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S1  Equating the distribution of variant frequencies across sites and the probability 

distribution of variant frequencies 

 
This section concerns the adequacy of the approximation of equating the mean and variance of 

the trait for a given population, determined by the distribution of variant frequencies among m 

sites, to their expectations obtained from the overall probability distribution of variant 

frequencies generated by the stochastic process of mutation, selection and drift. For a set of m 

independent exchangeable sites, the mean of q for a given population is q = (i qi)/m, where qi is 

the frequency of A2 at a given site i. Let q have expectation q* and variance 2
q; q  has 

expectation q* and variance 2
q/m. From Equation 4, the mean phenotypic value is given by z = 

ai (2qi – 1), with expectation ma(2q* – 1) and variance 2
z = 4ma22

q.  

 The ratio of the standard deviation of q  to q* is thus equal to q/(q*√m), which becomes 

indefinitely small as m increases, provided that q/q* is of order one, which must be true when q* 

is non-zero. This means that random fluctuations in q  relative to its expected value become 

extremely small as m increases. It is therefore seems reasonable to treat q as equivalent to q* 

when m is large, as is implicitly done in the standard models of codon usage bias that assume 

directional selection, mutation and drift (Li 1987; Bulmer 1991; McVean and Charlesworth 

1999). This argument can also be applied to the model of mutation and directional selection with 

epistasis examined in the main text, where the mean value of the trait, n , is equal to 2m(1 – q ). 

In this case, the ratio of the standard deviation of n  to its expectation, n*, also approaches zero 

as m increases, so that n can be equated to n* with large m. 

 The genetic variance, Vg, has expectation Vg* = 2a2 E{i qi(1– qi)} = ma2*, where * is 

the expectation of the diversity at a given site i, given by i = 2qi(1 – qi). In the case of neutrality, 

the result that * = 8Nu/(1 + )  for the state-dependent mutation model at the infinite sites 

limit (Charlesworth and Charlesworth 2010, p.274) yields Vg* = 8Numa2/(1 + ) at stationarity. 

Furthermore, the variance of Vg is equal to ma42
, where 2

 is the variance of  over the 

probability distribution of q; 2
 */3 in the case of stationarity and neutrality (Tajima 1983). 
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The ratio of the standard deviation of Vg to Vg* is therefore equal to /(*√m). Provided that 

/* is of order 1, these results suggest that it is reasonable to equate Vg to Vg* for large m, since 

the neutral expression gives a good approximation to the expected variance when selection is 

weak, as can be in Tables 1-3. This result applies both to the stabilizing selection and purifying 

selection models considered here. 

 These arguments show that the mean and variance of the allele frequencies across sites in 

a given population, the main quantities of interest for this paper, are close to those generated by 

the overall probability distribution of allele frequencies, provided that the assumption of 

independence among sites within a population is met. As mentioned in the main text, simulations 

of multi-locus models support the assumption of only a minor effect of linkage disequilibrium 

among variants within a population, provided that recombination rates among nearby sites are 

sufficiently high in relation to the strength of selection (Bürger 2000, p.276). However, the 

question of what happens when recombination is rare or absent is relevant to the important 

general problem of the effect of restricted recombination on evolutionary processes 

(Charlesworth et al. 2010), and will probably require simulation studies.   

 Even with linkage equilibrium, however, the population mean at a given time enters into 

the expression for the change in variant frequencies at each site, for both the stabilizing selection 

model and for the purifying selection model with epistasis. This means that variant frequencies 

are not strictly independent of each other in terms of the overall evolutionary process, even with 

linkage equilibrium. But with a large number of sites, the state of a given site i has only a small 

effect on the trait mean, of the order of 1/m. This suggests that, with sufficiently large values of 

m, the population mean can be treated as independent of the value of the allele frequency at a 

given site, so it should be valid to ignore this source of non-independence (see Section S2 for 

further discussion of this point).  

 In addition, in the case of stabilizing selection, there is the problem that the term in 

brackets in Equation 2 of the main text involves = z0 – z /a, whose expected value is close to 

zero when NSa2 is sufficiently large (see section S4). This implies that fluctuations in  around its 

expectation, *, could be so large that we cannot legitimately replace  by *, as was done in the 

derivation following Equations 6 and 12.   
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 Examination of this question requires knowledge of the variance in z0 – z  generated by 

drift. An expression for this is given in section S3 below, using the approach of Lande (1976) and 

Bürger and Lande (1994), which assumes that there is an indefinitely large number of sites 

influencing the trait (the “infinitesimal model”). There is then a stationary, normal distribution of 

the values of z0 – z  among independent realizations of the stochastic process, with approximate 

standard deviation 1/√(4NS). This implies that 

 

                                                      

 

  

(4NSa2)

1              (S1.1)


 

 The stationary distribution of  *(), is normal, with expectation * and a standard 

deviation given by Equation S1.1. Importantly,  is independent of m, in contrast to the result 

for the mean allele frequency, showing that fluctuations in  may indeed be important regardless 

of the number of sites involved. The argument used in the main text showed that, for the state-

dependent mutational model of stabilizing selection, we have *   [ln( + 2b]/(8NSma2) (see 

Equations A3b and A7). Fluctuations around * will be unimportant if this quantity is several 

times , since then  and * will always be close. This condition is satisfied when 

 

                                                          

 

4 NSa2

[ln() + 2b]
  >> 1                   (S1.2)

 

 

For the state-independent mutational model of stabilizing selection, the term in 2b is omitted 

(Equation 13b).  

 The cases shown in Tables 1 and 2 with N = 50 satisfy this requirement, whereas it is 

violated for the others. Nevertheless, there is still good agreement between the formulae based on 

equating  and * and both the simulation and matrix results. This raises the question of why this 

should be, which is examined in the next section.  

 

S2  Use of * instead of  in the analytical and numerical models of stabilizing selection 
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Consider an ensemble of independently evolving populations, each with a potentially different 

value of  at any given time t. Assume that the probability density of value  = k at time t for the 

kth population is (k, t); for this population, let the probability that a random site i has allele 

frequency qi be fk(qi, t). The probability of transition from qi to qi + i is a binomial deviate, with 

parameter qi plus the deterministic change in allele frequency (given by Equations 2 and 5 of the 

main text); this change is dependent on k, which in turn is determined by the set of allele 

frequencies over all the sites for the population in question, as given by Equation 3. 

 The overall probability density of finding frequency qi + i at time t + 1 is thus obtained 

by summing the transition probabilities for all k values, and multiplying each of these by the 

probability density of finding allele frequency qi at time t in population k, denoted by gk(qi, t). 

But, by the argument made in Section S1, the state of a single site has a negligible effect on the 

population mean when m is very large, so that we can write 

 

                                     
g

k
(q

i
, t)  

k
(

k
)g(q

i
, t) (S2.1)

 

 

where g(qi, t) is the overall probability density for qi at time t.  

 Hence, the transition probability for qi at time t changing to qi + i at time t + 1 is given by 

the integral over the distribution of  of the transition probabilities qi to qi + i for each k, each 

weighted by (k). This is what should properly be used in the calculations, instead of the fixed 

value involving the expectation *.  

 The following argument shows, however, that the use of * is legitimate, provided that 

the usual assumptions of diffusion theory are met (i.e., all evolutionary forces are sufficiently 

weak that their second-order terms are negligible– Ewens 2004, Chapter 4). The subscript i can 

be dropped, since the sites are exchangeable. The forward diffusion equation for population k is 

then 

 

               
 g

k
(q, t) – g

k
(q, t – 1)  – 

q

(g
k
q

k
)
  +  

(4N)
1

 
q2

[q(1–q
 
)g

k
]

           (S2.2)
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where qk is the expected change in allele frequency in population k, given current frequency q.  

  Only the first term on the right-hand side of Equation S2.2 depends on qk and hence k. 

The relevant partial derivative can be written as  

 

                                            
 g

k q

qk   +  q
k
 
q

gk      
 

 

Writing gk(q, t) = (k)g(q, t), Equation S.2.2 becomes 

 

                                               
 (

k
){g(q) 

q

qk   +  q
k q
g(q)

 }              (S2.3)
 

 

 From Equation 2 of the main text, the term in braces can be seen to be a linear function of 

k. This establishes that the diffusion operator is linear in k; hence, if we take its expectation 

over the distribution of k, we obtain an expression that depends only on *. It follows that the 

use of * in the analytical approximations and the matrix equation will be accurate, under the 

usual conditions for the validity of diffusion equations. The same argument applies to the 

backward diffusion equation, which is used to obtain the expressions for fixation probabilities 

and diversities used in the main text.  

 An alternative argument can be applied to the matrix equation used in the numerical 

calculations, as described in the Appendix. Since this is equivalent to the diffusion equation when 

the conditions for the latter to be valid are satisfied, the results must also apply to the latter. For a 

given value of , we can write the transition matrix as A(). The dependence on  is mediated by 

the set of deterministic changes in allele frequencies across sites, given by Equation 2 Let 

qs(q) be the expected change in allele frequency due to selection, for a given frequency q. We 

can expand A in a Taylor series around the neutral value, A, for which qs = 0 for all q. This 

expansion involves the sum over n and all permissible values of q (i.e., 0, 1/(2N), … , 1) of the 

product of qs( q)n/n! and the nth order partial differential coefficient of A with respect to 

qs( q). If selection is sufficiently weak, we should be able to ignore all such terms for n > 1. 

 From Equation 2, the linear dependence of q on  means that we can write  
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qs( q) = qs(*, q) + (– *)2q(1 – q)Sa2 

 

so that  

 

      

 [qs(*, q) +  ( – *)2q(1 – q)Sa2] (
qs

A )
0
    A

0
 +    )  (S2.4)   A( 

q  

 

where the summation is taken over all permissible values of q, and the derivative is evaluated at 

Sa2 = 0.   

 Using the discrete probability equivalent of Equation S2.1, the matrix that represents the 

net change between generations in the probability vector f is the expectation of A() over the 

distribution of values. The linearity of Equation S2.4 in  – * immediately implies that that 

only the terms in A0 and qs( q) remain after taking this expectation.It follows that the only 

substantial contribution to the Taylor expansion of A around A0 is the first-order term given by 

the sum over sites of the terms in qs(*); this is equivalent to A(*) to the order of the 

approximations used here. This implies that we can replace  by * in A in order to generate the 

probability distribution of allele frequencies without significant error, as has been done when 

generate the numerical results from the matrix method displayed in Tables 1, 2 and 4. 

 Very similar reasoning can be used to arrive at similar conclusions for the case of 

purifying selection with epistasis represented by the quadratic model of Equation 13, since the 

selection coefficient for a individual variant is a linear function of n  (see Equation A11a). 

 
S3  Use of the infinitesimal model to obtain results on the outcome of drift, mutational bias 

and stabilizing selection 

 

An alternative approach to the models with stabilizing selection is to use the infinitesimal model 

of Lande (1976) (see Section S1). The state-independent mutational model will be considered 

first, since it is somewhat simpler to analyze. A forward diffusion equation for the trait mean in a 

given generation, z  can be derived,  using the expected change in mean for a given value of z , 
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Mz, and the variance in z  generated by one generation of drift, Vz. In the present case, and 

using Equation 2 (but neglecting the terms in 2qi – 1 compared with 2), we have 

 

            
 M

z
 = 2Vg  S(z0 – z) + 2mua(1 – )              (S3.1)

  

 

where the second term on the right-hand side represents the effect of mutational bias on the trait 

mean over one generation (under the state-independent mutation model, the expected rate of 

occurrence of mutations that each increase the current mean by a when heterozygous is 2mu per 

individual per generation, and the expected rate for mutations that each decrease it by a is 2mu). 

 Following Lande (1976), we have Vz = Vg/N, where Vg is the current value of the genetic 

variance. Further progress requires making the assumption that fluctuations in Vg can be ignored, 

so that we can replace with its expectation Vg*. The diffusion representation is then approximated 

by an Ornstein-Uhlenbeck process, with variance Vg*/N, and change in mean given by replacing 

Vg with Vg* in Equation S3.1 (Lande 1976; Lande and Bürger 1994). Standard results for the 

Ornstein-Uhlenbeck process imply that the stationary distribution of z  is normal, with variance 

1/(4NSa2) and expectation  

 

                                                          
z* = z

0
 + 

(Vg S)
mua(1 – )

                      (S3.2)
 

 

 An upper bound to Vg* is provided by the neutral case; with the state-independent 

mutational model at the infinite sites limit, Vg* = 4Nmu(1 + )a2 (see main text). Use of this 

expression in Equation S3.2 gives 

 

                                                        
z* = z

0
 + 

(1 + )(4NSa)
(1 – )

                 (S3.3a)
 

 

which implies that  

 

                                                             
 * = 

(1 + )(4NSa2)

( – 1)
                 (S3.3b)
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Similarly, the variance of  is 

 

                                                                   
 

2 = 

4NSa2
1                            (S3.4)

 

  

 At first sight, the result for * is very different from that in Equation 13b, * = 

ln()/(8NSa2). We can, however, write ( – 1) = , so that 1 +  = 2(1 + /2) yielding  

( – 1)/(1 + ) = [– 0.52  – ....]/2 when  < 2. This is close to ln()/2 when < 1, 

and is slightly smaller than ln()/2 in general. For example, with  = 2 and 4, ( – 1)/[(1 + )] = 

0.33 and 0.60, respectively, instead of 0.34 and 0.70 for ln()/2.  

 There is therefore reasonably good agreement between the expressions for *, derived 

using these two different methods of approximation, and with the results of the stochastic 

simulations, although the results derived in the main text fit the simulation results considerably 

better than those from the infinitesimal model. The reason for the discrepancies is unclear, but 

presumably reflects the neglect of the contributions from the sum of terms involving 2qi – 1in 

Equation 2 to the change in z  in the infinitesimal model, and the use of the neutral expectation 

for Vg. The qualitative behaviors of the two expressions for * as functions of  and NSa2 are, 

however, very similar. 

 A similar argument can be used for the state-dependent mutational model. The mutational 

term in Mz is, however, more complex. Using the infinite sites limit, let the overall frequency of 

sites fixed for A2 be q*; at these sites, mutations to A1 occur at rate u per site. From Equation 4, 

these cause an expected change in z  of –2muaq*. Similarly, mutations at sites fixed for A1 

occur at rate u, resulting in an expected change of 2mua(1 – q*). The net expected mutational 

change in z  is thus 2mua[1 – (1 + )q*]. As before, we can approximate Vg by its neutral 

expected value, which in this case is equal to 8Numa2/(1 + ) (see section S1). This gives the 

equivalent of Equation S3.4 as 

 

                                             
 * =

8NSa2

[(1 +  )q* – 1](1 +  )
                    (S3.5a)
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For large m, q*   (1 + b)/2, where b = z0/(ma) (see Equation 8). Substituting this into Equation 

S3.6a, we find that  

 

                                          
 *  

(1 + )
  

16NSa2

[b +  – 1]
               (S3.5b)

 

 

The behavior of * is similar to that predicted by Equations A3, although this expression 

somewhat overestimates * compared with these approximations and with the simulations. 

 The behavior of the infinitesimal model also yields some insights into why equating  and 

* seems to work so well. When mutational bias is absent, Bürger and Lande (1994) used 

established properties of the Ornstein-Uhlenbeck process to show that the timescale over which 

the temporal autocorrelation in the mean decays is of the order of 1/(2SVg*), using the present 

notation. This provides a timescale over which the fluctuations in  will tend to average out, 

denoted by T. Using the neutral approximation for Vg*, for the state-independent mutational 

model, we obtain  

 

                                                      
 T

  

mu(1 + ) ln()
*                   (S3.6)

 

 

With quasi-neutrality, the timescale over which variant frequencies change is Td   4N. The ratio 

of the two timescales is thus 

 

                                             

 
T


Td     
*

4Nmu(1 + ) ln()
                     (S3.7)

  

 

When Td/T is approximately 1 or more, variants are likely to experience the whole range of 

fluctuations of  around * during their sojourn in the population, so that we can expect the 

effects of these to average out when affecting its fixation probability. This condition is met for 

the cases with N of 100 or more in Table 2, but not for N = 50. However, in the latter case, the 

argument presented in section S1 shows that the standard deviation of  is considerably smaller 
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than * (as can be seen in Table 2), so that the fluctuations would be expected to have relatively 

small effects compared with those for the other11N values. 

 A similar relation can be derived for the state-dependent model, except that the 

approximation derived above for the mutation term implies that 2Nmu[(1 + )b +  – 1][2b + 

ln(k)] is used in the numerator of the equivalent of Equation S3.7.  

 

S4  Values of  and Vg for large values of NSa2 

 

This section examines the values of  and Vg for values of NSa2 that are sufficiently large that 

most sites are skewed to a high frequencies of either A1 or A2 type variants, when there is a 

predominance of stabilizing selection (2 < 1). The case of state-independent mutations will be 

considered first. Here, A2-type mutations occur at rate u each generation, and A1-type mutations 

occur at rate u. Under the infinite sites assumption, a site will segregate for at most one of these 

two types of mutation. Rare A2-type mutations are selected against with net selection coefficient 

Sa2(1 – 2), since the directional selection component opposes the effect of stabilizing selection 

in Equation 2; rare A1-type mutations are selected against with net selection coefficient Sa2(1 + 

2), since directional and stabilizing selection reinforce each other. The changes in frequencies of 

rare A2-type mutations due to the stabilizing selection component of the right hand side of 

Equation 2 cause a net change in  of approximately 2 q2 (Sa2), where q2  is their mean 

frequency. Similarly, rare A1-type mutations cause a net change in  due to stabilizing selection 

of –2 q1  (Sa2), where q1  is their corresponding mean frequency. We also need to include the 

change in  caused by the directional selection component of Equation 2 as well as the mutational 

component, as was done in deriving Equation S3.1. We obtain 

 

                          
   – 2VgS +  2m         (q

2
 – q

1
) + 2mu( – 1)                        (S4.1)   (Sa2)

 

 

If the infinite sites assumption holds, the mean variant frequencies will be close to their infinite 

population equilibrium values under selection and mutation, q2* = u/[(1 – 2)(Sa2)] and q1* = 

u/[(1 + 2)(Sa2)] In addition, the expected diversity at each class of site can approximated by 
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the appropriate deterministic formula for mutation selection balance (see Charlesworth and 

Charlesworth 2010, p.278, Equation B6.7.3); multiplication of these by a2 yields the expected 

variance, Vg*, as before. Taking each class of mutation into account, we obtain the following 

expression 

  

                                        

 Vg
*   

S(1 – 42
)

2mu[(1 – 2) + 1 + 2]
             (S4.2)

 

 

Substituting the equilibrium expressions for q1  and q2  into Equation S4.1, setting  to zero, 

multiplying top and bottom by 1 – 42, and cancelling common factors, we obtain the equilibrium 

equation 

 

    0  – [(1 – 2) +  1 + 2]  +  [1 + 2 – (1 – 2)] + – 1)(1 – 42
)            (S4.3) 

 

 The constant term in this quadratic expression in  is equal to zero. It therefore has one 

root of zero, and the other given by the remaining terms, which yields the alternative equilibrium 

solution * = ( + 1)/[2( – 1)]. However, this implies * > ½ with  > 1, and so * lies outside 

the permissible range for the present analysis. 

 The equilibrium * = 0 is locally stable, as can be seen informally as follows. Consider 

what happens when  is perturbed upwards from the equilibrium with  = 0, with an 

accompanying arbitrary small perturbation to Vg. This has the effect of introducing a negative 

first term into the expression for  given by Equation S4.1. Similarly, an increase in  implies a 

decrease in the contribution from the term in q2  – q1 , so that this quantity is reduced below its 

equilibrium value for  = 0. Since the mutational term is unchanged, the net result is to cause  

to become negative, and so  will move back towards zero. 

 A similar approach can be used for the state-dependent model. Applying the approach in 

the Appendix for obtaining Equations A1 and A7, with large m and NSa2 the fractions of sites 

with mutations with high frequencies of A1 and A2 can be approximated by (1 – b)/2 and (1 + 

b)/2, respectively; these sites generate rare A2-type and rare A1-type mutations at rates u and u. 

The corresponding net changes in  at equilibrium due to stabilizing selection at each type of site 
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are then mu(1 – b)/(1 – 2) and – (1 + b)u/(1 + 2), respectively, yielding a total contribution of 

mu[(1 – b)(1 +2) – (1 + b)(1 – 2)]/(1 – 42). The equilibrium variance is now given by 

 

                           

 Vg
*          

S(1 – 42
)

mu[(1 + b)(1 – 2) + (1 – b)(1 + 2)]             (S4.4)

 

 

and the mutational term (as in the derivation of Equations S3.5) is equal to mu[ – 1 + b(1 + )]. 

 The equation for equilibrium analogous to Equation S4.3 is now 

 

    

 0 = – [(1 + b)(1 – 2) +  (1 – b)(1 + 2)] + [(1 – b)(1 + 2) – (1 + b)(1 – 2)]

          +  [ – 1 + b(1 + )](1 – 42
)]                                                                         (S4.5) 

 

 A similar analysis to the above shows that the constant terms again sum to zero, so that 

there is a root * = 0. The other root is * =  [(1 + b) + 1 – b]/{2[(1 + b) + b – 1]}. Similar 

remarks apply to the existence and stability of these equilibria as in the state-independent case.  

 

S5 Conditions for validity of the approximations for the stabilizing selection model 

 

An important issue concerns the conditions under when the approximations described in the main text 

for obtaining the the results presented in Tables 1 and 2 break down. This is expected to happen when 

the stabilizing selection term in Equation 2, 2qi – 1, becomes dominant over the term in 2*. Since the 

magnitude of 2qi – 1 is always < 1, Equation 13b for the state-independent model implies that a 

sufficient condition for this is ln()/(4NSa2) < 1. The parameter = 4NSa2 should thus play a critical 

role in controlling the outcome of the process; if > ln(), there is the potential for net selection 

against A2 over the part of the distribution of qi values for which qi << 1, and selection in favor of A2 

over the rest of the distribution. None of the parameters shown in Tables 1 or 2 satisfy this condition. 

Even when > ln(),the argument leading up to Equation A7 shows that the formulae for * in terms 

of  and NSa2 should still apply, provided that the approximation of treating  as fixed at * is valid; 

with NSa2 >> 1, the deterministic formulae for Vg* should provide good approximations. 
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Values of N, S and a that cause  to fall well above the critical value were therefore chosen for 

further numerical study by stochastic simulations (Table S2). Values of  are not shown, because a 

single  value is not meaningful in these cases. Because the fluctuations in  relative to * are very 

large here, 4000 replicate runs were carried out for each parameter set. It will be seen that the 

deterministic approximations for Vg* are quite accurate, although there is a tendency for them to 

slightly underestimate the true values, as would expected from the effects of drift; the analytical 

approximations for the state-dependent model also tend to underestimate * somewhat.  

The small values of * in these cases compared with the results in Tables 1 and 2 (between 0.02 

and 0.06) are consistent with the argument given in the Supplementary Information, Section S4, as 

well as with the results of Waxman and Peck (2003) and Zhang and Hill (2008). The intuitive basis 

for this approach of * to zero with large NSa2 is that an examination of the contributions to the net 

change in  per generation from the two components of the bracketed term on the right hand-side of 

Equation 2 (i.e., from 2 and from 2qi – 1) shows that the contribution from the second (stabilizing 

selection) term approximately counteracts the contribution from mutation. This leaves a net 

contribution from the directional selection term, which is equal to –2VgS(see Equation S4.1). 

Hence, for an equilibrium to be achieved in a infinite population,  must be close to zero. 

Selection in these cases is largely driven by the stabilizing selection component of Equation 2. 

This implies that 1 (for rare A1 mutations) and  (for rare A2 mutations) are both negative. But with 

mutational bias there is a predominance of rare A1 mutations segregating in the population, as 

opposed to rare A2 mutations. This causes the shape of the pooled frequency spectrum to differ 

considerably from the U-shape with pure stabilizing selection (Kimura 1983, p.147), although there is 

a slight upturn in the frequency spectrum at low frequencies of A2 mutations with a low level of 

mutational bias. An example is shown in Figure S1. In contrast, the unfolded frequency spectra for 

derived A1 and A2 variants show selection against each of them. These differences from the case 

when there is net directional selection or pure stabilizing selection should be informative in 

applications to data from natural populations. 
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Table S1   Properties of the site frequency spectra for state-independent mutations 

 

             Sites fixed             Sites fixed                Mean frequency 

     for A1                              for A2                             of A2 

 = 2    
N = 50  0.366   (0.015)  0.653  (0.016)  0.607  (0.063) 

       100  0.320   (0.014)  0.640  (0.015)  0.606  (0.046) 

       200  0.309   (0.014)  0.614  (0.015)  0.604  (0.032) 

       400  0.288   (0.014)    0.575  (0.015)  0.604  (0.025) 

 = 4    

N = 50  0.193   (0.013)  0.777  (0.013)  0.685  (0.050) 

       100  0.187   (0.012)  0.755  (0.013)  0.680  (0.034) 

       200  0.176   (0.011)  0.716  (0.013)  0.679  (0.026) 

       400  0.161   (0.011)  0.653  (0.014)  0.674  (0.018) 

 

  

The entries display the mean proportions (over 500 replicate simulations) of sites 

 in a sample of 20 alleles that are fixed for A1- and A2-type variants, respectively,  

together with the mean frequency of A2-type variants in the sample. Standard deviations 

are shown in brackets. The selection and mutation parameters of Table 2 were used, 

with an optimum of zero. 
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Table S2  Simulation values of parameters under stabilizing selection with large Nsa2   
 
      State-dependent mutations                                   State-independent mutations 
 
(x10) Vg 
(x10)Vg 
 
 



 = 2 

    Sim. 
Mean  s.d. 

App. Sim. 
Mean  s.d. 

Stab. 
Sel. 

     Sim. 
Mean  s.d. 

App.       Sim. 
Mean   s.d. 

Stab. 
Sel. 

z0 = 0 0.298   2.61 
(0.041) 

0.217 0.381  0.076 
(0.001) 

0.300 0.244   2.60 
(0.041)  

0.212 0.635 0.100 
(0.002) 

0.600 

z0 = 20 0.388  2.61 
(0.041) 

0.257 0.382  0.079 
(0.001) 

0.320 0.212  2.58 
(0.041) 

0.212 0.634  0.099 
(0.002) 

0.600 

 = 4         
z0 = 0 0.489   2.59 

(0.041) 
0.434 0.588  0.095 

(0.002) 
0.500 0.460   2.59 

(0.041) 
0.433 0.922  0.113 

(0.002) 
1.00 

z0 = 20 0.610   2.57 
(0.041) 

0.473 0.605  0.097 
(0.002) 

0.560 0.422   2.62 
(0.041) 

0.433 0.921  0.114 
(0.002) 

1.00 

 
 

          N = 400; u = 1 x 10–5; m = 1000, S = 0.1, a = 0.316 (Sa2 = 0.01). 
 
The entries headed ‘Sim.’ were obtained from stochastic simulations with 4000 replicates; the entries 

for  headed ‘App.’ were obtained from Equations A3a (state-dependent model) and 13b (state-

independent model), and the entries headed ‘Stab. Sel.’ from the formulae for Vg* with large 

population size (Equations S4.2 and S4.4, setting  = 0). Results from matrix iterations are not shown, 

since problems with convergence were experienced. 
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Figure S1  Site frequency spectra in a sample of 20 alleles with a predominance of stabilizing 
selection, from the results of pooling 4000 stochastic simulations. The histograms show the 
spectra for the cases of neutrality (red bars) and stabilizing selection with state-independent 
mutations and two different levels of mutational bias (blue and white bars) with N = 400, S = 
0.1, m = 1000, a = 0.316, z0 = 0 and u = 1 x 10-5. 
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