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Errors arising from spatial inhomogeneity of cells on slides. 

 

Our measurements were performed on large coverslips (24X60 mm) that are approximately 

50% confluent with cells (Figure 1).  

 

Figure 1: HeLa cells fixed on a 24 X 60mm coverslip. Cells are routinely imaged for four different fluorophores, DAPI 

(DNA), mAZ-hGem (Geminin degron), Alexa-647 SE (protein mass) and a fourth fluorophore related to signaling 

(e.g. cMyc).   

An assumption of our experimental system is that measured properties of a cell are not 

influenced by its spatial coordinates on the coverslips. Otherwise, the coordinates of a cell 

would constitute a confounding factor that may influence statistics. Such a possibility of spatial 

clustering of cells with similar properties could, for example, arise if certain regions on the 

coverslip are highly dense (confluent) to an extent that affects cell cycle (e.g. contact 

inhibition). To test for local spatial inhomogeneities in our measurements we systematically 

plotted, for each of the measured coverslips, the coordinates of cells and used a color scheme 

to show the basic measured properties (cell size, DNA, and Geminin) (Figure 2). This analysis 

demonstrated that while in the majority of coverslips cells are homogenously distributed 

(Figure 2, A-C), some coverslips contained significant spatial in homogeneities (Figure 2, D-F). To 



quantitatively estimate the extent of spatial homogeneity we plotted the average cell size, DNA 

and Geminin levels as a function of both dimensions (Figure 2, G).  

To avoid artifacts arising from spatial inhomogeneities, all coverslips with local clustering of 

cells with similar properties (such as shown in Figure 2 D-F) were excluded from further 

analyses.  

 

 

Figure 2: Spatial distribution of cells in coverslips. The location of each cell (HeLa) on 3 example coverslips is 

plotted and color coded for the cells’ level of Geminin, DNA and size. Slide 1 (A-C) exemplifies a homogeneous 

distribution of cells with respect to all measured properties. Slide 2 (D-F) exemplifies nonhomogenous 



distributions: one can see a region of cells that have likely exited cell cycle, having low levels of both Geminin and 

DNA. Such slides were excluded from analyses in our study. To quantify the extent of spatial homogeneity on a 

slide we plotted the level of DNA, Geminin and cell size averaged for the horizontal and vertical coordinates (G) 

Testing the ergodic assumption, variability between slides and reproducibility of the 

measured distributions. 

 

A criterion for application of ERA is that the distribution of any of the measured variables does 

not change with time. We tested this criterion.  

To test the first, multiple coverslips were placed on a single 15cm tissue culture dish and 

seeded with cells. After letting cells settle for 24 hours, we collected coverslips and at different 

times where time t=0 hrs was defined as 24 hours after plating. Each collected coverslip was 

fixed and imaged for cell cycle stage based on DAPI (DNA), mAG-hGem (Geminin) and Alexa647-

SE (protein mass). Figure 3 shows a quantile-quantile plot comparing distributions of Geminin 

and DNA between each time point to time t=0 (24 hours after plating). Results are shown on 

HeLa cells but similar measurements were performed on all four cell lines obtaining 

qualitatively identical results. Figure 7 shows that trends calculated by ERA from coverslips 

collected at different time points remain unchanged. 

  



Distributions from coverslips collected at different time points from a single proliferating 

population. 

 

   

Figure 3: A quantile/quantile (Q-Q) plot comparing distributions of Geminin from slides collected from the same 

proliferating culture at different times. The coverslip for t=0 hrs was collected 24 hours after cells were plated; the 

coverslip for t=3 was collected 27 hours after plating, and so on. Each of the boxed plots compares the results for a 

different time point to the results for t=0. 

 



 

Figure 4: Comparing distributions of DNA levels taken from a single population at different times as in Figure 3. 

 

 

Distributions from coverslips collected from experiment repetitions. 

 

Variation in experimental conditions could theoretically alter the distributions in cell cycle stage 

and cell size. To test this we asked: to what extent do measured distributions of cell size and 

cell cycle stage vary in experiment repetitions? To test this we performed pair-wise 

comparisons of distributions of Geminin and DNA for all coverslips used in analyses in our study 

(Figure 5). As above, we used quantile-quantile plots as means of comparison. The main 

advantage of this method is that it is uninfluenced by scaling that occurs, for example, when 

microscope lamp is brighter or dimmer. Due to the large sample size used in our study, 

methods like the Kolmogorov-Smirnoff test are inadequate, as differences on the order of a few 

percent (which are typical for biological measurements) would be identified as statistically 

significant, despite having no biological significance. As a more biologically relevant test for 

reproducibility, we also compared whether trends calculated by ERA from measurements of 

experiment repetitions and from a time course experiment (figures 6 and 7) were similar.   

 



 

Figure 5: Quantile-Quantile pairwise comparisons of the distributions of DNA and Geminin between all coverslips 

used in our study. Comparisons are separated based on cell lines (A-B, RPE1; C-D, HT1080; E-F, HeLa). Diagonal 

plots show the marginal distributions of DNA and Geminin in each coverslip.  

 

  



Testing the ergodic assumption on distributions of cell size and the reproducibility of the 

protein mass measurements.  

 

To test reproducibility, we asked whether the trend of protein mass as a function of the cell 

cycle trajectory, � , is similar in different experiments. To test this we calculated, for each of the 

coverslips used in the study, the distribution of protein mass along the cell cycle trajectory, � . 

We then plotted the pairwise comparison of this distribution for all pairs of coverslips in 

HT1080 cells (Figure 6, A), RPE1 cells (Figure 6, B) and HeLa cells (Figure 6, C). 

 

 



 

Figure 6: Comparison of the protein mass as a function of the cell cycle trajectory, � , obtained from different 

experiments in HT1080 cells (A), RPE1 cells (B) and HeLa cells (C). 

 



 

 



 

Figure 7: Growth curves of cells collected from a single proliferating population at 24 (black), 30 (red) and 36 (blue) 

hours after plating are compared for HeLa cells (A-C), HT1080 (G-I), RPE1 (M-O)  and L1210 (S-U). Also shown are 

comparisons of growth curves from 8 different independent starting batches (experiment repetitions) of HeLa cells 

(D-F), 4 different starting batches of HT1080 (J-L) and 7 different starting bathes of RPE1 cells (P-R). Curves were 

calculated by ERA and procedures from the main article text  to describe cell size as a function of time (first 

column), growth rate as a function of cell size (second column) and the feedback spectra (third column). Each 

curve represents data calculated from a single coverslip. 

 

Parameterization of cell cycle stage - calculation of �  

 

To obtain a unique solution for the ERA equation (Eq. 2, main text) we reduced the 

dimensionality of our DNA/Geminin measurement into a single variable, � , which represents a 

continuous measure of cell cycle stage (Figure 8). The following description and MATLAB code 

provides a simple method of doing this; for more detail about another approach that was also 

used, see Supplementary material #1. 

 

Figure 8: Parameterization of cell cycle. A scatter plot of DNA vs Geminin in HeLa cells together with the probability 

density function (black contour lines) calculated by the Parzen method 
1,2

 with a Gaussian kernel. Also shown (red) 

is the curve passing through the density ridge. This curve represents the path of an “average” cell and is used to 

parameterize cell cycle stage and reduce the 2D DNA/Geminin representation into a 1D curve. We use the 

notation, �  to describe a cells’ position on the red curve.  



 

To calculate the curve � , we applied the following recursive search algorithm: The first point on 

� , 1
� , is arbitrarily chosen as the global density maximum at G1 (Figure 9). This choice is 

convenient as this maxima is simple to identify. To find the second point, 2
�  we calculate the 

probability density on the perimeter of a circle with radius R centered on 1
�  (Figure 9). The 

maximum of this probability density is used to specify the point 2
� . This procedure is then 

repeated recursively to identify any point i�  from 1i−� . In other words, to identify the position 

of any point i� , we draw a circle around the previous point, 1i−�  and ask which point on that 

circle is associated with the largest cell count.  

 

 

 

Figure 9: the algorithm for calculating the cell cycle trajectory, �  (see text) 

 

Once the curve, � , has been calculated, we use a standardized Euclidian distance to associate 

each single cell with a discrete point on �  (Figure 10). Initially, the cell cycle stage of each single 

cell is specified by a 2D coordinate system, e.g. the cells’ joint levels of Geminin (mAG-hGem-

deg) and DNA (DAPI). Based on a standardized Euclidean distance measure, we ask for each cell 

which is the point on �  to which it is closest. The endpoint of this calculation is that the cell 

cycle stage of each cell is specified with a single 1D variable, � .  
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Figure 10: Each cell is associated with the point on �  to which it is closest. Distance is standardized Euclidean 

distance.  

 

Matlab code for generating a loop: 
function [ell]=GenerateLoop(DNA,Gem) 

figure(1) 

minDNA=0.7; 

maxDNA=2.5; 

minGem=3; 

maxGem=13; 

N=101; 

dna_axis=linspace(minDNA,maxDNA,N); 

gem_axis=linspace(minGem,maxGem,N); 

[discDATA ] = bin_raw([DNA' Gem'],{[dna_axis] [gem_axis]}); 

f=imfilter(discDATA,fspecial('average',5)); 

LengthScale=round(0.1*sqrt(prod(size(f)))); 

imagesc(f) 

title('click starting pos and press enter') 

[x0, y0] = getpts; 

imagesc(f) 

title('click ending pos and press enter') 

[xe, ye] = getpts; 

clf 

imagesc(f) 

Z=zeros(size(f)); 

Z(round(x0),round(y0))=1; 

Z=imdilate(Z,strel('disk',LengthScale)); 

I=find(Z>0); 

[srt,srti]=sort(f(I),'descend'); 

[y0,x0] = ind2sub(size(f),I(srti(1))); 

[DNA0,Gem0] = SwitchCoords(y0,x0,N,minDNA,maxDNA,minGem,maxGem); 

Z=zeros(size(f)); 

Z(round(xe),round(ye))=1; 

Z=imdilate(Z,strel('disk',LengthScale)); 

I=find(Z>0); 

[srt,srti]=sort(f(I),'descend'); 

[ye,xe] = ind2sub(size(f),I(srti(1))); 

[DNAe,Geme] = SwitchCoords(ye,xe,N,minDNA,maxDNA,minGem,maxGem); 

hold on 

StepSize=1; 

[directions,RHO,THETA]=FindAngle(f,[x0 y0],0,1); 

[dx,dy]=pol2cart(pi/180*(directions-180),0); 

plot(x0+dx,y0+dy,'wo') 

ell=[DNA0 Gem0]; 

[dx,dy]=pol2cart(pi/180*(directions-180),StepSize); 

x=x0+dx; 

y=y0+dy; 

[dnai,gemi] = SwitchCoords(y,x,N,minDNA,maxDNA,minGem,maxGem); 



ell=[ell ; [dnai gemi]]; 

plot(x,y,'ko') 

D=100; 

counter=0; 

while D>StepSize 

    counter=counter+1; 

    Previous_direction=directions; 

    [directions]=FindAngle(f,[x y],Previous_direction-180,counter); 

    [dx,dy]=pol2cart(pi/180*(directions-180),StepSize); 

    figure(1) 

    plot(x+dx,y+dy,'k.') 

    text(x+dx,y+dy+3,num2str(counter),'fontsize',5) 

    disp(counter) 

    pause(0.05) 

    x=x+dx; 

    y=y+dy; 

    [dnai,gemi] = SwitchCoords(y,x,N,minDNA,maxDNA,minGem,maxGem); 

     

    ell=[ell ; [dnai gemi]]; 

    D=sqrt((x-xe)^2+(y-ye)^2); 

     

end 

[tt,rr]=cart2pol(ell(:,1),ell(:,2)); 

[l1,l2]=pol2cart(smooth(tt,10,'loess'),rr); 

ell=[l1 l2]; 

    function [directions,RHO,THETA]=FindAngle(f,pos,ExcludedAngle,Ell_i) 

        LengthScale=0.1*sqrt(prod(size(f))); 

        [X,Y] = meshgrid(1:size(f,1),1:size(f,2)); 

        [THETA,RHO] = cart2pol(X-pos(1),Y-pos(2)); 

        THETA=ceil(180*THETA/pi)+180; 

        RHO=ceil(RHO); 

        for rho=1:max(RHO(:)) 

            for theta=1:360 

                if theta>=351 

                    I=find(RHO>rho & RHO<rho+10 & (THETA<theta+10-360 | THETA>theta)); 

                else 

                    I=find(RHO>rho & RHO<rho+10 & THETA>theta & THETA<theta+10); 

                end 

                M(rho,theta)=mean(f(I)); 

            end 

        end 

        IntensityProfile=smooth(nansum(M(1:LengthScale,:)),15); 

        IntensityProfile=IntensityProfile(IntensityProfile>0); 

         

        [mn,mni]=min(IntensityProfile); 

        ShiftAxis=[mni:length(IntensityProfile) 1:mni]; 

        ShiftedIntensityProfile=IntensityProfile(ShiftAxis); 

         

        Xvals=1:length(ShiftedIntensityProfile); 

        [pks,pksi]=findpeaks(smooth(ShiftedIntensityProfile,10),... 

            'MINPEAKDISTANCE',20,'MINPEAKHEIGHT',2*mean(abs(diff(ShiftedIntensityProfile)))); 

        [srt,srti]=sort(pks,'descend'); 

        EstimatedDir=ShiftAxis(pksi(srti(1:2))); 

         

        [mx,mxi]=max(min([360-abs( EstimatedDir-ExcludedAngle) ; abs(EstimatedDir-

ExcludedAngle)])); 

         

        EstimatedDir=EstimatedDir(mxi); 

        directions=EstimatedDir; 

    end 

  

    function [DNAi,Gemi] = SwitchCoords(x,y,N,minDNA,maxDNA,minGem,maxGem) 

        DNAi=minDNA*(N-x)/(N-1)+maxDNA*(x-1)/(N-1); 

        Gemi=minGem*(N-y)/(N-1)+maxGem*(y-1)/(N-1); 

    end 

end 

  

 

 



Calculation and error analysis of the distribution, ( )f � , of cells in cell cycle. 

 

Definition and calculation of  f  and F 

 

We define ( )f �  as the fraction of cells associated to points on � .  
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=
=

� �
�    Eq. S1 

 

 

Further, let ( )F � be the cumulative probability distribution describing the frequency of cells that 

are either at cell cycle stage i�  or at earlier cell cycle stages:  
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Errors in f and F 

Errors in f and F result from two factors: (1) errors in assigning a correct value of �  to individual 

cells, and (2) sampling errors.  

 

Notation 

We will use the notation Xδ  to describe the errors in a variable, X. 

 

Errors in f and F that result from errors in localizing cells to � . 

A prerequisite for calculation of the proportion of cells, ( )f � , at each value of �  is the correct 

assignment of a specific cell cycle position, i� , for each cell. To calculate the extent to which 

errors propagate from this assignment to the probability functions, ( )f �  and ( )F � , we used a 

randomization method akin to bootstrapping. Specifically, each cell was shifted in cell cycle 



assignment from its calculated cell cycle stage i�  to a nearby cell cycle stage, i r+� , where r is a 

random variable, ~ ( , )r N µ σ  with 0µ =  and 
6

L
σ =  where L is the length of � . By doing this, 

cells are reshuffled randomly to nearby cell cycle positions. After each reshuffling, we 

recalculated the function f. This procedure was repeated numerous times to generate a 

distribution of values for f and F. We use the standard deviations of f and F that result from this 

sampling procedure as measures of the errors, fδ
�
 and Fδ

�
 associated with mis-localizing cells 

on � .  

 

Sampling errors in f and F 

An estimate for the sampling errors, sfδ  and sFδ , were calculated using standard approaches 

described in 
1,2

 and are given by:  

 

(1 )
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F F
F

N
δ

−
=      Eq. S3 

 

(1 )
s

f f
f

N
δ

−
=     Eq. S4 

 

where tN N F= , tn N f=  and tN  is the total number of cells in the population. 

 

Total error in f and F 

The total errors in f and F are the sums of the errors resulting sampling statistics and errors 

resulting from mistakes in the cell cycle parameterization, �  and are given by 

 

 

sf f fδ δ δ= +
�

   Eq. S5 

sF F Fδ δ δ= +
�
   Eq. S6 



 

To express the fact that fδ
�
 is an error that is propagated from �  we rewrite that term as: 

 

 

 

 

Resulting with 
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f
f f
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∂
δ δ δ �

�
    Eq. S7 

int

F
F F

∂
= +

∂
δ δ δ �

�
  Eq. S8 

 

Figure 11 shows the error in F and f in RPE1 cells calculated using Eq. S7 and Eq. S8.  

 

Figure 11: The error in the probability density function, f, and in the cumulative probability function, F, from data 

collected for RPE1 cells. Note that due to the large cell counts, errors fall below 2% in both cases. Also, note that 

the cumulative distribution function has significantly lower errors, again due to increased cell count compared to 

the non-cumulative distribution.  



Calculation and errors in the rate of cell cycle progression,  

 

Eq. 2 in the main article text describes ERA expressed in a single dimension (� ) in integral form. 

It can be derived from the more general Eq. 1 in the main article text. Here we will take a 

simpler route and derive Eq. 2 directly in its 1-dimensional integral form using very simple and 

intuitive formalism.  

 

A simplified derivation of the ERA equation. 

 

Figure 12 shows how cells distribute along the cell cycle axis, � , in RPE1 cells. 

 

Figure 12: Cell growth and cell division balance to shape the distribution of cells along � . The distribution of cell 

progression is shown as a function of the cell cycle progression axis, � . A state ( 40=� ) is arbitrarily chosen 

(border of gray region) to illustrate explanations in the text. The flux of cell growth and cell division are shown 

(blue arrows)  

 

In steady state ( )f �  does not change with time. This time invariance results from a balance 

above between two fluxes: the flux, J1, of newborn cells entering G1, and the flux, J2, of cells 

exiting to a later cell cycle stage. For example, cells continuously exit G1 (Flux: J2). Nevertheless, 

the proportion of cells in G1 is held constant because the flux of cells leaving G1 to later cell 

cycle stages is balanced by a continuous flux of newborn cells that enter G1 from M-phase. In 

fact, at steady state, the incoming flux of newborn cells entering G1 is larger than the flux of 



cells leaving G1 into S-phase. To understand this one must recall that while the proportion of 

cells in G1 (or any other cell cycle stage) is constant with time, the number of cells increases 

exponentially. This latter point is important as it forms the basis for the balance equation that 

will be used to derive ERA.  

In steady state the number of cells in G1 is given by: 

1 1( )G tN N f G=    Eq. S9 

where tN  is the total number of cells in the population and 1
( )f G  is the proportion of cells in 

G1. Since  

0t
t

N N e
α=     Eq. S10 

and since at steady state 1
( )f G  does not depend on time, the number of cells by which the G1 

subpopulation increases per unit time is given by: 

1 1( )G t

d
N

d
G

t
fN α  =       Eq. S11 

 

A generalization of this, illustrated by Figure 12, is that the increase in cell count within any cell 

cycle interval 0
≤� � (gray region in Figure 12) is given by 

0
( )t

d
N N

dt
Fα≤

  =  � �
�   Eq. S12 

To derive ERA consider the subpopulation of cells that are at or before cell cycle stage, 0
�  (i.e. 

0
≤� � ). This subpopulation increases by 0( )tN Fα �  cells per unit time (Eq. S13). This net 

increase is the consequence of a balance between fluxes as described above: 

 

1 2 tJ Nα=      Eq. S14 

2 tJ fNω=     Eq. S15 

 

The factor “2” in flux J1 arises from the fact that every cell division event results in two 

newborns being added to the interval 0
≤� �  



Combining Eq. S12 with Eq. S14 and Eq. S15 gives: 

 

2t t tN N fF Nα α ω= −   Eq. S16 

 

Upon rearrangement, Eq. S17 yields: 

 

2 F

f
ω α

−
=

    

Eq. S18 

where α  is the exponential constant of population expansion (proliferation) and is obtained 

from plotting the number of cells vs. time and fitting to exponential kinetics. α can be 

interpreted as the fraction of cells dividing per unit time and is given in units of 1
/ time

.   

Matlab script for calculating the rate of cell cycle progression. 

function [w]=ERA(f,F,alpha) 

% the ERA transform 

% F - the cumulative probability density as a function of Ell.  

% Thus, F(1)=0 and F(end)=1. F(i) is the proportion of cells  

% with Ell<=i. 

% f - the probability density as a function of Ell. f(i) is the  

% proportion of cells at cell cycle stage "Ell==i". 

% alpha - the proportion of cells dividing per unit time.  

% v – the rate of cell cycle progression as a function of Ell 

w=alpha*(2-F)./f; 

 

Error analysis of the rate of cell cycle progression.   

 

Since the rate, ω, of cell cycle progression is calculated exclusively from f (Eq. S1) and F (Eq. S2) 

(α is a scaling factor and does not affect the shape of the resulting curves), errors in ω are 

propagated solely from errors in the functions f  and F. Applying the method of propagation of 

errors
3
, the total error in ω is therefore given by:  

 

d d
f F

df dF

ω ω
δω δ δ= +         Eq. S19 



 

Errors in the parameterization of cell cycle (� ) are propagated into δω  from Eq. S7 and Eq. S8. 

Introducing Eq. S18 into Eq. S19 results in: 

 

2 2F F
f F

f f F f
δω α δ α δ

   ∂ − ∂ −
= +   

∂ ∂   
     

2

2 F
f F

f f

α
α δ δ

−
= +

 

 

2

2 F
f F

f f

α
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−
= +      Eq. S20 

Eq. S20 can be solved by using values for  fδ  and Fδ (shown in Figure 11) calculated above. 

Assumptions of the ERA calculation 

 

One: the appropriateness of the labeled coordinate system.  

To perform ERA, single cells are co-labeled for two types of targets differing in their roles in the 

ERA calculation. First, one must label the target or targets that are under investigation. In the 

case of the present study this target was the total cellular protein mass. The second type of 

labeled targets function not as a focus of research but as an “axis of representation”, i.e. “a 

coordinate system”. In our case, these targets were the Geminin degron (mAG-hGem) and DNA 

(DAPI). The function of the measured levels of DNA and Geminin in this study was to form a 

coordinate system quantifying progression through cell cycle. For accurate ERA, one must 

assume adequate knowledge of the behavior of the targets that are selected to function as a 

coordinate system. For example, in the case of the present study, interpretation of the data was 

based on prior knowledge that the levels of neither DNA nor mAG-hGem decrease until the M-

phase stage of cell cycle. In general, the quality of ERA largely depends on the appropriateness 

the chosen coordinate system. 

 

Test of validity: This assumption requires some understanding of the biological system that is 

studied. In our case, the cell cycle dependency of Geminin and DNA have been sufficiently 



characterized to be used as cell cycle markers. We know, for example, that neither DNA levels 

nor Geminin levels go down until mitosis. To establish this for the mAG-hGem, we recorded 

movies by time lapse microscopy of Geminin accumulation during cell cycle in single cells (Fig. 

3, main text).    

 

 

Two: average cell dynamics match averaged cell dynamics  

In cases where ERA is implemented by reduction in dimensionality, as done in the current 

study, we assume that the individual cell dynamics are closely approximated by the averaged 

cell dynamics determined by the calculated parameterized trajectory. An example where this 

condition is not satisfied is when the measured protein levels in individual cells oscillate with 

time but the population average remains roughly constant (for example, p53, NF-κB).  

 

Test of validity: This assumption is not mathematical but biological. It assumes prior knowledge 

about the system studied. For example, in our case we assume that Geminin levels do not 

oscillate.  

 

 

Three: the weak ergodic assumption  

We assume that the distributions of all variables in which we are interested are not dependent 

on time. For example, the distribution of cell size as a function of the reaction coordinate, � , 

does not vary with time. 

Test of validity: Distributions of the levels of labeled targets can be measured at different times 

after plating to establish time-invariance as in Figure 4 and figure 7 in this supplementary file.  

 

Four: the strong ergodic assumption.  

We assume a homogeneity in the population in the sense that the dynamics of each of our 

measured (labeled) targets (e.g. Geminin, protein mass, etc.), averaged over the parental 

lineage of any single cell would be equal (or sufficiently close to) the average dynamics of all 

cells in a population at a signal time point. This criterion would not hold, for example, if there 

are inheritable differences (genetic or non-genetic) that affect the dynamic behavior of these 

targets in the population. 

 



Test of validity: This assumption requires that the population is homogenous and that the 

averaged calculated dynamics represent a single population. The assumption can be tested by 

comparing calculated dynamics to actual measured dynamics, as we have done in Fig. 3 in the 

main article text.  

 

Five: reliability of the measurements.  

As with every experimental method, biases and artifacts in measurement could lead to false 

interpretations. 

 

Test of validity: In the case of our study, cell size measurements were justified by comparison 

with size measurements collected by QPM, an alternative measurement method (fig 3E, main 

text). Dynamics of Geminin were characterized by time lapse microscopy (Fig. 3, main text).  

 

A note on averaged rates. 

Suppose that the population is composed of multiple subpopulations that progress along cell 

cycle at different rates (but the same population exponential growth rate, in keeping with the 

weak ergodic assumption).  The calculated value of ω  at a given point along cell cycle measures 

the arithmetic average of the velocity of all cells at that point along cell cycle; however this 

would not be the arithmetic average of the two averaged velocities of cells from each of the 

two subpopulations.  ω  would lie between those two velocities and would be approximately 

their harmonic mean, in the same way that in the one-dimensional case the frequency f  is 

approximately the reciprocal of velocity. 

 

Calculation and error analysis of the time axis, t. 

 

The ERA transform – transforming the parameterized cell cycle curve into a time axis. 

 

To transform the parameterized cell cycle axis, �  into a time axis, t, we use Eq. 3 from the main 

manuscript (Eq. S21 and Eq. S23 in this document).  

1

1

( )

x

G

t d
ω

= ∫ �
�

 Eq. S21 



 

Substituting Eq. S18 into Eq. S21 we obtain 

1

2

f
t d

Fα
=

−∫ �  .  Eq. S22 

Solving the integral we get 

1 2
ln

2
t

Fα

 
=  

− 
 .  Eq. S23 

where α and F are as defined above. The transformation given in Eq. S23 is shown in Fig. 1B 

from the main text. The equation relates any point on �  to a time from G1 ( 0t =  represents G1). 

 

Error analysis of the time axis. 

 

From Eq. S23 it is clear that the time axis, t, is calculated exclusively from the cumulative 

probability function, F, which describes the probability of cells to be at or before cell cycle stage 

� . Therefore, the error in t is propagated exclusively from errors in F by: 

dt
t F

dF
δ δ=  .    Eq. S24 

Introducing  Eq. S23 into Eq. S24 we obtain 

 

1

2
t F

F
δ δ=

−
     Eq. S25 

 

A point about  Eq. S25 is that since the error in the calculated time axis, t, depends only on the 

error in F and since the error in F is very small (see Figure 11, cumulative functions have lower 

error), there is a very small error associated with t.  

 



 

Figure 13: The percent error in the calculated time axis from a measurement on a fixed population of HeLa cells.  

 

Calculating feedbacks: a simplified derivation 

 

Eq. 4 in the main text describes the rate of cell size increase as a function of cell size for any 

position on �  (i.e. any stage in cell cycle). For a simple derivation of Eq. 4, consider the 

DNA/Geminin phase space (Figure 14). We will derive the calculation based on the assumption 

that progression along the DNA/Geminin axis is not a function of cell size, though results from 

the calculation are interpretable more generally.  

 

Figure 14: A cartoon depicting the joint probability distribution of DNA and Geminin. A region is marked for 

calculation of the feedback analysis as described in the text.  



Consider Figure 14. We want to calculate the growth rate dependency for cells at the cell cycle 

stage ∆�   (blue region in the figure). To do this we will separate cell cycle into three regions; A, 

∆�   and B. For these three regions we will, at first, consider two fluxes:  

 

1) The number of cells per unit time transitioning from region A to region ∆� : AJ →∆�  

 

2) The number of cells per unit time transitioning from region ∆�  to region B:  BJ∆ →�  

 

Calculation of flux 1: AJ →∆�  

From Eq. S12, the rate of increase in cell count in region A is given by  

t t

t

A Ae
d

N N
dt

α
λ αλ  =      

where Aλ  is the fraction of cells in Region A and α is the fraction of cells dividing per unit time. 

In contrast, the number of newborn cells entering region A per unit time is 2 tNα . So, the 

number of cells per unit time leaving region A is: 

2A AttJ N Nα α λ→∆ = −�  

 

 

Note that AJ →∆�  is a number and not a function of �  

 

Calculation of flux 2: BJ∆ →�  

Similar to the calculation of flux 1, we have  

B A t BJ J Nα λ∆ → →∆= −� �  

where 
B

λ  is the fraction of cells in the region ∆� .  After substituting, the above Eq. becomes: 

2 t t tB A BJ N N Nα α λ α λ∆ → = − −�  



 

The size dependent flux 

The total number of cells transitioning from region A to region ∆�  per unit time is AJ →∆� . The 

proportion of cells transitioning from A to ∆�  that have a size smaller than or equal to 0
s  is 

0
( | )F s +∆� , where 

0
( | )F s +∆�  is the cumulative probability distribution of cell size at the 

entrance to the interval, ∆�  (marked red in Figure 14).  

Thus, the number of cells with 0
s s<  that enter region ∆�  per unit time is:  

0( | )AJ F s
+

→∆ ∆� �  

( ) 0
2 ( | )t AtN N F sα α λ += − ∆�   

( ) 0
2 ( | )t AN F sα λ += − ∆�     Eq. S26 

Similarly, the number of cells with 0
s s<  that exit region ∆�  per unit time is: 

 0( | )BJ F s→
−

∆ ∆
�

�  

( ) 0
2 ( | )t tt A BN N N F sα α λ α λ −= − − ∆�   

( ) 0
2 ( | )A BtN F sα λ λ −= − − ∆�

   Eq. S27
 

 

Cell growth 

From Eq. S26, the number of cells with size S<S0 that enter region ∆�per unit time is (Figure 15):  

 

( ) 02 ( | )t AInFlux N F sα λ +−= ∆�      Eq. S28 

      

From Eq. S27, the number of cells with size S<S0 that exit region ∆�per unit time is:  

 



( ) 02 ( | )A BtNOutFl Fu sx α λ λ −− − ∆= �
   Eq. S29 

 

 

The net accumulation of cells with size S<S0 in region ∆�  is 0( , )t P s sNα < ∆� , where 

0( ),P s s< ∆�
 
is the proportion of cells in region ∆�with size smaller than s0. By the conditional 

probability rule: 

 

0 0( , ( |) ) BP s Fs s λ∆ =< ∆� �  ,  

since 
B

λ  is the fraction of cells in the region ∆� . 

Thus, 

0( | )t BNetAccumulation sFNα λ∆= �     Eq. S30 

 

 

 

Figure 15: Feedback calculation. The size distribution of cells at any interval, ∆� , in cell cycle is the outcome of a 

balance between three fluxes: the flux (number of cells per unit time) of small cells entering ∆�  from a previous 

cell cycle stage, the flux of cells leaving ∆�  to a later cell cycle stage, and the flux of cells growing out of any size 

bin. 



 

From equations Eq. S28 to Eq. S30 we can formulate a balance equation  (Figure 15): 

 

NetAccumulation InFlux OutFlux GrowthFlux= − −   

 

Substituting Eqs. S24-S26 and rearranging we get: 

 

( ) ( )0 0 0

0

2 ( | ) 2 ( | ) ( |

(

)

| )

A

B

A B BF s F s F s
v

f s

λ λ λ λ
α

λ

+ −− −− ∆ − − ∆ ∆
=

∆

� � �

�
   Eq. S31 

 

To calculate the feedback spectra, ( )φ � , from Eq. S31 we used least squares to calculate the 

slope of v  vs. s  for every value of �  (Figure 16).  

( ) ( , )slope v sφ =�  

 

 

Figure 16: Calculation of feedback spectra from Eq. S31. Eq. S31 yields growth rate as a function of cell size for 

every interval on the cell cycle axis, � . From each such plot we estimate the best fitting linear approximation using 

least squares. The slope of growth rate vs. cell size (resulting from the least square fit) is set as ( )φ � .  

 

Error analysis of the feedback calculation 

 



To estimate the uncertainty in the measurements of ( )φ � , we used resampling, as direct 

calculations using error propagation are infeasible.   

We used 800 iterations of bootstrapping without replacement, making the following 

calculations at each iteration i : 

1) Randomly sample 75% of the observed cells (20% for the substantially larger L1210 

dataset) 

2) Calculate the 2-dimensional probability distribution from this sample 

3) Calculate the loop i�  and loop assignment based on this probability distribution 

4) Calculate the rate of progression through i� , and derive the time axis it  for this loop 

5) Calculate the size-dependent growth rate ( , )iv s �  and the slope ( )i iφ �  

6) Plot iφ  as a function of time it  along the loop i� . 

Given the 800 slope functions iφ , we interpolated them to a common set of 50 time points, and 

then took the mean and standard deviation of the 800 values of φ  at each time point.   

We then used the time axis t  to convert these time points back to locations on the loop �  

determined from the full data set.  This give us, at 50 points along � , the mean and standard 

deviation of the bootstrap calculation of ( )φ � . 

Confidence intervals for ( )φ � calculated with the above approach are shown in Fig. 6 in the 

main article text. The horizontal axis represents the loop �  as used with the full data set, and 

vertical axis represents growth rate vs. cell size.  The line in red represents the function φ  of 

slopes as computed with the full data set.  The shaded area represents the interval one 

standard deviation on either side of the mean of the bootstrap calculation of ( )φ � .  For the 

HeLa cells, the variation was much higher; in that case we plot 1.645 standard deviations  on 

either side of the mean to show that with 90% confidence, the slope does become negative at 

the G1/S transition. 

 

Some technical notes:  

1) sampling without replacement was used because the kernel density estimator used in 

step 5, based on [kde 
4
], chooses an extremely small smoothing parameter when 

duplicated data is present. 

2) Switching from i�  to it  to align the functions iφ , and then switching back to �  for the 

plot in the figure, will only serve to increase the width of the error bars. 



 

Matlab script for feedback calculation: 

function [Sl,Rsqare,EllAxis]=NegativeFeedBackCalculator(Ell,P,ResP,W,w) 
  
% Calculate the negative feedback plot along the trajectory Ell (Fig. 6 in manuscript). 
% input arguments: 
% 
% P -       a vector with values of protein mass (cell size) for each individual 
%           cell. The length of P is equal to the number of cells measured. 
% Ell -     the cell cycle parametrization. Ell is a vector with 
%           length(Ell)==length(P). Each cell-size P(i) is associated with a cell 
%           cycle position, Ell(i). 
% ResP -    the resolution of the calculation (number of bins of cell size). 
%           Larger values for ResP would correspond to better resolutiion and worse 
%           acuracy (more noise). 
% W -       the width of the intervals in which the negative feedback is 
%           calculated 
% w -       width of the bounding intervals (see text) 
  
% output arguments: 
% Sl -      the slope of growth rate vs cell size as a function of Ell. The 
%           length of Sl is the same as the length of Ell 
% Rsqare -  quality of the linear estimate 
% EllAxis - The value of Ell that corresponds to each value of Sl 
  
  
sc=linspace(prctile(P,5),prctile(P,95),ResP); 
windowSize=W; 
BoundingSize=w; 
L=0; 
counter=0; 
  
for i=BoundingSize+1:1:310 
    counter=counter+1; 
    Ia=find(Ell<i); 
    IaExit=find(Ell>i-BoundingSize & Ell<i); 
    Ib=find(Ell>=i & Ell<i+windowSize); 
    IbExit=find(Ell>=i+windowSize & Ell<=i+windowSize+BoundingSize); 
    SaExit=(P(IaExit)); 
    Sb=(P(Ib)); 
    SbExit=(P(IbExit)); 
    PhiA=length(Ia)/length(Ell); 
    PhiB=length(Sb)/length(Ell); 
    [v,fb,faExit,fbExit]=RateCalculator3(Sb,SaExit,SbExit,PhiA,PhiB,sc); 
    pcr=prctile(Sb,[10 90]); 
    ii=find(sc>pcr(1) & sc<pcr(2)); 
    [fresult,gof]=fit(sc(ii)',v(ii)','poly1','weights',fb(ii),'robust','on'); 
    Sl(counter)=fresult.p1; 
    Rsqare(counter)=gof.rsquare; 
    Interc(counter)=fresult.p2; 
    mV(counter)=(2-length(Ia)/length(Ell))/length(Ib); 
    EllAxis(counter)=mean(Ell(Ib)); 
    L=L+length(ii); 
    disp(i) 
end 

 

 

 

Calculation and error analysis of growth rate vs cell size. 

 



Figs 4 in the main text shows the averaged dependency of growth rate on cell size for cells from 

mid G1 to G2. This dependency was calculated by Eq. S31 (Eq. 4 in main text) with ∆l being from 

late G1 (APC inactivation) to G2. In the following we provide an analysis of errors associated 

with the calculation.    

 

Calculation of growth rate vs. cell size 

 

The equation providing growth rate as a function of cell size is: 

( ) ( ) ( ) ( ) ( )

( )( , )

( , )

2 | 2 | |
( | )

|

a b a b b b b

a b

b a b

F s F s F s
v s

f s

λ λ λ λ
α

λ

− − − − −
=

� � �
�

�

  Eq. S32 

 

Where aλ  is the fraction of cells with a<� �  and ( | )aF s �  is cumulative size distribution of 

cells with cell cycle stage a=� � (the fraction of cells at a=� �  with size that is equal to or 

smaller than s).  ( )( , )
| a bf s �  is the probability distribution of cell size for cells in the cell cycle 

stage interval a b< <� � � . 
( , )

( | )a bv s � is the average growth rate as a function of cell size for cells 

in the cell cycle stage interval a b< <� � �  (Figure 17).   Eq. S32 is a function of three cumulative 

distribution functions, ( )| bF s � , ( )| bF s � , ( )| bF s �  and the probability density function, 

( )| bf s � . All density functions were calculated from single cell size measurements using the 

Parzen kernel density estimation method
5
. In Matlab, this method is implemented by the 

function ksdensity.  

 

 



Figure 17: Calculation of growth rate vs cell size for the cell cycle interval between early G1 to G2. Calculation was 

performed with the same strategy employed for the calculation of feedbacks.  

 

Error analysis of growth rate vs. cell size. 

Errors in the cumulative probability density functions were calculated by Eq. S8. Confidence 

intervals for the (non-cumulative) probability density function, ( )| bf s �  were calculated based 

on
5
:  

 

2
( )minf f se= −      Eq. S33 

 

2

max
( )f f se= +  Eq. S34 

 

Where  

2

1

2
se

hNπ
=  

N  is the sample size and h  is a width parameter which is estimated from data as described in 
5
. 

Because F is a cumulative we have (see Figure 11): 

 

( ) ( )( , )
| |b a bF s f sδ δ� � �  

( ) ( )| |b aF s f sδ δ� � �  

( ) ( )| |b bF s f sδ δ� � �
 

 

And errors in the estimation of the cumulative probability density functions are negligible 

compared to errors on the non-cumulative probabilities. Based on this, the error in the growth 

rate vs. cell size could be estimated from Eq. S32 by: 



v
v f
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δ δ

∂
=
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  Eq. S35 

 

Where  

 

( ) ( ) ( ) ( ) ( )2 | 2 | |a b a b b b b

b

F s F s F s
c

λ λ λ λ
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λ

− − − − −
=
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Figure 18 shows the result of implementing the above expression to calculate confidence 

intervals for the growth rate vs cell size calculation: 

 

Figure 18: Growth rate vs. size and confidence intervals for HeLa (A), L1210 (B), HT1080 (C) and RPE1 (D) cells. 



 

Calculation and error analysis of growth rate vs time. 

 

To calculate growth rate vs time we calculated average cell size per position on the 

parametrized cell cycle trajectory, � . We then converted �  into time using Eq. S21 and 

computed the derivative. As typical with numerical calculation of derivatives, the method is 

highly affected by noise in the data. To overcome this and to provide estimates for the errors in 

growth rate we applied linear fitting with a smoothing window. We chose a smoothing window 

with width W∆ =� , where W  was chosen as approximately one tenth the length of � . 

Following that, for each point, i� , we used least square fitting to calculate the slope of cell size 

vs time for cells confined to an interval of width W centered on i� . Errors for the calculated 

slope were computed based on standard error in least square statistics
1,2

, thus: 

 

 

 

Where
1,2

 :  

 

 

 

 

 

 



To test the effect of errors in cell cycle parameterization and sampling statistics on calculations 

of growth rate vs time and further characterize the confidence intervals we employed a 

bootstrapping resampling procedure. Results of this calculation are shown in Figure 19. 

 

 

 

Figure 19: Legend: Dynamics of growth as a function of cell cycle stage and as a function of cell size. The panels 

show the results of ERA calculations for growth rate as a function of time (A-D) and growth rate as a function of 

cell protein mass (E-H) from single cell data on HeLa cells (A, E), L1210 mouse lymphocytes (B, F) human 

fibrosarcoma, HT1080 (C, G) and the non-transformed immortalized human retina epithelium RPE1 (D,H). 

  



Applying ERA to signal transduction 

 

 

 

Legend: Dynamics of protein and phospho-protein levels calculated by ERA. To calculate the time 

dependency of the antibody labels, immunofluorescence measurements were multiplexed with 

measurements of mAG-hGem, DAPI and SE-A647. By associating every cell with a specific point on the 

inferred cell cycle stage axis, � , we obtained average antibody signal intensities as a function of � . We 

then used Eq. 3 (Box 2) to transform �  into the time axis plotted here.  Antibodies used are: Phospho-S6 

Ribosomal Protein (Ser235/236) (Cell Signaling, #4858), phospho-Akt Ser473 (Cell Signaling, #4060), 

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell Signaling #4370), cMyc (Cell Signaling, #5605), 

Phospho-cdc2 (Thr161) (Cell Signaling, #9114), Rb (Cell Signaling, #9309M), DYRK1A (Cell Signaling, 

#2771), c-Fos (Cell Signaling, #2250), Phospho-4E-BP1(Thr37/46) (Cell Signaling, #2855), p27 (AbCam, 

ab32034), underphosphorylated Rb (Enzo Life Sciences, MAb549), cyclin E (Santa Cruz, sc-247), phospho 

cyclin E Thr62 (Cell Signaling, #4136), Phospho-Smad2 (Ser465/467)/ Smad3 (Ser423/425) (Cell Signaling, 

#9510), LC3B (D11) (Cell Signaling, #3868) 

  



Further analysis of drug response measurements.   

 

 

Legend: The contribution of protein synthesis and protein degradation to cell size control. The panels 

show the effects of various drugs on cell growth for different percentiles of the cell size distributions 

(labeled as the 10
th

, 20
th

, 33
rd

, 66
th

, 80
th

, 90
th

 and 95
th

 percentiles) (A) untreated HeLa cells; (B) cells 

treated for one hour pulse of the translation inhibitor, cycloheximide; (C), cells treated for one hour with 

the proteasome inhibitor, MG132; and (D) cells treated for 1 hour pulse with  the mTOR inhibitor, 

rapamycin. Further statistical analysis and confidence intervals for this plot are provided in 

supplementary file 2.  

  



Comparison to results from previous publication 

In a previous publication we have used the Collins-Richmond equation 
6
 to calculate growth 

rate as a function of cell size for L1210 cells. Unlike the use of ERA, the Collins Richmond 

method fails to capture the association and dependency of growth rate on other variables such 

as cell cycle. Below are results of the Collins-Richmond calculation from three different studies, 

performed on different cell lines and relying on different experimental methods for cell size 

measurements. First is an early calculation by Anderson, published in 1969 
7
 and based on 

Coulter Counter measurements of cell volume. A drawback of that study is that is that the 

calculation was based on an untested assumption regarding the size distribution of newborn 

cells. The second is a more recent study that we have published in 2009 
8
, also based on Coulter 

Counter measurements that relies on less assumptions. Last is a Collins-Richmond calculation 

from data collected in the present study, with succinimidyl ester measurements of total cellular 

protein mass as a proxy for cell size. Strikingly, the growth rate curves resulting from these 

three studies are nearly identical. This comparison shows that the growth rate dependency on 

cell size, described in 
8
 and 

7
, is consistent across different cell lines and different measurement 

techniques and is reproducible by different labs. It further justifies our interpretation of the 

succinimidyl ester based measurement as a proxy for cell size. Nevertheless, considering this, 

one might ask how these dynamics shown in Fig. 20 are consistent with those presented in 

present research. Specifically, figure 4E-F may not appear to be consistent with 
8
 (Fig. 20B, 

below). To address this question, we calculated the growth rate dependency on size for 

separate stages of cell cycle (Figure 21).  

 

Fig. 20. Growth rate vs. cell size calculated using the Collins Richmond equation. Plots were taken from three 

independent studies: (A) 
7
, (B) 

8
 and the current present study (C). In the first two, size measurement was cell 



volume measured by Coulter Counter. In the present study (C), size was measured with succinicimidyl ester 

reacted with fixed and permeabilized cells.  

The results show that different features of the plots in the current study are cell cycle stage 

specific. For example, the rapid increase in growth rate for the small cells is a result of early G1; 

the slight reduction in growth rate following that rapid growth phase is a result of late G1 and so 

forth. Further, the results of the growth rate vs. cell cycle that are shown in Fig. 20 and 

calculated for the whole population (undissected by cell cycle stage) is strongly biased by the G1 

and G2 subpopulations as these are the most occupied with cell count. This demonstrates that 

the differences between Fig.4 from the main text and results published in 
8
 can be accounted 

for by the dependency of growth rate on cell cycle stage. In early G1 growth rate is dependent 

on cell size. Since early G1, i.e. before APC inactivation, constitutes the largest cell cycle phase, 

its trend dominates the trend calculated for the whole population. The reduction in growth rate 

seen for very large cells is a consequence of the fact that the fast growing cells divide earlier 
9
 

 

Figure 21: Growth rate vs. cell size calculated using the Collins Richmond equation for different stages of the cell 

cycle. Also shown is the number of cells in each cell cycle stage.  

  



Testing for non-proliferating subpopulations. 

The existence of a non-cycling sub-G1 population would violate the assumptions of ERA. To test 

whether such a subpopulation exists we pulsed cells for 20 minutes with EdU and tested for 

EdU retaining cells in G1 33 hours after the pulse (Fig. 22). 

 

Fig. 22: EdU time course. Cells were pulsed with EdU for 20 min and then fixed 0 hrs (A), 6 hrs (B), 15 hrs (C) and 33 

hrs (D) after the 20 min EdU exposure. EdU positive cells are labeled red to distinguish them from the total 

population (blue). The plot demonstrates that EdU positive cells are first localized to S phase (A). These cells then 

transition into G2 (B), G1 (C) and back to S phase (D). Note that upon return to S-phase (D) no EdU positive cells 

are observed in G1. 

Confidence intervals for drug response curves 

 

 



Figure 23: the 90
th

, 50
th

 and 10
th

 percentiles of cell size as a function of the parameterized cell cycle for untreated 

cells (A), cells treated with a one hour pulse of cycloheximide (B), cells treated with a 1 hour pulse of rapamycin (C) 

and cells treated with a 1 hour pulse of MG132 (D). Confidence intervals were calculated by bootstrapping. 

Computing the vector field without dimensional reduction. 

 

Eq. 1 in the main article text (the ERA transform) aims to describe dynamics of intracellular events from 

static measurements performed on a large population of single cells. A limitation of the approach is that 

a single explicit solution to Eq. 1 can only be obtained if Eq. 1 is expressed in a single dimension. In the 

described research we solved this problem by reducing the 2 dimensional DNA/Geminin phase space 

into a single dimension, � , describing cell cycle progression. In the general case, it is interesting to 

contemplate whether there are approximation methods other than dimensionality reduction that could 

provide solutions to ERA.  

In higher dimensions a solution of Eq. 1 is a vector field describing the dynamics of each of the measured 

variables. For example, a solution of Eq. 1 for the 2 dimensional DNA/Geminin phase space is a vector 

field ,
dDNA dGemin

dt t
v

in

d

 ≡   
   

Here we show that although Eq. 1 in the main article text limits but does not completely determine the 

vector field, v , under mild assumptions we can actually solve for v  directly. 

If we assume that v  is a gradient field, that is, v u= ∇  for some scalar-valued function u  on phase 

space, then Eq. 1 becomes 

·( )f u B fα−∇ ∇ + =  (S1) 

this is an elliptic differential equation in the unknown function u  and  there exist numerical solvers for 

such problems.  There are some complications, though: since f  is very close to 0 over much of phase 

space (configurations never achieved by cells), the resulting linear system of equations is singular.  We 

solved equation (S1) by imposing a Dirichlet condition that u  vanishes whenever f  is sufficiently small. 

We illustrate this method with the RPE1 cell distribution described in the main text.  We first removed 

from the dataset those cells in late G2, where Geminin levels have already fallen.  We then estimated 

the function 2*
nb mit

B f fα α= −  accounting for cell birth – 
nb

f  representing the actual distribution of 

newborn cell states, and 
mit

f  now representing the distribution of cell states immediately prior to APC 

activation (and progression to late G2).  We solved equation (S1) with the Dirichlet boundary conditions 

using MATLAB’s assempde function.  The resulting vector field v u= ∇  is shown in Fig. S1 (A). 

To test the quality of this approach, we produced simulated time profiles of Geminin and DNA. The 

advantage of simulated data is that we know the real parameters which we are attempting to 



characterize.  The simulation of cells’ progression through the Geminin-DNA phase space was based on a 

differential equation system 

1

2

( , )

( , )

dx
f x y

dt

dy
f x y

dt

=

=

 

described by the vector field 
1 2

( , ) ( , )
true

v x y f f=  shown below (B), together with division events.  After 

producing a steady-state distribution  f  (from a population of 5x10
6
 “cells”) together with the 

distributions 
nb

f  and 
mit

f  from this system, we again used MATLAB’s assempde to solve (S1) with the 

Dirichlet condition.  The resulting vector field v u= ∇  is shown (fig S1 C). 

This method is not as accurate as the reduction to one dimension.  The assumption that v  is a gradient 

field has no strong biological justification.  Additional assumptions limiting the size and direction of v  

based on biological understanding should be imposed: for example it is unlikely that cells will increase 

DNA before APC inactivation and the consequent rise in geminin, and hence the vector field v  should 

not point upwards at that point in the Geminin-DNA phase space.  The biologically-motivated 

assumption we made in the paper was that cells in a given state (as determined from the one-

dimensional loop) would have very similar values of v . 

 

Figure: 2-dimentional ERA calculation.  

Supplementary Materials and methods  

Culturing procedures: Cells were cultured in Dulbecco's Modified Eagle Medium (Cellgro; DMEM 10-

013-CV) with 10% FBS (Cellgro; 35-010-CV) and 1% antibiotic-antimycotic solution (Cellgro; 30–004-CI). 

Media for cells expressing the mAG-hGem fucci reporter system was further supplemented with 3ug/ml 

blasticidin (Invivogen; ant-bl-5b) to maintain selection.  

Plating cells on coverslips: Cells were plated and fixed on 24X60mm coverslips, No. 1.5 (VWR; 48393 

252). Prior to plating, coverslips were sterilized by 20 minute incubation in 70% ethanol at room 

temperature and then dried in sterile conditions. Cells were typically plated at 10
5
 cells per ml into 15cm 

dishes that were pre-prepared with sterile coverslips as described above. Cells were prepared for 



experiment and fixed approximately 48 hours after plating. To avoid artifacts of the freeze/thaw 

procedure, cells were cultured for at least a week before being plated on coverslips. To dissociate cells 

from culture plates we incubated the culture in 0.05% trypsin (Cellgro; 25-051-CI) for 5 minutes at 37°C.  

Fixing and staining cells. To fix cells, coverslips were removed from culture plates and immediately 

submersed and incubated for 10 minutes in 4% paraformaldehyde (Alfa Aesar; 30525-89-4) at room 

temperature. Following the paraformaldehyde fix, cells were washed with PBS and permeabilized by 

incubating coverslips for 5 minutes in dry methanol at -20°C.    

 Immunofluorescence and cell size measurement: Cells grown on glass coverslips were fixed in 4% para-

formaldehyde for 10 minutes and permeabilized in cold methanol (−20°C) for 5 min. 

Immunofluorescence protein detection was performed by incubating fixed, permeabilized cells with 

primary antibody overnight at 4°C and then treating with a fluorescent secondary antibody for 1 hour. 

To label protein mass, fixed, permeabilized samples were incubated with 0.04 ug/ml succinimidyl ester 

linked alexa dyes diluted in DMSO (Alexa Fluor 647 carboxylic acid, succinimidyl ester, Invitrogen, A-

20106). Following labeling procedures, cells were mounted on glass slides in ProLong® Gold antifade 

(Life technologies, P36930).  

Imaging cells. Slides prepared as described above were imaged with a Nikon Ti Inverted Fluorescence 

Microscope w/ Perfect Focus controlled by the software, Nikon Elements. We used the scan-slide 

function to image the full area of the slide at 20X magnification. This resulted in approximately 5000-

8000 images per slide, producing data on a total of about 100,000 cells. For larger cell counts, data from 

multiple slides was concatenated. 

Antibodies: Phospho-S6 Ribosomal Protein (Ser235/236) (Cell Signaling, #4858), phospho-Akt Ser473 

(Cell Signaling, #4060), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell Signaling #4370), cMyc 

(Cell Signaling, #5605), Phospho-cdc2 (Thr161) (Cell Signaling, #9114), Rb (Cell Signaling, #9309M), 

DYRK1A (Cell Signaling, #2771), c-Fos (Cell Signaling, #2250), Phospho-4E-BP1(Thr37/46) (Cell Signaling, 

#2855), p27 (AbCam, ab32034), underphosphorylated Rb (Enzo Life Sciences, MAb549), cyclin E (Santa 

Cruz, sc-247), phospho cyclin E Thr62 (Cell Signaling, #4136), Phospho-Smad2 (Ser465/467)/ Smad3 

(Ser423/425) (Cell Signaling, #9510), LC3B (D11) (Cell Signaling, #3868) 

Image Analysis: Image analysis was performed with custom written software (EnsembleThresher). The 

algorithm identifies cell boundaries by two complementary approaches. (i) Cells were separated from 

background by thresholding a Top-Hat transform of the original image. Top-Hat transformation was 

used to remove trends that are spatially wider than cell diameters. (ii) Boundaries between adjacent, 

touching cells were identified by seed based watershedding. Seeds were calculated as the regional 

maxima of the Gaussian smoothed image.  

Summary of ERA procedure: To calculate dynamics from the samples of fixed cells the following steps 

were performed:  

i) Cells were fixed on large coverslips and labeled for targets of interest (e.g. protein mass, cell 

cycle position, etc).  



ii) Coverslips were imaged using a microscope equipped with an automated stage and a “scan-

slide” algorithm (Nikon Ti Inverted Fluorescence Microscope w/ Perfect Focus controlled by 

Nikon Elements) to image the full area of the slide (100,000 cells per slide).  

iii) Images were processed to identify single cell and nuclei boundaries and collect fluorescence 

intensity per cell, per label. 

iv) The probability density was calculated for the phase space defined by the labeled targets 

(2D for geminin/DNA). Probability density was calculated with the Parzen kernel density 

procedure if cell count is low and with a ND histogram if cell count was high) 

v) A parameterization of cell cycle was calculated as described in supplementary file 2 and 

supplementary file 1. 

vi) The number of cells was calculated as a function of the parameterized cell cycle path, ( )f � . 

vii) ( )f �  was used to calculate the dynamics of cell cycle progression using Eq. 2 (Box 2; Matlab 

script provided in supplementary file 2). 

 

 

 

 

  



EnsembleThresher: a matlab code for image processing 
For the described research we have wrote EnsembleThresher, a Matlab based image processing software. Below we provide an 

explanation of the input into EnsembleThresher followed by the source code for EnsembleThresher is provided below. 

 

 

 

The input to EnsembleThresher is an excel sheet describing the location of image files to be processed and additional 

information. Below is an example input excel file. The colums of the file relate to following data: 

Index: a running index of imaged slides 

Times: if time course was performed, this describes the time point 

Software: the software with which images were collected. EnsemleThresher recognized two software, Metamorph and Nikon Elements 

Input Directory: the directory where images are stored 

Output Dir: directory into which processed images will be saved 

Flat: location of the flatfield image (an image of a slide that has uniform fluorescence) 

Dark: an image with camera noise 

C1 to C5: the names of the imaged channels 

Given name: any text that will be stored in the final output variable. 

 

 

 

 
 

 

 

function [ETopts]=EnsembleThresherJuly2011(FileName,sheet,varargin) 

%% CHECK LABELS 

% dbg  - option A: 

% (FileName,sheet,dbg,ETopts) - will start from place last recorded by ETopts. 

% (FileName,sheet,[t r s]) - will segment only that file 

% ... 'sheet1','breakpoint',n) - will stop timepoint after n images 

% ... 'sheet1','dbg',dbg): 

%     if dbg is a number - do only that slide # (single row from the excell 

%     file. 

%     if dbg is a vector of 3 - specifies time, row column 

%     if dbg is a struct - continue based on ETopts (dbg=ETopts) 

%     if dbg is a cell with the structure dbg={['NewElementsID'] 3177 ETopts} 

%        then 3177 is the running index id 

addpath('ETRuns\') 

global DBG % for debugging 

DBG=0; 

warning off 

ETopts.date=date; 

[ETopts]=XLS_interface(FileName,sheet); 

NumId=ETopts.XLS.NumId'; 

[ETopts]=num_of_channals(ETopts); 

  

%% input varargin arguments 

arg=1; 

ETopts.outputpic{1}=0; 

while (arg<=length(varargin)) 

    switch varargin{arg} 

        case 'outputpic' 

            arg=arg+1; 

            ETopts.outputpic=varargin(arg); 

        case 'breakpoint'                % 

            ETopts.BreakPoint=varargin{arg+1};   % 

            arg=arg+1; 

        case 'dbg'                % 

            dbg=varargin{arg+1};   % 

            arg=arg+1; 

            if isstruct(dbg) 

                ETopts_old=ETopts; 

                ETopts=dbg; 

                ETopts.XLS=ETopts_old.XLS; 

                ETopts.timepoint=ETopts.timepoint; 

                NumId=ETopts.timepoint:NumId(end); 

                DBG='ETopts start'; % code to start from here. 

            elseif iscell(dbg) 

                if strcmpi(dbg{1},'NewElementsID') 

                    DBG=dbg; 

                    ETopts_old=ETopts; 

                    ETopts=dbg{3}; 

                    ETopts.XLS=ETopts_old.XLS; 

                    ETopts.timepoint=ETopts.timepoint; 

                    NumId=ETopts.timepoint:NumId(end); 

                end 

            elseif length(dbg)==3 

                NumId=dbg(1); 

                DBG=dbg; 

            elseif length(dbg)==1 

                NumId=dbg; 

            end 

             

        otherwise 

            fprintf('Error In Input !  check yourself...\n'); 

            return; 

    end 

    arg=arg+1; 

end 

Combine_Images0
index times cell line software input directory

output 

directory
flat dark

Slide 

Names
rows columns C1 C2 C3 C4 C5

SpottedC

hannal
Given Name

outputNameMiriam_5_24_12_Rpe1_drugs_large_4 1 1 HeLa NewElements\\research.files.med.harvard.edu\sysbio\KIRSCHNER LAB\Miriam\2012Data\Station 16 Slides\Rpe1\5_16_12 Rpe1_2p5hr_Drug_Pulse\Rpe1_LongScans\PTEN_inhibitor_150uM_pAktC:\Users\mbg13\Desktop\Miriam Results\Rpe_drugs\\research.files.med.harvard.edu\sysbio\KIRSCHNER LAB\Miriam\2012Data\Station 16 Slides\Rpe1\5_16_12 Rpe1_2p5hr_Drug_Pulse\flat.tif\\research.files.med.harvard.edu\sysbio\KIRSCHNER LAB\Miriam\2012Data\Station 16 Slides\Rpe1\5_16_12 Rpe1_2p5hr_Drug_Pulse\dark.tiftile DAPI [nucleus] Gem pAkt prot [prot] 150 uM bpV(phen)

SaturationLevel4096 2 2 HeLa NewElements\\research.files.med.harvard.edu\sysbio\KIRSCHNER LAB\Miriam\2012Data\Station 16 Slides\Rpe1\5_16_12 Rpe1_2p5hr_Drug_Pulse\Rpe1_LongScans\150uMPTEN_inhibitor_pAkt_Well2C:\Users\mbg13\Desktop\Miriam Results\Rpe_drugs\\research.files.med.harvard.edu\sysbio\KIRSCHNER LAB\Miriam\2012Data\Station 16 Slides\Rpe1\5_16_12 Rpe1_2p5hr_Drug_Pulse\flat.tif\\research.files.med.harvard.edu\sysbio\KIRSCHNER LAB\Miriam\2012Data\Station 16 Slides\Rpe1\5_16_12 Rpe1_2p5hr_Drug_Pulse\dark.tiftile DAPI [nucleus] Gem pAkt prot [prot] 150 uM bpV(phen)

General Info Source Data: xxx



  

%% loop over timepoints 

for t=NumId 

    ETopts.NumOfProcessedIms=0; 

    if ~strcmpi(DBG,'ETopts start') 

        ETopts.timepoint=t; 

        ETopts.r=1; 

        ETopts.c=1; 

    end 

    % plotting the waitbar 

    TotImgs=ETopts.XLS.NumId(end); 

    % end of waitbar 

    if strcmpi(ETopts.XLS.software(t),'newelements') || ... 

            strcmpi(ETopts.XLS.software(t),'newelements4slides') 

        [ETopts]=CalculateSingleTimePoint_newelements(ETopts,FileName,sheet); 

    else 

        [ETopts]=CalculateSingleTimePoint(ETopts,FileName,sheet); 

    end 

    if length(DBG)==3 

        return 

    end 

    eval(['save ''DATASET_' ETopts.XLS.outputName  ''' ETopts']) 

end 

[ETopts]=ETAddFieldsv4(ETopts); 

eval(['save ''DATASET_' ETopts.XLS.outputName  ''' ETopts']) 

  

  

function [ETopts]=CalculateSingleTimePoint_newelements(ETopts,FileName,sheet) 

global DBG 

StartPoint=1; 

t=ETopts.timepoint; 

  

% EXPLENATION: CollectFileIndices_4slide or CollectFileIndices are 

% functions that, based on the directory of the original images, retrieves 

% the indices of all images (the sufix numbers that identify te images. For 

% example, if the image name is "tile_s1_c0001_r0002_488" we want to 

% collect from the dir all sufixes of "c" and of "r". These suffixes will 

% be stord in the variables spX and spY that result from the functions 

% below 

  

if strcmpi(ETopts.XLS.software(t),'newelements4slides')==1 

    [ETopts,spX,spY]=CollectFileIndices_4slide(ETopts,t); 

else 

    [ETopts,spX,spY]=CollectFileIndices(ETopts,t); 

end 

if exist('spX')~=1 

    disp('problem !!!!!!!!!!!') 

    keyboard 

end 

  

  

ETopts.DATA{t}.NumOfCells=0; 

mkdir(ETopts.XLS.OutDir{t}) 

% COLLECTION FILE COORDINATES 

% i.e. an association between the linear index of the file and the 

% position of the image in the imaged grid. 

if strcmpi(ETopts.XLS.software(t),'metamorph') 

    [ETopts]=CollectImageIndices(ETopts); 

end 

% LOOPING ALL POSITIONS IN THE GRID 

c=1;r=1; 

counter=0; 

  

% DBG option - single entery with [t r c] 

if length(DBG)==3 

    r=DBG(2);c=DBG(3); 

end 

  

% DBG option - entery with ETopts from crashed run 

if iscell(DBG) 

    if strcmpi(DBG{1},'NewElementsID') 

        StartPoint=DBG{2}; 

    end 

elseif strcmpi(DBG,'ETopts start') 

    if isfield(ETopts,'r') 

        r=ETopts.r; 

        c=ETopts.c; 

        StartPoint=ETopts.counter; 

    end 

    DBG=''; 

end 

  

ETopts.XLS.Last_image(t)=length(spX); 

OldTime=clock; 

for ImageNumber=StartPoint:length(spX); % StartPoint is 1 unless debugging 

    if isfield(ETopts,'BreakPoint') 

        if ImageNumber>ETopts.BreakPoint 

            break 

        end 

    end 

    ETopts.counter=ImageNumber; 

    [Organelles,CombinedImage,ETopts]=LoadImages([spX(ImageNumber) spY(ImageNumber)],ETopts); 

    disp(['image number (NewElements): ' num2str(ImageNumber)]) 

     

     



     

    if ~isfield(Organelles,'nucleus') 

        im_nn=Organelles.noname; 

        [bw3,x,y]=FindFakeNucs(Organelles.noname,0.3,1,10); 

        bw3=imdilate(bw3>0,strel('disk',5)); 

        Pic=imoverlay(NormalizeImage(im_nn,[0 prctile(im_nn(:),99.5)]),bw3,[1 0 0]); 

        Nuclii_p=bw3; 

        Organelles.nucleus=Nuclii_p; 

    else 

         

        if strcmpi(ETopts.XLS.cell_line{t},'hela') 

            [Nuclii_p,Pic,ETopts]=SegmentingNucliiv2(Organelles.nucleus,Organelles.nucleus,ETopts); 

        elseif strcmpi(ETopts.XLS.cell_line{t},'sknas') 

            [Nuclii_p,Pic,ETopts]=SknasNuclii(Organelles.nucleus,Organelles.nucleus,ETopts); 

        elseif strcmpi(ETopts.XLS.cell_line{t},'ES cells') 

            [Nuclii_p,Pic,ETopts]=SegmentingNucliiv2(Organelles.nucleus,Organelles.nucleus,ETopts); 

        else 

            clc 

            disp('Unknown Cell line') 

            return 

        end 

    end 

    if sum(Nuclii_p(:))==0 

        continue 

    end 

    counter=counter+1; 

    Regions.Nuclii=Nuclii_p; 

    [A,L,L2]=Area_old(Regions.Nuclii,0); 

     

    IMt=CombinedImage{1}; 

    for CountChannals=2:length(CombinedImage) 

        IMt=IMt+CombinedImage{CountChannals}; 

    end 

     

    if isfield(Organelles,'focci') 

        IMt=IMt+imopen(Organelles.focci,strel('disk',3)); 

    end 

     

    if isfield(Organelles,'prot') 

        IMt=Organelles.prot; 

    end 

     

    if strcmpi(ETopts.XLS.cell_line{t},'hela') 

        [Cells,Cells2,ETopts]=ET_Lite_Watershed(IMt,Nuclii_p,ETopts); 

    elseif strcmpi(ETopts.XLS.cell_line{t},'sknas') 

        [Cells,ETopts]=SegmentSknasCells(IMt,Nuclii_p,ETopts); 

    elseif strcmpi(ETopts.XLS.cell_line{t},'ES cells') 

        [Cells,Cells2,ETopts]=ET_Lite_Watershed(IMt,Nuclii_p,ETopts); 

    else 

        clc 

        disp('Unknown Cell line') 

        return 

    end 

    if isfield(Organelles,'pericentrin') 

        [D,Pericentrin_Regions]=SegmentPericentrin(Organelles.pericentrin,Cells); 

        Regions.Pericentrin.loc=Pericentrin_Regions; 

        Regions.Pericentrin.D=D; 

    end 

    if isfield(Organelles,'cilia') 

        [cilia]=SegmentCilia(Organelles.cilia,Cells); 

        Regions.cilia=cilia; 

    end 

     

     

    Regions.Cells=Cells; 

    [Regions,IOL1,IOL2]=CleaningRegions(Regions); 

     

    if isfield(Organelles,'focci') 

        Regions.focci=Organelles.focci-imopen(Organelles.focci,strel('disk',4))>0.3; 

        Regions.focci=Regions.focci&Regions.Cells; 

    end 

     

    if ETopts.XLS.Combine_Images==1 

        [C,N]=CropSegmentedImage(ETopts,Cells,Nuclii); 

        [ETopts,Cmat,Nmat]=buildSegmentedImage(ETopts,C,N,c,r); 

    end 

    if mod(ImageNumber,10)==0 

            JustForPic=find(Cells>0); 

            JFP_thr=prctile(CombinedImage{2}(JustForPic),99); 

            IOL22=imdilate(IOL2,strel('disk',1)); 

            im_pic=imoverlay(imoverlay(NormalizeImage(CombinedImage{2}),IOL1,[1 0 0]),IOL22,[0 0 1]); 

            if isfield(Organelles,'focci') 

                IOL22=Regions.focci; 

                im_pic=imoverlay(imoverlay(NormalizeImage(Organelles.focci,[0 2]),IOL1,[1 0 0]),IOL22,[0 0 1]); 

            end 

             

                figure(1) 

                imshow(im_pic) 

                TotImgs=ETopts.XLS.Last_image(t); 

             

             

    end 

     

    if isfield(Organelles,'pericentrin') 

        Pic=imoverlay(NormalizeImage(Organelles.pericentrin),Pericentrin_Regions>0,[1 0 0]); 



        if mod(ImageNumber,10)==0 

        end 

    end 

    if isfield(Organelles,'cilia') 

        Pic=imoverlay(NormalizeImage(Organelles.cilia,[0 0.5]),cilia>0,[1 0 0]); 

        Pic3=imoverlay(Pic,bwperim(Cells),[0 0 1]); 

        if mod(ImageNumber,10)==0 

        end 

    end 

     

    % DISPLAYING THE PHASE IMAGE 

    if isfield(Organelles,'phase') 

        if mod(ImageNumber,10)==0 

        end 

    end 

     

     

    [ETopts,Regions]=ExtractData(CombinedImage,Regions,Organelles,spX(ImageNumber),spY(ImageNumber),ETopts); 

    if length(DBG)==3 

        return 

    end 

    CURRENT_TIME=clock; 

    if CURRENT_TIME(4)~=OldTime(4) 

        eval(['save ''DATASET_' ETopts.XLS.outputName  ''' ETopts']) 

    end 

    OldTime=CURRENT_TIME; 

end 

eval(['save ''DATASET_' ETopts.XLS.outputName  ''' ETopts']) 

  

  

function [IM_n,Organelles,ETopts]=Load_Normalize_All_Phases(ETopts,ImageNumber) 

t=ETopts.timepoint; 

SaturationLevel=ETopts.XLS.SaturationLevel; 

ImgNum=ImageNumber; 

% loading images, normalizing images and placing them into a structre 

counter=0; 

counter2=0; 

for c=1:NumOfChannals(ETopts,t) 

    txt=ETopts.XLS.channal_id{t,c}; 

    if ~isempty(txt) 

        counter2=counter2+1; 

        if strcmpi(ETopts.XLS.software{t},'elements') 

            [ETopts]=NumOfDigits(ETopts); 

            ImageNum_str = num2str(ImgNum,['%05.' num2str(ETopts.NumberOfDigits) 'd']); 

            disp([ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} ImageNum_str 'c' num2str(counter2) '.tif']) 

            im=double(imread([ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} ImageNum_str 'c' num2str(counter2) '.tif'])); 

            if size(im,1)~=512 

                im=imresize(im,[512 672]); 

            end 

        elseif strcmpi(ETopts.XLS.software{t},'metamorph') 

            FileName=[ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} '_w' num2str(counter2) '_s' num2str(ImgNum)  '_t1.TIF']; 

            disp(FileName) 

            im=double(imread(FileName)); 

            if size(im,1)~=512 

                im=imresize(im,[512 672]); 

            end 

        elseif strcmpi(ETopts.XLS.software{t},'newelements') 

            [ETopts]=NumOfDigits_newelements(ETopts); 

            ImageNum_str1 = num2str(ImgNum(1),['%05.' num2str(ETopts.NumberOfDigits) 'd']); 

            ImageNum_str2 = num2str(ImgNum(2),['%05.' num2str(ETopts.NumberOfDigits) 'd']); 

            FileName=[ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} '_x' ImageNum_str1  '_y' ImageNum_str2 '.tif']; 

            ETopts.filename=ImgNum; 

            disp([FileName ' ' num2str(ImageNumber)]) 

            im=double(imread(FileName,counter2)); 

            if size(im,1)~=512 

                im=imresize(im,[512 672]); 

            end 

        elseif strcmpi(ETopts.XLS.software{t},'newelements4slides') 

            [ETopts]=NumOfDigits_newelements4slides(ETopts); 

            ImageNum_str1 = num2str(ImgNum(1),['%05.' num2str(ETopts.NumberOfDigits) 'd']); 

            ImageNum_str2 = num2str(ImgNum(2),['%05.' num2str(ETopts.NumberOfDigits) 'd']); 

            FileName=[ETopts.XLS.InDir{t} '\' ETopts.XLS.SlideNames{t} '_s' num2str(t) '_c' ImageNum_str1  '_r' ImageNum_str2 '_' 

ETopts.ChannalSuffix{counter2} '.tif']; 

            ETopts.filename=ImgNum; 

            disp([FileName ' ' num2str(ImageNumber)]) 

            im=double(imread(FileName)); 

            if size(im,1)~=512 

                im=imresize(im,[512 672]); 

            end 

            ETopts.PrcThr(c)=prctile(im(:),97); % an estimate for the total brightness of the picture 

        end 

         

        if ~isempty(ETopts.XLS.flat{t}) 

            flat=double(imread(ETopts.XLS.flat{t})); 

            if size(flat,1)~=512 

                flat=imresize(flat,[512 672]); 

            end 

             

        end 

        if ~isempty(ETopts.XLS.dark{t}) 

            dark=double(imread(ETopts.XLS.dark{t})); 

            if size(dark,1)~=512 

                dark=imresize(dark,[512 672]); 

            end 

        else 



            dark=zeros(size(im)); 

        end 

        if c==1 

            ETopts.SaturatedPixals=false(size(im)); 

        end 

         

         

        ETopts.SaturatedPixals(find(im==SaturationLevel))=true; 

        if ~isempty(ETopts.XLS.flat) && ~strcmp(ETopts.XLS.Region{t,c},'phase') 

            flat=imresize(flat,size(im)); 

            dark=imresize(double(dark),size(im)); 

             

            im=(im-dark)./(flat-dark); 

        end 

        if ~strcmp(ETopts.XLS.Region{t,c},'phase') 

            if strcmpi(ETopts.XLS.cell_line{t},'hela') 

                if size(im,1)==1024 % no binning 

                    BG=imopen(imclose(im,strel('ball',1,0,0)),strel('square',70)); 

                else 

                    BG=imopen(imclose(im,strel('ball',3,0,0)),strel('square',100)); 

                end 

            elseif strcmpi(ETopts.XLS.cell_line{t},'sknas') 

                BG=imopen(imclose(im,strel('ball',1,0,0)),strel('square',300)); 

            elseif strcmpi(ETopts.XLS.cell_line{t},'ES cells') 

                BG=imopen(imclose(im,strel('ball',1,0,0)),strel('square',150)); 

            else 

                clc 

                disp('Unknown Cell line') 

                return 

            end 

        end 

         

        %% Classification (fluorescent channals or Organelles) ? 

        if isempty(ETopts.XLS.Region{t,c}) & NumOfChannals(ETopts,t)==1 

            counter=counter+1; 

            IM_n{counter}=im-BG; 

            Organelles.noname=im; 

        elseif isempty(ETopts.XLS.Region{t,c}) 

            counter=counter+1; 

            IM_n{counter}=im-BG; 

        elseif strcmpi('nucleus',ETopts.XLS.Region{t,c}) 

            Organelles.nucleus=im-BG; 

        elseif strcmpi('prot',ETopts.XLS.Region{t,c}) 

            Organelles.prot=im-BG; 

            counter=counter+1; 

            IM_n{counter}=im-BG; 

        elseif strcmpi('pericentrin',ETopts.XLS.Region{t,c}) 

            Organelles.pericentrin=im; 

        elseif strcmpi('cilia',ETopts.XLS.Region{t,c}) 

            Organelles.cilia=im; 

        elseif strcmpi('focci',ETopts.XLS.Region{t,c}) 

            Organelles.focci=im; 

        elseif strcmpi('phase',ETopts.XLS.Region{t,c}) 

            Organelles.phase=im; 

        end 

    end 

end 

Vr(1)=length(find(Organelles.nucleus>0.04)); 

Vr(2)=length(find(IM_n{1}>0.04)); 

Vr(3)=length(find(IM_n{2}>0.04)); 

[mx,mxi]=max(Vr); 

if mxi~=ProtChannal(ETopts,t)+1 && ... 

        ~(sum(Organelles.nucleus(:)>0.04)<5000 || sum(Organelles.prot(:)>0.04)<5000) && ... 

     max(Vr)/min(Vr)>1.6 

    disp('l') 

end 

function [Organelles,CombinedImage,ETopts]=LoadImages(ImageNumber,ETopts) 

t=ETopts.timepoint; 

[IM_n,Organelles,ETopts]=Load_Normalize_All_Phases(ETopts,ImageNumber); 

CombinedImage=IM_n; 

ETopts.ImageSize.H=size(IM_n{1},1); 

ETopts.ImageSize.L=size(IM_n{1},2); 

  

  

function [ETopts,Regions]=ExtractData(IM,Regions,Organelles,r,c,ETopts) 

  

t=ETopts.timepoint; 

L=bwlabel(Regions.Cells); 

Lregions=Regions; 

Nt=ETopts.DATA{t}.NumOfCells; 

  

  

Lregions.Nuclii=double(Lregions.Nuclii).*L; 

Lregions.Cells=double(Lregions.Cells).*L; 

if isfield(Lregions,'Pericentrin') 

    Lregions.Pericentrin.loc=double(Lregions.Pericentrin.loc).*L; 

end 

if isfield(Lregions,'focci') 

    Lregions.focci=double(Lregions.focci).*L; 

end 

  

NumChannals=ETopts.XLS.num_channals(t); 

  

STATS_cells = regionprops(L,'BoundingBox','Solidity','Perimeter','MajorAxisLength','MinorAxisLength' 

,'Eccentricity','Orientation','PixelIdxList'); 



STATS_nuclii = 

regionprops(Lregions.Nuclii,'BoundingBox','Centroid','Solidity','Perimeter','MajorAxisLength','MinorAxisLength','Eccentricity','O

rientation','PixelIdxList','area' ); 

% Lnuc(find(Lnuc>0&(~(L>0))))=0; 

  

for i=1:max(L(:)) 

    index=ETopts.DATA{t}.NumOfCells+i; 

     

    % BOUNDING REGION OF CELL 

    x1=STATS_cells(i).BoundingBox(1); 

    y1=STATS_cells(i).BoundingBox(2); 

    x2=STATS_cells(i).BoundingBox(1)+STATS_cells(i).BoundingBox(3); 

    y2=STATS_cells(i).BoundingBox(2)+STATS_cells(i).BoundingBox(4); 

     

    % IMAGE DETAILS (Row, Column, time) 

    Height=ETopts.ImageSize.H; 

    Length=ETopts.ImageSize.L; 

    R(1,1:2)=[r+double(y1>Height) c+double(x1>Length)];   %1 

    R(2,1:2)=[r+double(y2>Height) c+double(x1>Length)];  %2 

    R(3,1:2)=[r+double(y1>Height) c+double(x2>Length)];  %3 

    R(4,1:2)=[r+double(y2>Height) c+double(x2>Length)]; %4 

    R=unique(R,'rows'); 

    Z=zeros(4,2); 

    Z(1:size(R,1),:)=R; 

    for Nimgs=1:4 

        ETopts.DATA{t}.R(index,Nimgs)=Z(Nimgs,1); 

        ETopts.DATA{t}.C(index,Nimgs)=Z(Nimgs,2); 

    end 

    ETopts.DATA{t}.t(index)=ETopts.timepoint; 

     

    %% bounding box 

    ETopts.DATA{t}.BoundingBox(index,1:4)=STATS_cells(i).BoundingBox; 

    ETopts.DATA{t}.Perimeter(index)=STATS_nuclii(i).Perimeter; 

    ETopts.DATA{t}.MajorAxisLength(index)=STATS_nuclii(i).MajorAxisLength; 

    ETopts.DATA{t}.MinorAxisLength(index)=STATS_nuclii(i).MinorAxisLength; 

    ETopts.DATA{t}.Neighbours{index}=FindNeighbourCells(L,i)+ETopts.DATA{t}.NumOfCells; 

    % CENTROID 

    ETopts.DATA{t}.RelativeCenter(index,2)=STATS_nuclii(i).Centroid(2); 

    ETopts.DATA{t}.RelativeCenter(index,1)=STATS_nuclii(i).Centroid(1); 

    ETopts.DATA{t}.AbsoluteCenter(index,2)=ETopts.DATA{t}.RelativeCenter(index,2)+(ETopts.filename(2)-1)*512; 

    ETopts.DATA{t}.AbsoluteCenter(index,1)=ETopts.DATA{t}.RelativeCenter(index,1)+(ETopts.filename(1)-1)*672; 

  

     

    % RUNNING INDEX 

    ETopts.DATA{t}.ID(index)=index; 

    ETopts.DATA{t}.NucSolidity(index)=STATS_nuclii(i).Solidity; 

    ETopts.DATA{t}.CellSolidity(index)=STATS_cells(i).Solidity; 

    ETopts.DATA{t}.CellPerimeter(index)=STATS_cells(i).Perimeter; 

    ETopts.DATA{t}.CellMajorAxis(index)=STATS_cells(i).MajorAxisLength; 

    ETopts.DATA{t}.CellMinorAxis(index)=STATS_cells(i).MinorAxisLength; 

    ETopts.DATA{t}.CellEccentricity(index)=STATS_cells(i).Eccentricity; 

    ETopts.DATA{t}.CellOrientation(index)=STATS_cells(i).Orientation; 

    ETopts.DATA{t}.NucEccentricity(index)=STATS_nuclii(i).Eccentricity; 

    ETopts.DATA{t}.NucOrientation(index)=STATS_nuclii(i).Orientation; 

    %% is nucl;ii out of focus? alg 1 

    % slope of the dist (should be large negate values if out of focuis 

    Nn=hist(Organelles.nucleus(STATS_nuclii(i).PixelIdxList)); 

    pft=polyfit(1:length(Nn),Nn,1); 

    ETopts.DATA{t}.ImageFocus(index)=pft(1); 

    %% is nucleus out of focus? alg 2 

    % slope of image intensity decrease is fit to gauss. Shold be close to 1 (r square) 

    %     imlittle=imcrop(Organelles.nucleus,STATS_nuclii(i).BoundingBox); 

    %     ctr=round(size(imlittle)/2-1); 

    %     Line=ctr(1):(2*ctr(1)-1); 

    %     vals=imlittle(Line,ctr(2)); 

    %     disp([r c i]) 

    %     [fresult,gof]=fit((1:length(vals))',vals,'gauss1'); 

    %     if isempty(gof) 

    %         OutOfFocusScore=0; 

    %     else 

    %         OutOfFocusScore=gof.adjrsquare; 

    %     end 

    % 

    %     ETopts.DATA{t}.ImageFocus2(index)=OutOfFocusScore; 

end 

  

%% nuclii 

for ch=1:length(IM)   % fluorescent channals 

    stats = regionprops(Lregions.Nuclii,IM{ch},'MeanIntensity','area'  ); 

    for ii=1:length(stats) 

        index=ETopts.DATA{t}.NumOfCells+ii; 

        ETopts.DATA{t}.Nuclii.Area{ch}(index)=stats(ii).Area; 

        ETopts.DATA{t}.Nuclii.MeanIntensity{ch}(index)=stats(ii).MeanIntensity; 

        ETopts.DATA{t}.Nuclii.Intensity{ch}(index)=stats(ii).MeanIntensity*stats(ii).Area; 

        ETopts.DATA{t}.FileNames(index,1:2)=ETopts.filename; 

    end 

end 

  

%% cells 

for ch=1:length(IM)   % fluorescent channals 

    stats = regionprops(Lregions.Cells,IM{ch},'MeanIntensity','area' ); 

    for ii=1:length(stats) 

        index=ETopts.DATA{t}.NumOfCells+ii; 

        ETopts.DATA{t}.Cells.Area{ch}(index)=stats(ii).Area; 

        ETopts.DATA{t}.Cells.MeanIntensity{ch}(index)=stats(ii).MeanIntensity; 



        ETopts.DATA{t}.Cells.Intensity{ch}(index)=stats(ii).MeanIntensity*stats(ii).Area; 

        if length(ETopts.XLS.SpottedChannal)>=t 

            if ETopts.XLS.SpottedChannal(t)-1==ch 

                granulii=IM{ch}-imopen(IM{ch},strel('disk',5,0)); 

                granulii(granulii./IM{ch}>0.9)=0; 

                ETopts.DATA{t}.Cells.granulii{ch}(index)=sum(granulii(L==ii)); 

            end 

        end 

         

    end 

end 

  

%% centrosomes 

if isfield(Lregions,'Pericentrin') 

    for ch=1:length(IM)   % fluorescent channals 

        stats = regionprops(Lregions.Pericentrin.loc,imfilter(IM{ch},fspecial('gaussian',10,2)),'MeanIntensity' ); 

        for ii=1:length(stats) 

            index=ETopts.DATA{t}.NumOfCells+ii; 

            [xx,yy]=find(Lregions.Pericentrin.loc==ii); 

            if length(xx)==2 

                ETopts.DATA{t}.Pericentrin.distance{ch}(index)=sqrt(diff(xx)^2+diff(yy)^2); 

            else 

                ETopts.DATA{t}.Pericentrin.distance{ch}(index)=0; 

            end 

            ETopts.DATA{t}.Pericentrin.MeanIntensity{ch}(index)=stats(ii).MeanIntensity; 

        end 

    end 

end 

  

%% focci 

if isfield(Lregions,'focci') 

    for ii=1:length(stats) 

        index=ETopts.DATA{t}.NumOfCells+ii; 

        ETopts.DATA{t}.focci.number_of(index)=length(find(Lregions.focci==ii)); 

        ETopts.DATA{t}.focci.brightness(index)=mean(Organelles.focci(find(Lregions.focci==ii))); 

    end 

end 

  

%% cilia 

if isfield(Lregions,'cilia') 

    % initializing 

    Zcilia=zeros(max(L(:)),1); 

    Dcilia=Zcilia; 

    DArea=Zcilia; 

    DEccentricity=Zcilia; 

     

    % identifying cells with cilia 

    cilia=Lregions.cilia>0; 

    Cells=Lregions.Cells>0; 

    cilia=cilia&Cells; 

    CiliatedCells=imreconstruct(cilia,Cells); 

    CiliatedCells=CiliatedCells.*Lregions.Cells; 

    U=unique(CiliatedCells)'; 

    U=U(2:end); 

     

    cilia=(cilia>0).*CiliatedCells; 

    stats = regionprops(cilia,'Eccentricity','area' ); 

     

    % entering data 

    for ii=U 

        Zcilia(ii)=1; 

        DEccentricity(ii)=stats(ii).Eccentricity; 

        DArea(ii)=stats(ii).Area; 

    end 

    if isfield(ETopts.DATA{t},'cilia') 

        ETopts.DATA{t}.cilia.exists=[ETopts.DATA{t}.cilia.exists ; Zcilia]; 

        ETopts.DATA{t}.cilia.Eccentricity=[ETopts.DATA{t}.cilia.Eccentricity ; DEccentricity]; 

        ETopts.DATA{t}.cilia.Area=[ETopts.DATA{t}.cilia.Area ; DArea]; 

    else 

        ETopts.DATA{t}.cilia.exists=Zcilia; 

        ETopts.DATA{t}.cilia.Eccentricity=DEccentricity; 

        ETopts.DATA{t}.cilia.Area=DArea; 

    end 

end 

  

  

% Collecting intensity of nuclii 

stats = regionprops(Lregions.Nuclii,Organelles.nucleus,'MeanIntensity','area' ); 

% Normalizing Nuclii data 

if ~isempty(stats) 

    for ii=1:length(stats) 

        NucData(ii)=stats(ii).Area*stats(ii).MeanIntensity; 

    end 

     

%     [f,s]=ksdensity(NucData); 

%     [mx,mxi]=max(f); 

%     NucData=NucData/s(mxi); 

     

    ETopts.DATA{t}.DNA(Nt+1:Nt+length(NucData))=NucData; 

end 

  

% Updating number of cells 

if isfield(ETopts.DATA{t},'Cells') 

    ETopts.DATA{t}.NumOfCells=length(ETopts.DATA{t}.Cells.Area{1}); 

else 



    return 

end 

  

%% recording pictures of individual cells 

ETopts.NumOfProcessedIms=ETopts.NumOfProcessedIms+1; 

if ETopts.outputpic{1}>0 && ETopts.outputpic{1}>ETopts.NumOfPics && ETopts.NumOfProcessedIms>5 && mod(ETopts.counter,1)==0 

    [N,X]=hist(ETopts.DATA{t}.DNA,100); 

    [mx,mxi]=max(N); 

    X0=X(mxi); 

    dna=ETopts.DATA{t}.DNA/X0; 

    ETopts.NumOfPics=ETopts.NumOfPics+1; 

    for ipics=1:length(stats) 

        Szpc=ETopts.DATA{t}.Cells.Intensity{2}(end-ipics); 

        Gempc=log(ETopts.DATA{t}.Nuclii.Intensity{1}(end-ipics)); 

        CellPic=NormalizeImage(imcrop(Organelles.prot,ETopts.DATA{t}.BoundingBox(end-ipics,:))); 

        Dpic=dna(end-ipics); 

        imwrite(CellPic,[ETopts.XLS.OutDir{t} '\Size_' num2str(Szpc) 'Gem_' num2str(Gempc) 'DNA_' num2str(Dpic) '.bmp'],'bmp') 

    end 

end 

  

  

function [C,N]=CropSegmentedImage(ETopts,Cells,Nuclii) 

t=ETopts.timepoint; 

C{1,1}=Cells(1:ETopts.ImageSize.H,1:ETopts.ImageSize.L); 

C{1,2}=Cells(1:ETopts.ImageSize.H,1+ETopts.ImageSize.L:end); 

C{2,1}=Cells(1+ETopts.ImageSize.H:end,1:ETopts.ImageSize.L); 

C{2,2}=Cells(1+ETopts.ImageSize.H:end,1+ETopts.ImageSize.L:end); 

  

N{1,1}=Nuclii(1:ETopts.ImageSize.H,1:ETopts.ImageSize.L); 

N{1,2}=Nuclii(1:ETopts.ImageSize.H,1+ETopts.ImageSize.L:end); 

N{2,1}=Nuclii(1+ETopts.ImageSize.H:end,1:ETopts.ImageSize.L); 

N{2,2}=Nuclii(1+ETopts.ImageSize.H:end,1+ETopts.ImageSize.L:end); 

  

function [yn]=iseven(n) 

yn=(-1)^n==1; 

  

function [ETopts,Cmat,Nmat]=buildSegmentedImage(ETopts,C,N,c,r) 

t=ETopts.timepoint; 

if r==1 && c==1 

    Cmat=cell(ETopts.XLS.rows(t),ETopts.XLS.columns(t)); 

    Nmat=cell(ETopts.XLS.rows(t),ETopts.XLS.columns(t)); 

else 

    Cmat=ETopts.Cmat; 

    Nmat=ETopts.Nmat; 

end 

  

for RR=0:1 

    for CC=0:1 

        if isempty(Cmat{RR+r,CC+c}) 

            Cmat{RR+r,CC+c}=logical(C{RR+1,CC+1}); 

            Nmat{RR+r,CC+c}=logical(N{RR+1,CC+1}); 

        else 

            Cmat{RR+r,CC+c}=logical(C{RR+1,CC+1})|Cmat{RR+r,CC+c}; 

            Nmat{RR+r,CC+c}=logical(N{RR+1,CC+1})|Nmat{RR+r,CC+c}; 

        end 

    end 

end 

ETopts.Cmat=Cmat; 

ETopts.Nmat=Nmat; 

  

function [IMt]=SumImages(IM_n) 

IMt=IM_n{1}; 

for i=2:length(IM_n) 

    IMt=IMt+IM_n{i}; 

end 

  

  

function [D,Locations]=SegmentPericentrin(IM,Cells) 

% D - D(i) if the distance between the centrosomes in cell i. 

IM2=imopen(IM,strel('square',5)); 

L=bwlabel(imclearborder(Cells)); 

BW=imregionalmax(IM); 

  

[x,y]=find(BW); 

I=sub2ind(size(IM),x,y); 

Iv=IM(I); 

Ivb=IM2(I); 

IL=L(I); 

Iloc=zeros(size(IL)); 

D=zeros(max(L(:)),1); 

for index=1:max(L(:)) 

     

    i=find(IL==index); 

    [mx,imx]=max(Iv(i)); 

    i0=i(imx); 

     

    i2=find(Iv>Iv(i0)*0.5 & IL==index); 

    i_thr=(Iv(i2)-Ivb(i2))./Ivb(i2)>0.5; 

    i2=i2(find(i_thr)); 

    if length(i2)>2 

        [srt,isrt]=sort(Iv(i2),'descend'); 

        i2=i2(isrt(1:2)); 

        D(index)=sqrt(diff(x(i2))^2+diff(y(i2))^2); 

    end 

    Iloc(i2)=1; 



end 

  

Iremain=find(Iloc); 

x=x(Iremain); 

y=y(Iremain); 

I=sub2ind(size(IM),x,y); 

Z=zeros(size(IM)); 

Z(I)=1; 

  

% imshow(IM,[]) 

% hold on 

% plot(y,x,'.r') 

% 

  

Locations=Z; 

  

  

function [Regions,IOL1,IOL2]=CleaningRegions(Regions) 

  

Regions.Cells=imclearborder(Regions.Cells); 

%% removing regions that are not in cells 

  

  

Regions.Nuclii=Regions.Nuclii&Regions.Cells; 

  

  

%% removing cells that don't have all regions. 

  

Regions.Cells=imreconstruct(Regions.Nuclii>0,Regions.Cells>0); 

Regions.Nuclii=Regions.Nuclii&Regions.Cells; 

  

%% 

Regions.Cells=bwareaopen(Regions.Cells,50); 

% Regions.Cells=imopen(Regions.Cells,strel('disk',2)); 

Regions.Nuclii=bwareaopen(Regions.Nuclii,50); 

Regions.Nuclii=imopen(Regions.Nuclii,strel('disk',2)); 

%% removing large nuclii 

Regions.Nucli=Regions.Nuclii&~bwareaopen(Regions.Nuclii,2000); 

  

%% removing cells without nucs 

J=Regions.Nucli&Regions.Cells; 

Regions.Cells=imreconstruct(J,Regions.Cells); 

Regions.Nuclii=imreconstruct(J,Regions.Nuclii); 

%% creating picturs 

IOL1=imdilate(bwperim(Regions.Cells),1); 

IOL2=imdilate(bwperim(Regions.Nuclii),1); 

  

function [ETopts]=ETAddFieldsv4(ETopts) 

% [ETopts]=CorrectionCoeficients(ETopts); 

for i=1:length(ETopts.DATA) 

    if ~isempty(ETopts.DATA{i}) 

        if ~isfield(ETopts.DATA{i},'Cells') 

            continue 

        end 

        [ETopts]=addfields(ETopts,i); 

    end 

end 

  

function [ETopts]=addfields(ETopts,t) 

  

for i=1:length(ETopts.DATA{t}.Cells.MeanIntensity) 

    [ff,ss]=ksdensity(ETopts.DATA{t}.DNA); 

    [mx,mxi]=max(ff); 

    StepSize=ss(mxi)/100; 

    [ff,ss]=ksdensity(ETopts.DATA{t}.DNA,0:StepSize:400*StepSize); 

    [mx,mxi]=max(ff); 

    ETopts.DATA{t}.DNA=ETopts.DATA{t}.DNA/ss(mxi); 

     

    ETopts.DATA{t}.cytplsmInt{i}=ETopts.DATA{t}.Cells.Intensity{i}-ETopts.DATA{t}.Nuclii.Intensity{i}; 

    ETopts.DATA{t}.cytplsmArea{i}=ETopts.DATA{t}.Cells.Area{i}-ETopts.DATA{t}.Nuclii.Area{i}; 

    ETopts.DATA{t}.cytNormInt{i}=ETopts.DATA{t}.cytplsmInt{i}./ETopts.DATA{t}.cytplsmArea{i}; 

     

    ETopts.DATA{t}.Nuclearization{i}=ETopts.DATA{t}.Nuclii.Intensity{i}./ETopts.DATA{t}.Cells.Intensity{i}; 

    Norm=ETopts.DATA{t}.Nuclii.Area{i}./ETopts.DATA{t}.Cells.Area{i}; 

    ETopts.DATA{t}.NormNuclearization{i}=ETopts.DATA{t}.Nuclearization{i}./Norm; 

    ETopts.DATA{t}.NC_conc_ratio{i}=ETopts.DATA{t}.Nuclii.MeanIntensity{i}./ETopts.DATA{t}.Cells.MeanIntensity{i}; 

    ETopts.DATA{t}.NC_size_ratio=Norm; 

end 

% ETopts.DATA{t}.p65=ETopts.DATA{t}.Nucleus{p65}-ETopts.DATA{t}.Cell{p65}; 

  

function [ETopts]=num_of_channals(ETopts) 

  

for t=1:ETopts.XLS.NumId(end) 

    N=0; 

    for c=1:5 

        if ~isempty(ETopts.XLS.channal_id{t,c}); 

            N=N+1; 

        end 

    end 

    ETopts.XLS.num_channals(t)=N; 

end 

function [ETopts]=find_tile_coordinates(ETopts) 

t=ETopts.timepoint; 

if strcmpi(ETopts.XLS.software(t),'elements') 

    if ~isempty(ETopts.XLS.Last_image(t)) 



        NumberOfImages=ETopts.XLS.Last_image(t); 

        ETopts.TileCoordinates=(1:NumberOfImages)'; 

    else 

        NumberOfImages=ETopts.XLS.columns(t)*ETopts.XLS.rows(t); 

        TileCoordinates=reshape(1:NumberOfImages,ETopts.XLS.columns(t),ETopts.XLS.rows(t))'; 

        TileCoordinates(2:2:end,:)=fliplr(TileCoordinates(2:2:end,:)); 

        ETopts.TileCoordinates=TileCoordinates; 

    end 

elseif strcmpi(ETopts.XLS.software(t),'metamorph') 

     

    [TileCoordinates]=find_tile_coordinates_MM(ETopts); 

    ETopts.TileCoordinates=TileCoordinates; 

    ETopts.XLS.columns(t)=size(TileCoordinates,2); 

    ETopts.XLS.rows(t)=size(TileCoordinates,1); 

end 

  

  

function [TileCoordinates,WaveLengths]=find_tile_coordinates_MM(ETopts) 

% find the tile coordinates for metamorph generated data 

t=ETopts.timepoint; 

  

Directory=ETopts.XLS.InDir{t}; 

SlideID=ETopts.XLS.SlideNames{t}; 

  

  

% reads in the file of xxx.scan 

% this file provieds positions of the images on the slide 

addpath(Directory) 

fid = fopen([Directory '\' SlideID '.scan']); 

C = textscan(fid,'%s','delimiter','\n'); 

fclose(fid); 

  

  

counter=0; 

WLc=0; 

for i=1:length(C{1}) 

    txt=C{1}{i}; 

    [mat] = regexp(txt, 'Stage(\d+).*Row(\d+).*Col(\d+)', 'tokens'); 

    if ~isempty(mat) 

        counter=counter+1; 

        s(counter)=str2num(mat{1}{1}); 

        Row(counter)=str2num(mat{1}{2}); 

        Col(counter)=str2num(mat{1}{3}); 

    else 

        [WL] = regexp(txt, '"WaveName(\d)", "Ran (\w+)"', 'tokens'); 

        if ~isempty(WL) 

            WLc=WLc+1; 

            WaveLengths{WLc}=[WL{1}{1} ' - '  WL{1}{2}]; 

        end 

    end 

     

end 

  

TileCoordinates=zeros(max(Row),max(Col)); 

for i=1:(max(Row)+1) 

    for j=1:(max(Col)+1) 

        TileCoordinates(i,j)=s(find(Row==i-1 & Col==j-1)); 

    end 

end 

  

  

function [NOC]=NumOfChannals(ETopts,t) 

NOC=1; 

while NOC<=5 && ~isempty(ETopts.XLS.channal_id{t,NOC}) 

    NOC=NOC+1; 

end 

NOC=NOC-1; 

  

function [ETopts]=NumOfDigits(ETopts) 

t=ETopts.timepoint; 

if ~isfield(ETopts,'LS') 

    LS=ls([ETopts.XLS.InDir{t} '\*' ]); 

    ETopts.LS=LS; 

end 

LS=ETopts.LS; 

I=strmatch([ETopts.XLS.SlideNames{t}],LS); 

[st,en]=regexp(LS(I(1),:),[ETopts.XLS.SlideNames{t} '(\d+)c']); 

ETopts.NumberOfDigits=en-length(ETopts.XLS.SlideNames{t})-1; 

  

function [ETopts]=NumOfDigits_newelements(ETopts) 

t=ETopts.timepoint; 

if ~isfield(ETopts,'LS') 

    LS=ls([ETopts.XLS.InDir{t} '\*' ]); 

    ETopts.LS=LS; 

end 

LS=ETopts.LS; 

I=strmatch([ETopts.XLS.SlideNames{t}],LS); 

[st,en]=regexp(LS(I(1),:),[ETopts.XLS.SlideNames{t} '_x(\d+)_y']); 

ETopts.NumberOfDigits=en-length(ETopts.XLS.SlideNames{t})-4; 

  

function [ETopts]=NumOfDigits_newelements4slides(ETopts) 

t=ETopts.timepoint; 

if ~isfield(ETopts,'LS') 

    LS=ls([ETopts.XLS.InDir{t} '\*' ]); 

    ETopts.LS=LS; 



end 

LS=ETopts.LS; 

I=strmatch([ETopts.XLS.SlideNames{t}],LS); 

[st,en]=regexp(LS(I(1),:),['c(\d+)_r']); 

ETopts.NumberOfDigits=en-st-2; 

  

function [ETopts,spX,spY]=CollectFileIndices_4slide(ETopts,t) 

if ~isfield(ETopts,'LS4slide') 

    LS=ls([ETopts.XLS.InDir{t} ]); 

    ETopts.LS=LS; 

else 

    LS=ETopts.LS4slide; 

end 

ETopts.LS4slide=LS; 

counter=0; 

ETopts.NumOfPics=0; 

NumChannals=0; 

for i=1:size(LS,1) 

    tk=regexp(LS(i,:),['^' ETopts.XLS.SlideNames{t} '_s(\d+)_c(\d+)_r(\d+)_(\w+).tif'],'tokens'); 

    if ~isempty(tk) && str2num(tk{1}{1})==t 

        counter=counter+1; 

        spX(counter)=str2num(tk{1}{2}); 

        spY(counter)=str2num(tk{1}{3}); 

        NumChannals=NumChannals+1; 

        if NumChannals==1 

            ETopts.ChannalSuffix{1}=tk{1}{4}; 

        elseif strcmpi(tk{1}{4},ETopts.ChannalSuffix{1})==0 && NumChannals<=4 

            ETopts.ChannalSuffix{NumChannals}=tk{1}{4}; 

             

        end 

    end 

end 

spXspY=[spX' spY']; 

spXspY=unique(spXspY,'rows'); 

spX=spXspY(:,1)'; 

spY=spXspY(:,2)'; 

  

function [ETopts,spX,spY]=CollectFileIndices(ETopts,t) 

LS=ls([ETopts.XLS.InDir{t} ]); 

ETopts.LS=LS; 

counter=0; 

ETopts.NumOfPics=0; 

for i=1:size(LS,1) 

    tk=regexp(LS(i,:),['^' ETopts.XLS.SlideNames{t} '_x(\d+)_y(\d+).tif'],'tokens'); 

    if ~isempty(tk) 

        counter=counter+1; 

        spX(counter)=str2num(tk{1}{1}); 

        spY(counter)=str2num(tk{1}{2}); 

    end 

end 

 

 

   



 

 

1 Wasserman, L. All of statistics : a concise course in statistical inference.  (Springer, 2004). 

2 Wasserman, L. All of nonparametric statistics.  (Springer, 2006). 

3 Taylor, J. R. An introduction to error analysis : the study of uncertainties in physical measurements. 2nd 

edn,  (University Science Books, 1997). 

4 Botev, Z. I., Grotowski, J. F. & Kroese, D. P. Kernel density estimation via diffusion Annals of Statistics 38, 

2916-2957 (2010). 

5 Bowman, A. W. & Azzalini, A. Applied smoothing techniques for data analysis : the kernel approach with S-

Plus illustrations.  (Clarendon Press ; 

Oxford University Press, 1997). 

6 Collins, J. F. & Richmond, M. H. Rate of growth of Bacillus cereus between divisions. Journal of general 

microbiology 28, 15-33 (1962). 

7 Anderson, E. C., Bell, G. I., Petersen, D. F. & Tobey, R. A. Cell growth and division. IV. Determination of 

volume growth rate and division probability. Biophys J 9, 246-263, doi:10.1016/S0006-3495(69)86383-6 

(1969). 

8 Tzur, A., Kafri, R., LeBleu, V. S., Lahav, G. & Kirschner, M. W. Cell growth and size homeostasis in 

proliferating animal cells. Science 325, 167-171, doi:10.1126/science.1174294 (2009). 

9 Son, S. et al. Direct observation of mammalian cell growth and size regulation. Nat Methods 9, 910-912, 

doi:10.1038/nmeth.2133 (2012). 

 

 


