﬂ?)f(5|£(u,b))

v(sll,,)=a Eq. S32

Where A, is the fraction of cells with ¢ < /¢  and F(s|¢,) is cumulative size distribution of
cells with cell cycle stage ¢ =/ (the fraction of cells at ¢ =/, with size that is equal to or
smaller thans). f (s I K(a,b)) is the probability distribution of cell size for cells in the cell cycle
stageinterval £, <(</,. v(sl/,, )isthe average growth rate as a function of cell size for cells
in the cell cycle stage interval ¢/, </ </, (Figure 17). Eq. S32is a function of three cumulative
distribution functions, F(s1¢,), F(sl¢,), F(s!/,) and the probability density function,

f (s 17, ) All density functions were calculated from single cell size measurements using the

Parzen kernel density estimation method’. In Matlab, this method is implemented by the
function ksdensity.
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Figure 17: Calculation of growth rate vs cell size for the cell cycle interval between early G, to G,. Calculation was
performed with the same strategy employed for the calculation of feedbacks.

Error analysis of growth rate vs. cell size.
Errors in the cumulative probability density functions were calculated by Eq. S8. Confidence

intervals for the (non-cumulative) probability density function, f (s I (b) were calculated based
5

on’:
Forn =G[f —se)? Eq. S33
Fn =(\/?+se)2 Eq. S34
Where

1
se =

Im\2hN

N is the sample size and & is a width parameter which is estimated from data as described in
5

Because F is a cumulative we have (see Figure 11):

OF (slt,) < 5f(s|f(a,b))
SF(slt,)<6f(slt,)

OF (s1t,)<df(s1t,)

And errors in the estimation of the cumulative probability density functions are negligible
compared to errors on the non-cumulative probabilities. Based on this, the error in the growth
rate vs. cell size could be estimated from Eq. S32 by:



5v=§—]f5f

:cmé'f(slfw)) Eq. S35

Where

g2 A)E(s18,) (2= 4~ 4 ) F(s1L,) = AF (s1¢,)

4,

Figure 18 shows the result of implementing the above expression to calculate confidence
intervals for the growth rate vs cell size calculation:
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Figure 18: Growth rate vs. size and confidence intervals for Hela (A), L1210 (B), HT1080 (C) and RPE1 (D) cells.



Calculation and error analysis of growth rate vs time.

To calculate growth rate vs time we calculated average cell size per position on the
parametrized cell cycle trajectory, £. We then converted ¢ into time using Eq. S21 and
computed the derivative. As typical with numerical calculation of derivatives, the method is
highly affected by noise in the data. To overcome this and to provide estimates for the errors in
growth rate we applied linear fitting with a smoothing window. We chose a smoothing window
with width A/ =W , where W was chosen as approximately one tenth the length of 7.

Following that, for each point, /,, we used least square fitting to calculate the slope of cell size
vs time for cells confined to an interval of width W centered on /,. Errors for the calculated

slope were computed based on standard error in least square statistics™?, thus:

Where? :
R4

S8y = Z (0, — T)?
i=k
R+

S8y = Z (;1/,,' — T/)')

ssiy = ) (vi =)y =)




To test the effect of errors in cell cycle parameterization and sampling statistics on calculations
of growth rate vs time and further characterize the confidence intervals we employed a
bootstrapping resampling procedure. Results of this calculation are shown in Figure 19.
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Figure 19: Legend: Dynamics of growth as a function of cell cycle stage and as a function of cell size. The panels
show the results of ERA calculations for growth rate as a function of time (A-D) and growth rate as a function of
cell protein mass (E-H) from single cell data on Hela cells (A, E), L1210 mouse lymphocytes (B, F) human
fibrosarcoma, HT1080 (C, G) and the non-transformed immortalized human retina epithelium RPE1 (D,H).



Applying ERA to signal transduction
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Legend: Dynamics of protein and phospho-protein levels calculated by ERA. To calculate the time
dependency of the antibody labels, immunofluorescence measurements were multiplexed with
measurements of mAG-hGem, DAPI and SE-A647. By associating every cell with a specific point on the

inferred cell cycle stage axis, !, we obtained average antibody signal intensities as a function of ! wWe

then used Eq. 3 (Box 2) to transform £ into the time axis plotted here. Antibodies used are: Phospho-S6
Ribosomal Protein (Ser235/236) (Cell Signaling, #4858), phospho-Akt Ser473 (Cell Signaling, #4060),
Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell Signaling #4370), cMyc (Cell Signaling, #5605),
Phospho-cdc2 (Thr161) (Cell Signaling, #9114), Rb (Cell Signaling, #9309M), DYRK1A (Cell Signaling,
#2771), c-Fos (Cell Signaling, #2250), Phospho-4E-BP1(Thr37/46) (Cell Signaling, #2855), p27 (AbCam,
ab32034), underphosphorylated Rb (Enzo Life Sciences, MAb549), cyclin E (Santa Cruz, sc-247), phospho
cyclin E Thr62 (Cell Signaling, #4136), Phospho-Smad2 (Ser465/467)/ Smad3 (Ser423/425) (Cell Signaling,
#9510), LC3B (D11) (Cell Signaling, #3868)




Further analysis of drug response measurements.
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Legend: The contribution of protein synthesis and protein degradation to cell size control. The panels
show the effects of various drugs on cell growth for different percentiles of the cell size distributions
(labeled as the 10", 20™, 33" 66", 80", 90" and 95" percentiles) (A) untreated Hela cells; (B) cells
treated for one hour pulse of the translation inhibitor, cycloheximide; (C), cells treated for one hour with
the proteasome inhibitor, MG132; and (D) cells treated for 1 hour pulse with the mTOR inhibitor,
rapamycin. Further statistical analysis and confidence intervals for this plot are provided in
supplementary file 2.




Comparison to results from previous publication

In a previous publication we have used the Collins-Richmond equation ° to calculate growth
rate as a function of cell size for L1210 cells. Unlike the use of ERA, the Collins Richmond
method fails to capture the association and dependency of growth rate on other variables such
as cell cycle. Below are results of the Collins-Richmond calculation from three different studies,
performed on different cell lines and relying on different experimental methods for cell size
measurements. First is an early calculation by Anderson, published in 1969 ’ and based on
Coulter Counter measurements of cell volume. A drawback of that study is that is that the
calculation was based on an untested assumption regarding the size distribution of newborn
cells. The second is a more recent study that we have published in 2009 8 also based on Coulter
Counter measurements that relies on less assumptions. Last is a Collins-Richmond calculation
from data collected in the present study, with succinimidyl ester measurements of total cellular
protein mass as a proxy for cell size. Strikingly, the growth rate curves resulting from these
three studies are nearly identical. This comparison shows that the growth rate dependency on
cell size, described in & and 7 is consistent across different cell lines and different measurement
techniques and is reproducible by different labs. It further justifies our interpretation of the
succinimidyl ester based measurement as a proxy for cell size. Nevertheless, considering this,
one might ask how these dynamics shown in Fig. 20 are consistent with those presented in
present research. Specifically, figure 4E-F may not appear to be consistent with 8 (Fig. 208,
below). To address this question, we calculated the growth rate dependency on size for
separate stages of cell cycle (Figure 21).
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Fig. 20. Growth rate vs. cell size calculated using the Collins Richmond equation. Plots were taken from three
independent studies: (A) 7, (B) % and the current present study (C). In the first two, size measurement was cell



volume measured by Coulter Counter. In the present study (C), size was measured with succinicimidyl ester
reacted with fixed and permeabilized cells.

The results show that different features of the plots in the current study are cell cycle stage
specific. For example, the rapid increase in growth rate for the small cells is a result of early G4;
the slight reduction in growth rate following that rapid growth phase is a result of late G; and so
forth. Further, the results of the growth rate vs. cell cycle that are shown in Fig. 20 and
calculated for the whole population (undissected by cell cycle stage) is strongly biased by the G;
and G, subpopulations as these are the most occupied with cell count. This demonstrates that
the differences between Fig.4 from the main text and results published in ® can be accounted
for by the dependency of growth rate on cell cycle stage. In early G1 growth rate is dependent
on cell size. Since early Gy, i.e. before APC inactivation, constitutes the largest cell cycle phase,
its trend dominates the trend calculated for the whole population. The reduction in growth rate
seen for very large cells is a consequence of the fact that the fast growing cells divide earlier °
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Figure 21: Growth rate vs. cell size calculated using the Collins Richmond equation for different stages of the cell
cycle. Also shown is the number of cells in each cell cycle stage.



Testing for non-proliferating subpopulations.

The existence of a non-cycling sub-G1 population would violate the assumptions of ERA. To test
whether such a subpopulation exists we pulsed cells for 20 minutes with EdU and tested for
EdU retaining cells in G1 33 hours after the pulse (Fig. 22).
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Fig. 22: EdU time course. Cells were pulsed with EdU for 20 min and then fixed 0 hrs (A), 6 hrs (B), 15 hrs (C) and 33
hrs (D) after the 20 min EdU exposure. EdU positive cells are labeled red to distinguish them from the total
population (blue). The plot demonstrates that EAU positive cells are first localized to S phase (A). These cells then
transition into G2 (B), G1 (C) and back to S phase (D). Note that upon return to S-phase (D) no EdU positive cells
are observed in G1.
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Figure 23: the 90", 50" and 10" percentiles of cell size as a function of the parameterized cell cycle for untreated
cells (A), cells treated with a one hour pulse of cycloheximide (B), cells treated with a 1 hour pulse of rapamycin (C)
and cells treated with a 1 hour pulse of MG132 (D). Confidence intervals were calculated by bootstrapping.

Computing the vector field without dimensional reduction.

Eg. 1 in the main article text (the ERA transform) aims to describe dynamics of intracellular events from
static measurements performed on a large population of single cells. A limitation of the approach is that
a single explicit solution to Eq. 1 can only be obtained if Eq. 1 is expressed in a single dimension. In the
described research we solved this problem by reducing the 2 dimensional DNA/Geminin phase space
into a single dimension, ¢, describing cell cycle progression. In the general case, it is interesting to
contemplate whether there are approximation methods other than dimensionality reduction that could
provide solutions to ERA.

In higher dimensions a solution of Eq. 1 is a vector field describing the dynamics of each of the measured

variables. For example, a solution of Eq. 1 for the 2 dimensional DNA/Geminin phase space is a vector

) __ (dDNA dGeminin

field v= ,
dt dt

Here we show that although Eq. 1 in the main article text limits but does not completely determine the
vector field, v, under mild assumptions we can actually solve for v directly.

If we assume that v is a gradient field, that is, v = Vu for some scalar-valued function u# on phase
space, then Eq. 1 becomes

—V-(fVu)+B=af (51)

this is an elliptic differential equation in the unknown function u# and there exist numerical solvers for
such problems. There are some complications, though: since f is very close to 0 over much of phase
space (configurations never achieved by cells), the resulting linear system of equations is singular. We
solved equation (S1) by imposing a Dirichlet condition that u vanishes whenever f is sufficiently small.

We illustrate this method with the RPE1 cell distribution described in the main text. We first removed
from the dataset those cells in late G2, where Geminin levels have already fallen. We then estimated

the function B=2*a f,, —af, . accounting for cell birth— f,, representing the actual distribution of

newborn cell states, and f, . now representing the distribution of cell states immediately prior to APC

mit
activation (and progression to late G2). We solved equation (S1) with the Dirichlet boundary conditions
using MATLAB’s assempde function. The resulting vector field v =Vu is shown in Fig. S1 (A).

To test the quality of this approach, we produced simulated time profiles of Geminin and DNA. The
advantage of simulated data is that we know the real parameters which we are attempting to



characterize. The simulation of cells’ progression through the Geminin-DNA phase space was based on a
differential equation system

dx

E:fl(x’y)

Q =
4 f(x,y)

described by the vector field v, (x,y) = (f,, f,) shown below (B), together with division events. After

6 «

producing a steady-state distribution f (from a population of 5x10° “cells”) together with the

distributions f, and f . from this system, we again used MATLAB’s assempde to solve (S1) with the

Dirichlet condition. The resulting vector field v = Vu is shown (fig S1 C).

This method is not as accurate as the reduction to one dimension. The assumption that V is a gradient
field has no strong biological justification. Additional assumptions limiting the size and direction of V
based on biological understanding should be imposed: for example it is unlikely that cells will increase
DNA before APC inactivation and the consequent rise in geminin, and hence the vector field V should
not point upwards at that point in the Geminin-DNA phase space. The biologically-motivated
assumption we made in the paper was that cells in a given state (as determined from the one-

dimensional loop) would have very similar values of V.
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Figure: 2-dimentional ERA calculation.

Supplementary Materials and methods

Culturing procedures: Cells were cultured in Dulbecco's Modified Eagle Medium (Cellgro; DMEM 10-
013-CV) with 10% FBS (Cellgro; 35-010-CV) and 1% antibiotic-antimycotic solution (Cellgro; 30—004-Cl).
Media for cells expressing the mAG-hGem fucci reporter system was further supplemented with 3ug/ml
blasticidin (Invivogen; ant-bl-5b) to maintain selection.

Plating cells on coverslips: Cells were plated and fixed on 24X60mm coverslips, No. 1.5 (VWR; 48393
252). Prior to plating, coverslips were sterilized by 20 minute incubation in 70% ethanol at room
temperature and then dried in sterile conditions. Cells were typically plated at 10° cells per ml into 15cm
dishes that were pre-prepared with sterile coverslips as described above. Cells were prepared for



experiment and fixed approximately 48 hours after plating. To avoid artifacts of the freeze/thaw
procedure, cells were cultured for at least a week before being plated on coverslips. To dissociate cells
from culture plates we incubated the culture in 0.05% trypsin (Cellgro; 25-051-Cl) for 5 minutes at 37°C.

Fixing and staining cells. To fix cells, coverslips were removed from culture plates and immediately
submersed and incubated for 10 minutes in 4% paraformaldehyde (Alfa Aesar; 30525-89-4) at room
temperature. Following the paraformaldehyde fix, cells were washed with PBS and permeabilized by
incubating coverslips for 5 minutes in dry methanol at -20°C.

Immunofluorescence and cell size measurement: Cells grown on glass coverslips were fixed in 4% para-
formaldehyde for 10 minutes and permeabilized in cold methanol (-20°C) for 5 min.
Immunofluorescence protein detection was performed by incubating fixed, permeabilized cells with
primary antibody overnight at 4°C and then treating with a fluorescent secondary antibody for 1 hour.
To label protein mass, fixed, permeabilized samples were incubated with 0.04 ug/ml succinimidyl ester
linked alexa dyes diluted in DMSO (Alexa Fluor 647 carboxylic acid, succinimidyl ester, Invitrogen, A-
20106). Following labeling procedures, cells were mounted on glass slides in ProLong® Gold antifade
(Life technologies, P36930).

Imaging cells. Slides prepared as described above were imaged with a Nikon Ti Inverted Fluorescence
Microscope w/ Perfect Focus controlled by the software, Nikon Elements. We used the scan-slide
function to image the full area of the slide at 20X magnification. This resulted in approximately 5000-
8000 images per slide, producing data on a total of about 100,000 cells. For larger cell counts, data from
multiple slides was concatenated.

Antibodies: Phospho-S6 Ribosomal Protein (Ser235/236) (Cell Signaling, #4858), phospho-Akt Ser473
(Cell Signaling, #4060), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell Signaling #4370), cMyc
(Cell Signaling, #5605), Phospho-cdc2 (Thr161) (Cell Signaling, #9114), Rb (Cell Signaling, #9309M),
DYRK1A (Cell Signaling, #2771), c-Fos (Cell Signaling, #2250), Phospho-4E-BP1(Thr37/46) (Cell Signaling,
#2855), p27 (AbCam, ab32034), underphosphorylated Rb (Enzo Life Sciences, MAb549), cyclin E (Santa
Cruz, sc-247), phospho cyclin E Thr62 (Cell Signaling, #4136), Phospho-Smad2 (Ser465/467)/ Smad3
(Ser423/425) (Cell Signaling, #9510), LC3B (D11) (Cell Signaling, #3868)

Image Analysis: Image analysis was performed with custom written software (EnsembleThresher). The
algorithm identifies cell boundaries by two complementary approaches. (i) Cells were separated from
background by thresholding a Top-Hat transform of the original image. Top-Hat transformation was
used to remove trends that are spatially wider than cell diameters. (ii) Boundaries between adjacent,
touching cells were identified by seed based watershedding. Seeds were calculated as the regional
maxima of the Gaussian smoothed image.

Summary of ERA procedure: To calculate dynamics from the samples of fixed cells the following steps
were performed:

i) Cells were fixed on large coverslips and labeled for targets of interest (e.g. protein mass, cell
cycle position, etc).



v)

vi)

vii)

Coverslips were imaged using a microscope equipped with an automated stage and a “scan-
slide” algorithm (Nikon Ti Inverted Fluorescence Microscope w/ Perfect Focus controlled by
Nikon Elements) to image the full area of the slide (100,000 cells per slide).

Images were processed to identify single cell and nuclei boundaries and collect fluorescence
intensity per cell, per label.

The probability density was calculated for the phase space defined by the labeled targets
(2D for geminin/DNA). Probability density was calculated with the Parzen kernel density
procedure if cell count is low and with a ND histogram if cell count was high)

A parameterization of cell cycle was calculated as described in supplementary file 2 and
supplementary file 1.

The number of cells was calculated as a function of the parameterized cell cycle path, f({).
f () was used to calculate the dynamics of cell cycle progression using Eq. 2 (Box 2; Matlab

script provided in supplementary file 2).



EnsembleThresher: a matlab code for image processing

For the described research we have wrote EnsembleThresher, a Matlab based image processing software. Below we provide an
explanation of the input into EnsembleThresher followed by the source code for EnsembleThresher is provided below.

The input to EnsembleThresher is an excel sheet describing the location of image files to be processed and additional
information. Below is an example input excel file. The colums of the file relate to following data:

Index: a running index of imaged slides

Times: if time course was performed, this describes the time point

Software: the software with which images were collected. EnsemleThresher recognized two software, Metamorph and Nikon Elements
Input Directory: the directory where images are stored

Output Dir: directory into which processed images will be saved

Flat: location of the flatfield image (an image of a slide that has uniform fluorescence)

Dark: an image with camera noise

Cl to C5: the names of the imaged channels

Given name: any text that will be stored in the final output variable.

General Info Source Data: xxx
itz || oimes ||caiie || sdtmee || imedmemy || 2FE || G || e || 2R || mes ||estioms a =) a c s [Peottedd] Given Name
0 directory Names hannal
Miriam_5_24_12 Rpel_drugs_large_4 1 1Hela lewElemen| files.med.hqC:\Users\i \\researct \\researct tile DAPI [nucleus] Gem prot [prot] 150 uM bpV(phen)
409 2 2 Hela files.med.hqC:\Users\i \\researct \\researcttile DAPI [nucleus] ~ Gem prot [prot] 150 uM bpV (phen)

[ETopts]=EnsembleThresherJuly2011 (FileName, sheet, varargin)

s c continue bas
E ell with the structure c

then 3177 is the running index id
addpath ('ETRuns\ ")

DBG for debugging

DBG=0;
warning off
ETopts.date=date;
[ETopts]=XLS_interface (FileName, sheet) ;
NumId=ETopts.XLS.NumId';
[ETopts]=num_of_channals (ETopts) ;

input varargin arguments
arg=1;
ETopts.outputpic{l}=0;
(arg<=length(varargin)
varargin{arg}
'outputpic’
arg=arg+1l;
ETopts.outputpic=varargin(arg);
'breakpoint’
ETopts.BreakPoint=varargin{arg+l};
arg=arg+1l;
"dbg'
dbg=varargin{arg+l};
arg=arg+1l;
isstruct (dbg)
ETopts_old=ETopts;
ETopts=dbg;
ETopts.XLS=ETopts_old.XLS;
ETopts.timepoint=ETopts.timepoint;
NumId=ETopts.timepoint:NumId(end) ;
DBG='ETopts start'; ode to start from here.
iscell (dbg)
strcmpi (dbg{1l}, '"NewElementsID")
DBG=dbg;
ETopts_old=ETopts;
ETopts=dbg{3};
ETopts.XLS=ETopts_old.XLS;
ETopts.timepoint=ETopts.timepoint;
NumId=ETopts.timepoint:NumId(end) ;

length (dbg)
NumId=dbg (1) ;
DBG=dbg;

length (dbg)==1
NumId=dbg;

fprintf ('Error In Input ! check yourself...\n');

;

arg=arg+1l;



ETopts.NumOfProcessedIms=0;
~strcmpi (DBG, 'ETopts start')
ETopts.timepoint=t;
ETopts.r=1;
ETopts.c=1;

plotting the waitbar
TotImgs=ETopts.XLS.NumId(end) ;
% end of waitbar

strcmpi (ETopts.XLS.software (t), 'newelements') ||
strcmpi (ETopts.XLS.software (t), 'newelements4slides')
[ETopts]=CalculateSingleTimePoint_newelements (ETopts,FileName, sheet);

[ETopts]=CalculateSingleTimePoint (ETopts,FileName, sheet) ;

length (DBG) ==

eval (['save ''DATASET_' ETopts.XLS.outputName ''' ETopts']

[ETopts]=ETAddFieldsv4 (ETopts) ;
eval (['save ''DATASET_' ETopts.XLS.outputName ''' ETopts']

[ETopts]=CalculateSingleTimePoint_newelements (ETopts,FileName, sheet)
DBG
StartPoint=1;
t=ETopts.timepoint;

% EXPLENAT
functio
the ind

FileIndi
original

ident
002_488"

1fix num

example, i1f the image name is "tile

t from the dir all T'h

the ariables the functions
strcmpi (ETopts.XLS.software (t), 'newelementsé4slides')==1
[ETopts, spX, spY]=CollectFileIndices_4slide (ETopts,t);
[ETopts, spX, spY]=CollectFileIndices (ETopts,t);
exist ('spX')~=1
disp('problem !!!llitrirtr)
keyboard
ETopts.DATA{t}.NumOfCells=0;
mkdir (ETopts.XLS.OutDir{t})
% COLLECTION FILE COORDINM
an en the lin index of the file and the

sition of the in the imaged grid.

strcmpi(ETOpts.XLS:software(t),‘metémorph')
[ETopts]=CollectImageIndices (ETopts) ;

LOOPING ALL POSITIC
c=1;r=1;
counter=0;

IN THE GRID

DBG option ith [t r 1
length (DBG)
r=DBG (2) ; c=DBG(3) ;
)BG option entery with ETopts from crashed run

iscell (DBG)
strcmpi (DBG{1}, "NewElementsID'")
StartPoint=DBG{2};

strcmpi (DBG, 'ETopts start')
isfield (ETopts, 'r')
r=ETopts.r;

c=ETopts.c;
StartPoint=ETopts.counter;

DBG='";

ETopts.XLS.Last_image (t)=1length (spX);
OldTime=clock;
ImageNumber=StartPoint:length(spX); % StartPoint is 1 unless debugging
isfield(ETopts, 'BreakPoint")
ImageNumber>ETopts.BreakPoint

ETopts.counter=ImageNumber;
[Organelles, CombinedImage, ETopts]=LoadImages ( [spX (ImageNumber) spY (ImageNumber)],ETopts);
disp(['image number (NewElements): ' num2str (ImageNumber) ]



~isfield(Organelles, 'nucleus')

im_nn=Organelles.noname;

[bw3, x,y]=FindFakeNucs (Organelles.noname,0.3,1,10);

bw3=imdilate (bw3>0,strel ('disk',5));

Pic=imoverlay (NormalizelImage (im_nn, [0 prctile(im_nn(:),99.5)]1),bw3,[1 0 0]);
Nuclii_p=bw3;

Organelles.nucleus=Nuclii_p;

strcmpi (ETopts.XLS.cell line{t}, 'hela')
[Nuclii_p,Pic,ETopts]=SegmentingNucliiv2 (Organelles.nucleus,Organelles.nucleus,ETopts);
strcmpi (ETopts.XLS.cell line{t}, 'sknas"')
[Nuclii_p,Pic,ETopts]=SknasNuclii (Organelles.nucleus,Organelles.nucleus,ETopts);
strcmpi (ETopts.XLS.cell_line{t}, 'ES cells")
[Nuclii_p,Pic,ETopts]=SegmentingNucliiv2 (Organelles.nucleus,Organelles.nucleus,ETopts) ;

clc
disp('Unknown Cell line')

sum(Nuclii_p(:))==0

counter=counter+1;
Regions.Nuclii=Nuclii_p;
[A,L,L2]=Area_old(Regions.Nuclii,0);

IMt=CombinedImage{1l};
CountChannals=2:length (CombinedImage)
IMt=IMt+CombinedImage{CountChannals};

isfield(Organelles, 'focci')
IMt=IMt+imopen (Organelles.focci,strel('disk"',3));

isfield(Organelles, 'prot"')
IMt=Organelles.prot;

strcmpi (ETopts.XLS.cell_line{t}, 'hela')
[Cells,Cells2,ETopts]=ET_Lite_Watershed (IMt,Nuclii_p, ETopts) ;
strcmpi (ETopts.XLS.cell line{t}, 'sknas"')
[Cells,ETopts]=SegmentSknasCells (IMt,Nuclii_p,ETopts);
strcmpi (ETopts.XLS.cell_line{t}, 'ES cells")
[Cells,Cells2,ETopts]=ET_Lite_Watershed (IMt,Nuclii_p, ETopts) ;

clc
disp('Unknown Cell line')

isfield(Organelles, 'pericentrin')
[D,Pericentrin_Regions]=SegmentPericentrin(Organelles.pericentrin,Cells);
Regions.Pericentrin.loc=Pericentrin_Regions;

Regions.Pericentrin.D=D;

isfield(Organelles, 'cilia')
[cilia]=SegmentCilia(Organelles.cilia,Cells);
Regions.cilia=cilia;

Regions.Cells=Cells;
[Regions, IOL1, IOL2]=CleaningRegions (Regions) ;

isfield(Organelles, 'focci')
Regions.focci=Organelles.focci-imopen (Organelles.focci,strel('disk',4))>0.3;
Regions.focci=Regions.focci&Regions.Cells;

ETopts.XLS.Combine_Images==1
[C,N]=CropSegmentedImage (ETopts,Cells,Nuclii);
[ETopts,Cmat,Nmat]=buildSegmentedImage (ETopts,C,N,c,r);

mod (ImageNumber, 10) ==
JustForPic=find (Cells>0) ;
JFP_thr=prctile (CombinedImage{2} (JustForPic),99);
IOL22=imdilate (IOL2,strel ('disk',1));
im_pic=imoverlay (imoverlay (NormalizeImage (CombinedImage{2}),IOL1,[1 O 0]),IOL22,[0 0 1]);
isfield(Organelles, 'focci')
IOL22=Regions.focci;
im_pic=imoverlay (imoverlay (NormalizeImage (Organelles.focci, [0 2]),IOL1,[1 0 0]),IOL22,[0 O 1]);

figure (1)
imshow (im_pic)
TotImgs=ETopts.XLS.Last_image (t);

isfield(Organelles, 'pericentrin')
Pic=imoverlay (NormalizeImage (Organelles.pericentrin),Pericentrin_Regions>0, [1 0 0]);



mod (ImageNumber, 10)

isfield(Organelles, 'cilia')
Pic=imoverlay (NormalizelImage (Organelles.cilia, [0 0.5]),cilia>0,[1 O 0]);
Pic3=imoverlay (Pic,bwperim(Cells), [0 0 1]);

mod (ImageNumber, 10) ==

DISPLAYING THE PHASE I
isfield(Organelles, 'ph
mod (ImageNumber, 10)

[ETopts,Regions]=ExtractData (CombinedImage, Regions,Organelles, spX (ImageNumber), spY (ImageNumber), ETopts) ;

length (DBG) =

CURRENT_TIME=clock;
CURRENT_TIME (4) ~=01dTime (4)
eval (['save ''DATASET_' ETopts.XLS.outputName ''' ETopts']

01dTime=CURRENT_TIME;

eval (['save ''DATASET_' ETopts.XLS.outputName ''' ETopts']

[IM_n,Organelles, ETopts]=Load_Normalize_All_Phases (ETopts, ImageNumber)
t=ETopts.timepoint;
SaturationLevel=ETopts.XLS.SaturationLevel;
ImgNum=ImageNumber;
loading images, normalizing images and placing them into : structre
counter=0;
counter2=0;
c=1:NumOfChannals (ETopts, t)
txt=ETopts.XLS.channal_id{t,c};
~isempty (txt)
counter2=counter2+1;
strcmpi (ETopts.XLS.software{t}, 'elements")
[ETopts]=NumOfDigits (ETopts) ;
ImageNum_str = num2str (ImgNum, ['%05.' num2str (ETopts.NumberOfDigits) 'd']);

disp([ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} ImageNum_str 'c' num2str (counter2) '.tif'])
im=double (imread ([ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} ImageNum_str 'c' num2str (counter2) '.tif']));
size(im,1)~=512

im=imresize (im, [512 672]);

strcmpi (ETopts.XLS.software{t}, 'metamorph')
FileName=[ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} '_w' num2str (counter2) '_s' num2str (ImgNum) '_t1.TIF'];
disp(FileName)
im=double (imread (FileName)) ;
size(im,1)~=512
im=imresize (im, [512 672]);

strcmpi (ETopts.XLS.software{t}, 'newelements"')
[ETopts]=NumOfDigits_newelements (ETopts);
ImageNum_strl = num2str (ImgNum(1l), ['$05."' num2str (ETopts.NumberOfDigits) 'd']);

ImageNum_str2 = num2str (ImgNum(2), ['%05.' num2str (ETopts.NumberOfDigits) 'd']);
FileName=[ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} '_x' ImageNum_strl '_y' ImageNum_str2 '.tif'];
ETopts.filename=ImgNum;
disp([FileName ' ' num2str (ImageNumber)])
im=double (imread (FileName, counter2)) ;

size(im,1)~=512

im=imresize (im, [512 672]);

strcmpi (ETopts.XLS.software{t}, 'newelements4slides')
[ETopts]=NumOfDigits_newelements4slides (ETopts) ;
ImageNum_strl = num2str (ImgNum(l), ['%05.' num2str (ETopts.NumberOfDigits) 'd']);
ImageNum_str2 = num2str (ImgNum(2), ['$05."' num2str (ETopts.NumberOfDigits) 'd']);
FileName=[ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} '_s' num2str(t) '_c' ImageNum_strl
ETopts.ChannalSuffix{counter2} '.tif'];
ETopts.filename=ImgNum;

_r' ImageNum_str2

disp([FileName ' ' num2str (ImageNumber) ]
im=double (imread (FileName)) ;
size(im,1)~=512

im=imresize (im, [512 672]);

ETopts.PrcThr (c)=prctile(im(:),97); % an estimate for the total brightness of the picture

~isempty (ETopts.XLS.flat{t})

flat=double (imread (ETopts.XLS.flat{t}));
size(flat,1l)~=512
flat=imresize (flat, [512 672]);

~isempty (ETopts.XLS.dark{t})

dark=double (imread (ETopts.XLS.dark{t}));
size(dark,1)~=512
dark=imresize(dark, [512 672]);



dark=zeros(size(im));

c==
ETopts.SaturatedPixals=false(size(im));

ETopts.SaturatedPixals (find(im==SaturationLevel))=true;
~isempty (ETopts.XLS.flat) && ~strcmp(ETopts.XLS.Region{t,c}, 'phase')
flat=imresize (flat,size(im));
dark=imresize (double(dark),size(im));

im=(im-dark) ./ (flat-dark);

~strcmp (ETopts.XLS.Region{t,c}, "phase')
strcmpi (ETopts.XLS.cell line{t}, 'hela')
size(im,1)==1024 no binning
BG=imopen (imclose (im, strel('ball',1,0,0)),strel('sguare',70));

BG=imopen (imclose (im, strel('ball',3,0,0)),strel('square',100));

strcmpi (ETopts.XLS.cell_line{t}, 'sknas

s")

BG=imopen (imclose (im, strel('ball',1,0,0)),strel('square',300));
cell
)

strcmpi (ETopts.XLS.cell_line{t}, 'ES cells")
BG=imopen (imclose (im, strel('ball',1,0,0)),strel('sguare',150));
clc
disp('Unknown Cell line')

Classification (fluorescent channals or Organelles) ?
isempty (ETopts.XLS.Region{t,c}) & NumOfChannals (ETopts,t)
counter=counter+1;
IM _n{counter}=im-BG;
Organelles.noname=im;
isempty (ETopts.XLS.Region{t,c})
counter=counter+1;
IM_n{counter}=im-BG;
strcmpi ('nucleus',ETopts.XLS.Region{t,c})
Organelles.nucleus=im-BG;
strcmpi ('prot',ETopts.XLS.Region{t,c})
Organelles.prot=im-BG;
counter=counter+1;
IM_n{counter}=im-BG;
strcmpi ('"pericentrin',ETopts.XLS.Region{t,c})
Organelles.pericentrin=im;
strcmpi('cilia',ETopts.XLS.Region{t,c})
Organelles.cilia=im;
strcmpi('focci',ETopts.XLS.Region{t,c})
Organelles.focci=im;
strcmpi ('phase',ETopts.XLS.Region{t,c})
Organelles.phase=im;

Vr (1)=length(find (Organelles.nucleus>0.04));
Vr(2)=length(find (IM_n{1}>0.04));
Vr (3)=length(find(IM_n{2}>0.04));
[mx, mxi]=max (Vr) ;
mxi~=ProtChannal (ETopts,t)+1 &&
~(sum(Organelles.nucleus(:)>0.04)<5000 || sum(Organelles.prot(:)>0.04)<5000) &&
max (Vr) /min(Vr)>1.6
disp('1l")

[Organelles, CombinedImage, ETopts]=LoadImages (ImageNumber, ETopts)
t=ETopts.timepoint;
[IM_n,Organelles,ETopts]=Load_Normalize_All Phases (ETopts, ImageNumber) ;
CombinedImage=IM_n;

ETopts.ImageSize.H=size (IM_n{1l},1);
ETopts.ImageSize.L=size(IM_n{1l},2);

[ETopts,Regions]=ExtractData (IM,Regions,Organelles, r,c,ETopts)

t=ETopts.timepoint;

L=bwlabel (Regions.Cells);
Lregions=Regions;
Nt=ETopts.DATA{t}.NumOfCells;

Lregions.Nuclii=double (Lregions.Nuclii) .*L;

Lregions.Cells=double (Lregions.Cells) .*L;
isfield(Lregions, 'Pericentrin')
Lregions.Pericentrin.loc=double (Lregions.Pericentrin.loc) .*L;

isfield(Lregions, "focci')
Lregions.focci=double (Lregions.focci) .*L;
NumChannals=ETopts.XLS.num_channals(t);

STATS_cells = regionprops (L, 'BoundingBox', 'Solidity', 'Perimeter', 'MajorAxisLength', 'MinorAxisLength'
, 'Eccentricity', 'Orientation’', 'PixelIdxList"');



STATS_nuclii =
regionprops (Lregions.Nuclii, 'BoundingBox"',
rientation', 'PixelIdxList', 'area' );

Lnuc (find (Lnuc>0& (~ (L>(

i=l:max(L(:))
index=ETopts.DATA{t}.NumOfCells+i;

OF CELL
.BoundingBox
.BoundingBox

I
TATS_cells ( i
y1=STATS_cells (i
(
(

i
x2=STATS_cells

y2=STATS_cells .BoundingBox

M DETAILS (Row, Column, time)
Heigh Topts.ImageSize.H;
Length=ETopts.ImageSize.L;

R(1,1:2)=[r+double(yl>Height) c+double(x1>Length)];
R(2,1:2)=[r+double (y2>Height) c+double(xl>Length)]; 2
R(3,1:2)=[r+double(yl>Height) c+double (x2>Length)]; 3
R(4,1:2)=[r+double (y2>Height) c+double(x2>Length)];

R=unique (R, 'rows");

Z=zeros(4,2);

Z(l:size(R,1),:)=R;
Nimgs=1:4
ETopts.DATA{t}.R(index,Nimgs)=Z (Nimgs, 1) ;
ETopts.DATA{t}.C(index,Nimgs)=2Z (Nimgs, 2) ;

ETopts.DATA{t}.t (index)=ETopts.timepoint;

bounding box

(1)

(2)
.BoundingBox (1) +STATS_cells (i) .BoundingBox(3) ;

(2) +STATS_cells (i) .BoundingBox (4) ;

ETopts.DATA{t}.BoundingBox (index,1:4)=STATS_cells (i) .BoundingBox;

ETopts.DATA{t}.Perimeter (index)=STATS_nuclii (i) .Perimeter;

ETopts.DATA{t}.MajorAxisLength (index)=STATS_nuclii (i) .MajorAxisLength;

ETopts.DATA{t}.MinorAxisLength (index)=STATS_nuclii (i) .MinorAxisLength;

ETopts.DATA{t}.
CENTROTI
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.

R INDEX
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.
ETopts.DATA{t}.
k is nucl;ii o

slope of the

Nn= lét(Organel

Neighbours{index}=FindNeighbourCells (L, i)+ETopts.DATA{t}.NumOfCells;

RelativeCenter (index, 2)=STATS_nuclii(i).Centroid(2);
RelativeCenter (index, 1)=STATS_nuclii(i).Centroid(1l);
AbsoluteCenter (index, 2)=ETopts.DATA{t}.RelativeCenter (index, 2) + (ETopts
AbsoluteCenter (index, 1) =ETopts.DATA{t}.RelativeCenter (index, 1)+ (ETopts

ID(index)=index;

NucSolidity(index)=STATS_nuclii(i).Solidity;
CellSolidity (index)=STATS_cells(i).Solidity;
CellPerimeter (index)=STATS_cells (i) .Perimeter;
CellMajorAxis (index)=STATS_cells(i).MajorAxisLength;

CellMinorAxis (index)=STATS_cells(i).MinorAxisLength;
CellEccentricity(index)=STATS_cells (i) .Eccentricity;
CellOrientation(index)=STATS_cells (i) .Orientation;
NucEccentricity(index)=STATS_nuclii (i) .Eccentricity;
NucOrientation(index)=STATS_nuclii(i).Orientation;
ut of focus? alg 1

dist (s e large ne
les.nucleus (STATS_nuclii

> values if out of focuis

.PixelIdxList));

pft=polyfit(l:length(Nn),Nn,1);
ETopts.DATA{t}.ImageFocus (index)=pft(1);
is nucleus o of 5?2 alg 2
slope of ime

is fit to gauss

tr=
Line=ctr
vals=imlittle(Line
p(lr il)

sult, gof]=fit ((l:1length(vals))"',vals, 'gauss
sempty (gof)

us2 (index)=0utOfFocus

nuclii
ch=1:1length (IM) 5
stats = regionprops(Lregions.Nuclii, IM{ch}, 'MeanIntensity',
ii :length(stats)
index=ETopts.DATA{t}.NumOfCells+ii;
ETopts.DATA{t}.Nuclii.Area{ch} (index)=stats(ii) .Area;

fluorescent channals

ETopts.DATA{t}.Nuclii.MeanIntensity{ch} (index)=stats(ii).MeanIntensity;
ETopts.DATA{t}.Nuclii.Intensity{ch} (index)=stats(ii).MeanIntensity*stats(ii

ETopts.DATA{t}.FileNames (index, 1:2)=ETopts.filename;

ells

ch=1:1length (IM) fluorescent channals

Shold be 1c
nuclii (i) .BoundingBo

'area' );

stats = regionprops(Lregions.Cells, IM{ch}, 'MeanIntensity', 'area' );
ii=l:length(stats)
index=ETopts.DATA{t}.NumOfCells+ii;
ETopts.DATA{t}.Cells.Area{ch} (index)=stats(ii) .Area;
ETopts.DATA{t}.Cells.MeanIntensity{ch} (index)=stats(ii) .MeanIntensity;

Centroid', 'Solidity"', 'Perimeter', 'MajorAxisLength', '"MinorAxisLength',

.filename (2)-1)*512;
.filename(1l)-1)*672;

.Area;

Eccentricity', 'O



ETopts.DATA{t}.Cells.Intensity{ch} (index)=stats(ii).MeanIntensity*stats(ii).Area;
length (ETopts.XLS.SpottedChannal) >=t
ETopts.XLS.SpottedChannal (t)-1==ch
granulii=IM{ch}-imopen (IM{ch},strel('disk',5,0));
granulii(granulii./IM{ch}>0.9)=0;
ETopts.DATA{t}.Cells.granulii{ch} (index)=sum(granulii (L==1ii));

entrosomes
isfield(Lregions, 'Pericentrin')
ch=1:1length (IM) % fluo

ent channals

stats = regionprops(Lregions.Pericentrin.loc,imfilter (IM{ch}, fspecial('gaussian',10,2)), 'MeanIntensity"

ii=1l:length(stats)

index=ETopts.DATA{t}.NumOfCells+ii;

[xx,yyl=find(Lregions.Pericentrin.loc==11);
length (xx)==2
ETopts.DATA{t}.Pericentrin.distance{ch} (index)=sqrt (diff (xx)"2+diff (yy)"2);

ETopts.DATA{t}.Pericentrin.distance{ch} (index)=0;

ETopts.DATA{t}.Pericentrin.MeanIntensity{ch} (index)=stats(ii).MeanIntensity;

> 1

isfield(Lregions, 'focci')

ii=l:length(stats)

index=ETopts.DATA{t}.NumOfCells+ii;

ETopts.DATA{t}.focci.number_of (index)=length(find(Lregions.focci==1ii));
ETopts.DATA{t}.focci.brightness (index)=mean (Organelles.focci (find(Lregions.focci==ii)));

ili
isfield(Lregions,
initializing
Zcilia=zeros (max (L(:)),1);

Dcilia=Zcilia;
DArea=Zcilia;
DEccentricity=Zcilia;

‘cilia')

identifying cells with cilia
cilia=Lregions.cilia>0;
Cells=Lregions.Cells>0;
cilia=cilia&Cells;
CiliatedCells=imreconstruct(cilia,Cells);
CiliatedCells=CiliatedCells.*Lregions.Cells;
U=unique (CiliatedCells)';
U=U(2:end) ;

cilia=(cilia>0).*CiliatedCells;
stats = regionprops(cilia, 'Eccentricity', 'area' );

entering data
ii=0
Zcilia(ii)=1;
DEccentricity(ii)=stats(ii) .Eccentricity;
DArea(ii)=stats(ii).Area;

isfield (ETopts.DATA{t}, 'cilia')
ETopts.DATA{t}.cilia.exists=[ETopts.DATA{t}.cilia.exists ; Zcilial;
ETopts.DATA{t}.cilia.Eccentricity=[ETopts.DATA{t}.cilia.Eccentricity ; DEccentricity];
ETopts.DATA{t}.cilia.Area=[ETopts.DATA{t}.cilia.Area ; DAreal;

ETopts.DATA{t}.cilia.exists=Zcilia;
ETopts.DATA{t}.cilia.Eccentricity=DEccentricity;
ETopts.DATA{t}.cilia.Area=DArea;

Collecting intensity of nuclii
stats = regionprops(Lregions.Nuclii,Organelles.nucleus, 'MeanIntensity', 'area' );
nalizing Nuclii dat
~isempty (stats)
ii=l:length(stats)
NucData (ii)=stats(ii) .Area*stats(ii).MeanIntensity;

ETopts.DATA{t}.DNA(Nt+1:Nt+length (NucData))=NucData;

Updating number of cells
isfield (ETopts.DATA{t}, 'Cells"')
ETopts.DATA{t}.NumOfCells=length (ETopts.DATA{t}.Cells.Area{l});

)i



recording pictures of individual cells
ETopts.NumOfProcessedIms=ETopts.NumOfProcessedIms+1;
ETopts.outputpic{1}>0 && ETopts.outputpic{l}>ETopts.NumOfPics && ETopts.NumOfProcessedIms>5 && mod (ETopts.counter,1)==0
[N,X]=hist (ETopts.DATA{t}.DNA,100);
[mx,mxi]=max (N);
X0=X(mxi);
dna=ETopts.DATA{t}.DNA/XO;
ETopts.NumOfPics=ETopts.NumOfPics+1;
ipics=1:length(stats)
Szpc=ETopts.DATA{t}.Cells.Intensity{2} (end-ipics);
Gempc=log (ETopts.DATA{t}.Nuclii.Intensity{1l} (end-ipics));

CellPic=NormalizeImage (imcrop (Organelles.prot, ETopts.DATA{t}.BoundingBox (end-ipics,:)));
Dpic=dna (end-ipics);
imwrite (CellPic, [ETopts.XLS.OutDir{t} '\Size ' num2str(Szpc) 'Gem_ ' num2str (Gempc) 'DNA_' num2str (Dpic) '.bmp'], 'bmp')

[C,N]=CropSegmentedImage (ETopts,Cells,Nuclii)
t=ETopts.timepoint;
C{1,1}=Cells(1:ETopts.ImageSize.H, 1:ETopts.ImageSize.L);
C{1,2}=Cells(1:ETopts.ImageSize.H, 1+ETopts.ImageSize.L:end);
C{2,1}=Cells(1+ETopts.ImageSize.H:end, l:ETopts.ImageSize.L);
C{2,2}=Cells (1+ETopts.ImageSize.H:end, 1+ETopts.ImageSize.L:end) ;

N{1l,1}=Nuclii
N{1,2}=Nuclii
N{2,1}=Nuclii
N{2,2}=Nuclii

1:ETopts.ImageSize.H, 1:ETopts.ImageSize.L);
1:ETopts.ImageSize.H, 1+ETopts.ImageSize.L:end);
1+ETopts.ImageSize.H:end, 1:ETopts.ImageSize.L);
1+ETopts.ImageSize.H:end, 1+ETopts.ImageSize.L:end);

[yn]=iseven (n)
yn=(-1) "n==1;

[ETopts,Cmat,Nmat]=buildSegmentedImage (ETopts,C,N,c,r)
t=ETopts.timepoint;
r==1 && c==1
Cmat=cell (ETopts.XLS.rows(t),ETopts.XLS.columns (t));
Nmat=cell (ETopts.XLS.rows(t),ETopts.XLS.columns (t));

Cmat=ETopts.Cmat;
Nmat=ETopts.Nmat;

RR=0:1
cCc=0:1
isempty (Cmat {RR+r,CC+c})
Cmat {RR+r,CC+c}=logical (C{RR+1,CC+1});
Nmat {RR+r,CC+c}=logical (N{RR+1,CC+1});

Cmat {RR+r,CC+c}=logical (C{RR+1,CC+1}) |Cmat {RR+r,CC+c};
Nmat {RR+r, CC+c}=logical (N{RR+1,CC+1}) |Nmat {RR+r,CC+c};

ETopts.Cmat=Cmat;
ETopts.Nmat=Nmat;

[IMt]=SumImages (IM_n)
IMt=IM _n{l};
i=2:length(IM_n)
IMt=IMt+IM n{i};

[D, Locations]=SegmentPericentrin(IM,Cells)

D D(i) if the distance between the centrc mes in cell 1.
IM2=imopen (IM, strel('square',5));
L=bwlabel (imclearborder (Cells));
BW=imregionalmax (IM) ;

[x,y]=find (BW) ;
I=sub2ind(size (IM),x,V);

Iv=IM(I);

Ivb=IM2(I);

IL=L(I);

Iloc=zeros(size(IL));

D=zeros (max (L(:)),1);
index=1:max(L(:))

i=find (IL==index) ;
[mx, imx]=max (Iv(i));
1i0=1i(imx);

12=find(Iv>Iv(i0)*0.5 & IL==index);
i_thr=(Iv(i2)-Ivb(i2))./Ivb(i2)>0.5;
i2=i2(find(i_thr));
length(i2)>2
[srt,isrt]=sort(Iv(i2), 'descend');
i2=i2(isrt(1l:2));
D(index)=sqrt (diff (x(i2))"2+diff(y(i2))"2);

Iloc(i2)=1;



Iremain=find(Iloc);

x=x (Iremain);

y=y (Iremain) ;
I=sub2ind(size(IM),x,V);
Z=zeros (size(IM));
Z(I)=1;

Locations=%Z;

[Regions, IOL1, IOL2]=CleaningRegions (Regions)

Regions.Cells=imclearborder (Regions.Cells);
removing regions that are not in cells

Regions.Nuclii=Regions.Nuclii&Regions.Cells;

removing cells that don't have all regions.

Regions.Cells=imreconstruct (Regions.Nuclii>0, Regions.Cells>0);
Regions.Nuclii=Regions.Nuclii&Regions.Cells;

Regions.Cells=bwareaopen(Regions.Cells, 50);
Regions.Cell
Regions.Nucli
Regions.Nucli
removing 1 g
Regions.Nucli=Regions.Nuclii&~bwareaopen(Regions.Nuclii, 2000);

open (Regions.Cells, strel ('disk',2));
bwareaopen (Regions.Nuclii, 50);

imopen (Regions.Nuclii,strel('disk’',2));
nuclii

moving cells without nucs
J=Regions.Nucli&Regions.Cells;
Regions.Cells=imreconstruct (J,Regions.Cells);
Regions.Nuclii=imreconstruct (J, Regions.Nuclii);
reating icturs
IOLl=imdilate (bwperim(Regions.Cells),1);
IOL2=imdilate (bwperim(Regions.Nuclii),1);
[ETopts]=ETAddFieldsv4 (ETopts)
[ETopts]=CorrectionCoeficients (ETopts) ;
i=1:length (ETopts.DATA)
~isempty (ETopts.DATA{i})
~isfield (ETopts.DATA{i}, 'Cells")

[ETopts]=addfields (ETopts, i) ;

[ETopts]=addfields (ETopts, t)

i=l:length(ETopts.DATA{t}.Cells.MeanIntensity)
[ff,ss]=ksdensity (ETopts.DATA{t}.DNA) ;

[mx,mxi]=max (££f);

StepSize=ss(mxi)/100;

[ff,ss]=ksdensity (ETopts.DATA{t}.DNA, 0:StepSize:400*StepSize);
[mx,mxi]=max (££f);
ETopts.DATA{t}.DNA=ETopts.DATA{t}.DNA/ss (mxi);

ETopts.DATA{t}.cytplsmInt{i}=ETopts.DATA{t}.Cells.Intensity{i}-ETopts.DATA{t}.Nuclii.Intensity{i};
ETopts.DATA{t}.cytplsmArea{i}=ETopts.DATA{t}.Cells.Area{i}-ETopts.DATA{t}.Nuclii.Area{i};
ETopts.DATA{t}.cytNormInt{i}=ETopts.DATA{t}.cytplsmInt{i}./ETopts.DATA{t}.cytplsmArea{i};

ETopts.DATA{t}.Nuclearization{i}=ETopts.DATA{t}.Nuclii.Intensity{i}./ETopts.DATA{t}.Cells.Intensity{i};
Norm=ETopts.DATA{t}.Nuclii.Area{i}./ETopts.DATA{t}.Cells.Area{i};
ETopts.DATA{t}.NormNuclearization{i}=ETopts.DATA{t}.Nuclearization{i}./Norm;
ETopts.DATA{t}.NC_conc_ratio{i}=ETopts.DATA{t}.Nuclii.MeanIntensity{i}./ETopts.DATA{t}.Cells.MeanIntensity{i};
ETopts.DATA{t}.NC_size_ratio=Norm;

ETopts.DATA{t}.p65=ETopts.DATA{t}.Nucleus{p65}-ETor

[ETopts]=num_of_channals (ETopts)

:ETopts.XLS.NumId (end)

c=1:5
~isempty (ETopts.XLS.channal_id{t,c});
N=N+1;

ETopts.XLS.num_channals (t)=N;

[ETopts]=find_tile_coordinates (ETopts)
t=ETopts.timepoint;
strcmpi (ETopts.XLS.software (t), 'elements')
~isempty (ETopts.XLS.Last_image(t))



NumberOf Images=ETopts.XLS.Last_image (t);
ETopts.TileCoordinates=(1:NumberOfImages)';

NumberOf Images=ETopts.XLS.columns (t) *ETopts.XLS.rows (t) ;
TileCoordinates=reshape (1:NumberOfImages,ETopts.XLS.columns (t),ETopts.XLS.rows (t))"';
TileCoordinates(2:2:end, :)=fliplr(TileCoordinates(2:2:end, :))
ETopts.TileCoordinates=TileCoordinates;

;

strcmpi (ETopts.XLS.software(t), 'metamorph')

[TileCoordinates]=find_tile_coordinates_MM(ETopts) ;
ETopts.TileCoordinates=TileCoordinates;
ETopts.XLS.columns (t)=size(TileCoordinates, 2);
ETopts.XLS.rows (t)=size(TileCoordinates,1);

[TileCoordinates,WaveLengths]=find_tile_coordinates_MM(ETopts)
find the tile coordinates for metamorph generated dat
t=ETopts.timepoint;

Directory=ETopts.XLS.InDir{t};
SlideID=ETopts.XLS.SlideNames{t};

file p 7i
addpath (Directory)
fid = fopen([Directory '\' SlideID '.scan']);
C = textscan(fid, '%s', 'delimiter', '\n'");
fclose(fid);

of the images on the slide

counter=0;
WLc=0;
i=1l:length(C{1})
txt=C{1}{i};
[mat] = regexp(txt, 'Stage(\d+).*Row(\d+).*Col(\d+)"', 'tokens');
~isempty (mat)
counter=counter+1;
s (counter)=str2num(mat{1}{1});
Row (counter)=str2num(mat{1}{2});
Col (counter)=str2num(mat{1}{3});

[WL] = regexp(txt, '"WaveName(\d)", "Ran (\w+)"', 'tokens');
~isempty (WL)
WLc=WLc+1;
WaveLengths{WLc}=[WL{1}{1} " - ' WL{1}{2}];

TileCoordinates=zeros (max (Row),max (Col));
i=1: (max (Row)+1)
j=1:(max(Col)+1)
TileCoordinates (i, j)=s(find (Row==1i-1 & Col==j-1));

[NOC]=NumOfChannals (ETopts, t)
NOC=1;
NOC<=5 && ~isempty (ETopts.XLS.channal_id{t,NOC})
NOC=NOC+1;

NOC=NOC-1;

[ETopts]=NumOfDigits (ETopts)
t=ETopts.timepoint;
~isfield(ETopts, 'LS")
LS=1s([ETopts.XLS.InDir{t} '\*' 1);
ETopts.LS=LS;

LS=ETopts.LS;

I=strmatch([ETopts.XLS.SlideNames{t}],LS);
[st,en]=regexp(LS(I(1l),:), [ETopts.XLS.SlideNames{t} '(\d+)c']);
ETopts.NumberOfDigits=en-length (ETopts.XLS.SlideNames{t})-1;

[ETopts]=NumOfDigits_newelements (ETopts)
t=ETopts.timepoint;
~isfield(ETopts, 'LS")
LS=1s([ETopts.XLS.InDir{t} '"\*' 1);
ETopts.LS=LS;

LS=ETopts.LS;

I=strmatch([ETopts.XLS.SlideNames{t}],LS);
[st,en]=regexp(LS(I(1l),:), [ETopts.XLS.SlideNames{t} '_x(\d+)_y'])
ETopts.NumberOfDigits=en-length (ETopts.XLS.SlideNames{t})-4;

[ETopts]=NumOfDigits_newelementsd4slides (ETopts)
t=ETopts.timepoint;
~isfield(ETopts, 'LS")
LS=1s ([ETopts.XLS.InDir{t} '\*' ]);
ETopts.LS=LS;



LS=ETopts.LS;
I=strmatch([ETopts.XLS.SlideNames{t}],LS);
[st,en]=regexp(LS(I(1l),:), ['c(\d+)_r'])
ETopts.NumberOfDigits=en-st-2;

[ETopts, spX, spY]=CollectFileIndices_4slide (ETopts,t)
~isfield (ETopts, 'LS4slide")
LS=1s([ETopts.XLS.InDir{t} ]);
ETopts.LS=LS;

LS=ETopts.LS4slide;

ETopts.LS4slide=LS;
counter=0;
ETopts.NumOfPics=0;
NumChannals=0;
i=l:size(LS,1)
tk=regexp(LS(i,:), ['""' ETopts.XLS.SlideNames{t} '_s(\d+)_c(\d+)_r(\d+)_(\w+).tif"'], 'tokens")
~isempty (tk) && str2num(tk{l}{1l})==
counter=counter+1;
spX (counter)=str2num(tk{1}{2});
spY (counter)=str2num(tk{1}{3});
NumChannals=NumChannals+1;
NumChannals==
ETopts.ChannalSuffix{1l}=tk{1}{4};
strcmpi (tk{1}{4},ETopts.ChannalSuffix{1})==0 && NumChannals<=4
ETopts.ChannalSuffix{NumChannals}=tk{1}{4};

spXspY=[spX' spY'];
spXspY=unique (spXspY, 'rows');
spX=spXspY(:,1)"';

SpY=spXspY (:,2)";

[ETopts, spX, spY]=CollectFileIndices (ETopts, t)
LS=1s([ETopts.XLS.InDir{t} 1);
ETopts.LS=LS;
counter=0;
ETopts.NumOfPics=0;
i=l:size(LS,1)
tk=regexp(LS(i,:), ['"' ETopts.XLS.SlideNames{t} '_x(\d+)_y(\d+).tif"'], "tokens")
~isempty (tk)
counter=counter+1l;
spX (counter)=str2num(tk{1}{1});
spY (counter)=str2num(tk{1}{2});
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