SUPPLEMENT

NATURE METHODS LipidBlast - in-silico tandem mass spectrometry database for lipid identification

Tobias Kind, Kwang-Hyeon Liu, Do Yup Lee, Brian DeFelice, John K. Meissen and Oliver Fiehn

Supplementary Figure 1: Compound structure examples from all 26 lipid classes covered in LipidBlast. File type is MS PowerPoint.

Supplementary Figure 2: Investigation of fragmentations and rearrangements of different phospholipid classes from authentic reference compounds using electrospray ion trap tandem mass spectrometry. File type is MS PowerPoint

Supplementary Figure 3: Custom modeling of m/z fragments and abundances shown for phosphatidylcholine. The candidate PC 36:2 cannot be identified with the standard LipidBlast libraries. A custom created library allows the subsequent identification of MS/MS spectra obtained from a quadrupole time-of-flight (Q-TOF) instruments. File type is MS PowerPoint.

Supplementary Figure 4: Detailed search results of all 134 MS/MS spectra from forty different platforms containing screenshots of pictures from NIST MS Search GUI program. All raw mass spectral files and search statistics are supplied together with the LipidBlast software. File type is MS PowerPoint.

Supplementary Figure 5: Validation of LipidBlast with MS/MS spectra obtained from a quadrupole time-of-flight (Q-TOF) instrument. All raw mass spectral files are supplied with the LipidBlast software. File type is MS PowerPoint.

Supplementary Note 1: Complete literature reference collection used for LipidBlast development, covering ~300 external literature references. References were used to develop or validate known fragmentations and to manually extract high-resolution tandem mass spectra. File type is MS DOC.

Supplementary Table 1: Detailed statistics of the LipidBlast MS/MS libraries with detailed lipid compound numbers, MS/MS spectra numbers, covered adduct types ([M+H]⁺; [M+Na]⁺; [M+N4]⁺; [M+H4]⁺; [M-H]⁻; [M-2H]⁽²⁻⁾; [M+NH4-CO]⁺; [M+2Na-H]⁺; [M]⁺; [M-H+Na]⁺; [M+Li]⁺) and histogram statistics of accurate mass values and peak numbers in library. File type is XLS and stored externally.

Supplementary Table 2: Complete table of mass spectrometry platforms that can be used with the LipidBlast libraries. Forty different mass spectrometer types from seven major vendors can be used with LipidBlast. The table shows cross-platform independence and the ability of the LipidBlast libraries to identify compounds from different MS platforms. File type is XLS and stored externally.

Online Supplement LipidBlast:

The LipidBlast software itself and all MS/MS in-silico spectra, all references spectra, compound structure examples as well as all statistical evaluations can be found under:

http://fiehnlab.ucdavis.edu/projects/LipidBlast

Questions regarding LipidBlast and software should be directed to: Dr. Tobias Kind (tkind@ucdavis.edu) http://fiehnlab.ucdavis.edu/staff/kind/

Davis, May15 2013

LipidBlast - In silico created MS/MS libraries for lipid profiling

Supplement of covered structures The structure drawing files (*.mrv) MarvinSketch can be found under:

http://fiehnlab.ucdavis.edu/projects/LipidBlast

Tobias Kind, Oliver Fiehn FiehnLab – Metabolomics UC Davis Genome Center, Davis, USA

Covered structures and MS/MS spectra in LipidBlast

Num	Lipid class	PIC	Short Name	Number compounds	Number MS/MS spectra	Number MS/MS libraries	
1	Phosphatidylcholines	ok	PC	5,476	10,952	2	
2	Lysophosphatidylcholines	ok	lysoPC	80	160	2	
3	Plasmenylphosphatidylcholines	ok	plasmenyl-PC	222	444	2	
4	Phosphatidylethanolamines	ok	PE	5,476	16,428	3	
5	Lysophosphatidylethanolamines	ok	lysoPE	80	240	3	
6	Plasmenylphosphatidylethanolamines	ok	plasmenyl-PE	222	666	3	
7	Phosphatidylserines	ok	PS	5,123	15,369	3	
8	Sphingomyelines	ok	SM	168	336	2	
9	Phosphatidic acids	ok	PA	5,476	16,428	3	
10	Phosphatidylinositols	ok	PI	5,476	5,476	1	
11	Phosphatidylglycerols	ok	PG	5,476	5,476	1	
12	Cardiolipins	ok	CL	25,426	50,852	2	
13	Ceramide-1-phosphates	ok	CerP	168	336	2	
14	Sulfatides	ok	ST	168	168	1	
15	Gangliosides	ok	[glycan]-Cer	880	880	1	
16	Monoacylglycerols	ok	MG	74	148	2	
17	Diacylglycerols	ok	DG	1,764	3,528	2	
18	Triacylglycerols	ok	TG	2,640	7,920	3	
19	Monogalactosyldiacylglycerols	ok	MGDG	5,476	21,904	4	
20	Digalactosyldiacylglycerols	ok	DGDG	5,476	10,952	2	
21	Sulfoquinovosyldiacylglycerols	ok	SQDG	5,476	5,476	1	
22	Diacylated phosphatidylinositol monomannoside	ok	Ac2PIM1	144	144	1	
23	Diacylated phosphatidylinositol dimannoside	ok	Ac2PIM2	144	144	1	
24	Triacylated phosphatidylinositol dimannoside	ok	Ac3PIM2	1,728	1,728	1	
25	Tetraacylated phosphatidylinositol dimannoside	ok	Ac4PIM2	20,736	20,736	1	
26	Diphosphorylated hexaacyl Lipid A	ok	LipidA-PP	15,625	15,625	1	
Total	All libraries			119,200	212,516	50	

Mass

Abbreviation TG(16:0/18:1(11E)/20:0) Systematic Name 1-hexadecanoyI-2-(11E-octadecenoyI)-3-eicosanoyI-sn-glycerol Formula C57H108O6 888.81

Abbreviation DG(16:0/18:1(11E)/0:0) Systematic Name 1-hexadecanoyl-2-(11E-octadecenoyl)-sn-glycerol Formula C37H70O5 594.52 Mass

Abbreviation MG(16:0/0:0/0:0) Systematic Name 1-hexadecanoyl-sn-glycerol Formula C19H38O4 Mass 330.28

Abbreviation PA(16:0/18:1(11E)) Systematic Name 1-hexadecanoyI-2-(11E-octadecenoyI)-sn-glycero-3-phosphate Formula C37H71O8P Mass 674.49

Abbreviation PE(16:0/18:1(11E)) Systematic Name 1-hexadecanoyl-2-(11E-octadecenoyl)-sn-glycero-3phosphoethanolamine Formula C39H76NO8P Mass 717.53

Abbreviation PG(16:0/18:1(11E)) Systematic Name 1-hexadecanoyl-2-(11E-octadecenoyl)-sn-glycero-3-phospho-(1'-snglycerol) Formula C40H77O10P Mass 748.53

Abbreviation PI(16:0/18:1(11E)) Systematic Name 1-hexadecanoyI-2-(11E-octadecenoyI)-sn-glycero-3-phospho-(1'-myoinositol) Formula C43H81O13P Mass 836.54

Abbreviation PC(16:0/18:1(11E)) Systematic Name 1-hexadecanoyl-2-(11E-octadecenoyl)-sn-glycero-3-phosphocholine C42H82NO8P Formula Mass 759.58

AbbreviationPS(16:0/18:1(11E))Systematic Name1-hexadecanoyl-2-(11E-octadecenoyl)-sn-glycero-3-phosphoserineFormulaC40H76NO10PMass761.52

AbbreviationCL(1'-[14:0/16:0],3'-[14:0/18:1(11E)])Systematic Name1'-[1-tetradecanoyl-2-hexadecanoyl-sn-glycero-3-phospho],3'-[1-
tetradecanoyl-2-(11E-octadecenoyl)-sn-glycero-3-phospho]-sn-glycerolFormulaC71H136017P2Mass1322.93

Common Name	PC(16:0/0:0)[U] (lysoPC)
Systematic Name	1-hexadecanoyI-sn-glycero-3-phosphocholine
Exact Mass	495.33
Formula	C24H50NO7P

LM ID	LMGP01030007 (plasmenyI-PC)
Common Name	PC(P-16:0/18:1(9Z))[U]
Exact Mass	743.58
Formula	C42H82NO7P

LM IDLMGP02050003 (lysoPE)Common NamePE(14:0/0:0)Exact Mass425.25FormulaC19H40NO7P

LM ID	LMGP02030004 (plasmenyl-PE)
Common Name	PE(P-18:0/18:1(9Z))
Exact Mass	729.57
Formula	C41H80NO7P

LM ID	LMSP03010003
Common Name	SM(d18:1/16:0)
Systematic Name	N-(hexadecanoyl)-sphing-4-enine-1-phosphocholine
Synonyms	C16 Sphingomyelin
Exact Mass	702.57
Formula	C39H79N2O6P

LM ID	LMSP02050002 (Ceramide-phosphate)
Common Name	CerP(d18:1/16:0)
Systematic Name	N-(hexadecanoyl)-sphing-4-enine-1-phosphate
Synonyms	C16 CerP
Exact Mass	617.48
Formula	C34H68NO6P

LM ID	LMSP06020002
Common Name	C16 Sulfatide
Systematic Name	(3'-sulfo)Galß-Cer(d18:1/16:0)
Synonyms	C16 Sulfatide
Exact Mass	779.52
Formula	C40H77NO11S

LM ID	LMSP0601AJ01 (GM3 ganglioside)				
Common Name	-				
Systematic Name	NeuAca2-3Galß1-4Glcß-Cer(d18:1/16:0)				
Synonyms	-				
Exact Mass	1152.71				
Formula	C57H104N2O21				

 LM ID
 LMGL05010024

 Common Name
 MGDG(18:2(9Z,12Z)/18:3(9Z,12Z,15Z))

 Systematic Name
 1-(9Z,12Z-octadecadienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-3-O-ß-D-galactosyl-sn-glycerol

 Synonyms
 Monogalactosyldiacylglycerol(18:2(9Z,12Z)/18:3(9Z,12Z,15Z))

 Exact Mass
 776.54

 Formula
 C45H76010

LM ID LMGL05010010 Common Name DGDG(18:5(3Z,6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)) Systematic Name 1-(3Z,6Z,9Z,12Z,15Z-octadecapentaenoyI)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyI) 3-O-(6'-O-a-D-galactosyl-&D-galactosyl)-sn-glycerol 1 Synonyms Digalactosyldiacylglycerol(18:5(3Z,6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)) Exact Mass 930.53 Formula C51H78015

LM ID	LMGL05010007
Common Name	SQDG(16:0/16:1(11Z))
Systematic Name	1-hexadecanoyl-2-(11Z-hexadecenoyl)-3-(6'-sulfo-a-D-quinovosyl)-sn-glycerol
Synonyms	sulfoquinovosyldiacylglycerols; SQDG(16:0/16:1)
Exact Mass	791.50
Formula	C41H75O12S

Diacylated phosphatidylinositol monomannoside A Ac2PIM1(16:0/methyl-18:0) C50H95O18P 1014.625603

Ac2PIM1

Ac2PIM2

Diacylated phosphatidylinositol dimannoside Ac2PIM2(16:0/methyl-18:0) C56H105O23P Mass: 1176.678426

Triacylated phosphatidylinositol dimannoside Ac3PIM2(16:0/methyl-18:0/16:0) C72H135O24P 1414.908092

Tetraacylated phosphatidylinositol dimannoside C88H165O25P 1653.137757 Ac4PIM2(16:0/16:0/16:0/methyl-18:0)

Diphosphorylated hexaacyl Lipid A 1825.250692 C96H182N2O25P2 LipidA-PP [14/14/14/14/3O-(14)/3O-(14)]

LipidBlast - In silico created MS/MS libraries for lipid profiling

Supplement of fragmentation modeling from standard reference compounds. Raw MS/MS Spectra can be found under:

http://fiehnlab.ucdavis.edu/projects/LipidBlast

Tobias Kind, Kwang-Hyeon Liu, Do Yup Lee, Brian DeFelice, John K. Meissen and Oliver Fiehn FiehnLab – Metabolomics UC Davis Genome Center, Davis, USA

Phospholipids ID **Collection A** Dr. KH LIU **UC Davis Metabolomics** LipidBlast

Fragmentation Pattern of Phospholipid on LTQ MS

PL	(+)	(+)		(-)	(-)	(-) FFA	Formed Adduct
PC	-18 (H+)	-59 (both)	-183 (both)	-74 (Ac ⁻)		No	H⁺, Na⁺ Ac⁻
PE	-43 (Na+)	-141 (both)				Yes	H+, Na+ -H+
PS	-87	-185 (both)		-87 (-H+)		Yes	H+, Na+ -H+
SM	-18 (H+)	-59 (Na+)	-183 (Na+)	-74 (Ac ⁻)	-145 (Ac ⁻)	No	H⁺, Na⁺ Ac⁻
PI	No signal			-162 (-H+)	241*	Yes	-H+
PG	No signal			-74 (-H+)	227*	Yes	-H+
PA	-98 (Na+)	-120 (Na⁺)				Yes	Na⁺ -H⁺

(Na⁺), (H⁺), (Ac⁻): Adduct Ion, Both: (Na⁺) or (H⁺) * Characteristic Fragment Ion

Phosphatidylcholine ID

m/z 782.6 (PC 34:1, Sodium Adduct (16:0, 18:1))

- TriMe Ammonium Ion 🤒 PC_Palmitoyl_Oleoyl_Pos_MSMS_01 #249-289 RT: 0.52-0.98 AV: 9 NL: 2.90E3 T: Average spectrum MS2 782.60 (249-289) -59.0 +Ņ< O -P OH -PC 2500 2000 -58.9 te 1500-1500-1000 500 -182.7 -H2O -285.1 -60.0 -257.1 -245.0 -205.0 -18.0 -387.1 -341.2 -315.2 -539.4 -499.3 -469.2 -441.3 -402.1 -164.1 -118.0 -82.3 -61.1 58 9.7 0 250 350 400 500 550 600 650 700 750 300 450 m/z PC_Palmitoyl_Oleoyl_Pos_MSMS_01 #248-288 RT: 0.51-0.96 AV: 9 NL: 8.79E1 0 T: Average spectrum MS2 760.60 (248-288) 701.4 -16:0-H₂O 701.3 80-70--18 496.3 60 - 478.4 Aise atu -18:1-H₂O 577.5 742.5 -16:0 30-478.1 522.3 700.4 20-742.2 522.5 577.1 10-741.5 743.0 577.8 601.3 645.3 660.5 688.5 281.0 536.6 576.4 227.1 250.9 401.1 416.2 343.1 356.1 445.1 311.3 0-250 300 350 400 450 500 550 600 650 700 750 200

Pos. Mode

m/z 782.6 (PC 34:1, Sodium Adduct (16:0, 18:1))

Pos. Mode

m/z 818.6 (PC 34:1, Acetate Adduct (16:0, 18:1))

m/z 818.6 (PC 34:1, Acetate Adduct (16:0, 18:1))

Neg. Mode

PC – Bovine brain

090325_PCs_Pos_CE25_MSMS_01 #45-214 RT: 0.09-0.43 AV: 170 NL: 5.20E3 T: ITMS + p ESI Full ms[300.00-1100.00]

Sphingomyelin ID

m/z 729.6 (SM 36:1 (18:1))

Pos. Mode

m/z 787.6 (SM 36:1, Acetate Adduct (18:1))

Neg. Mode

m/z 787.6 (SM 36:1, Acetate Adduct (18:1))

Phosphatidylserine ID

m/z 762.6 (PS 34:1 (16:0, 18:1))

Pos. Mode

m/z 784.5 (PS 34:1, Sodium Adduct (16:0, 18:1))

Pos. Mode

m/z 760.6 (PS 34:1 (16:0, 18:1))

Neg. Mode

m/z 760.6 (PS 34:1 (16:0, 18:1))

Neg. Mode

Phosphatidylethanolamine ID

m/z 718.6 (PE 34:1 (16:0, 18:1))

m/z 718.6 (PE 34:1 (16:0, 18:1))

m/z 740.6 (PE 34:1, sodium adduct (16:0, 18:1))

m/z 716.7 (PE 34:1 (16:0, 18:1))

m/z 716.7 (PE 34:1 (16:0, 18:1))

Phosphatidylinositol ID

m/z 861.6 (PI 36:2 (18:1, 18:1))

Exact Mass: 241.01

Neg. Mode

m/z 883.1 ?? (PI 36:1 (18:1, 18:1))

Phosphatidic acid ID

Neg. Mode

m/z 697.5 (PA 34:1, Sodium Adduct (16:0, 18:1))

Pos. Mode

Phosphatidylglycerol ID

m/z 747.7 (PG 34:1 (16:0, 18:1))

Neg. Mode

Neg. Mode

m/z 749.7 (PG 34:1 (16:0, 18:1)) M+H

Pos. Mode

Phospholipids ID Collection B

Dr. KH LIU UC Davis Metabolomics LipidBlast

DLOPC (18:1, 18:1, diether form, *m/z* 758.8 [M+H]+)

DLOPC (18:1, 18:1, diether form, *m/z* 780.8 [M+Na]+)

LPC (14:0, *m/z* 468.6 [M+H]+)

090623_LPL3Mix_2_5ug_ml_Pos_CE35_01 #38-101_RT: 0.15-0.97_AV: 3_NL: 1.22E2

T: Average spectrum MS2 468.37 (38-101)

Positive mode 🧟

090623_LPL3Mix_2_5ug_ml_Pos_CE35_01 #54 RT: 0.35 AV: 1 NL: 5.21E1 T: ITMS + p ESI d Full ms2 490.35@cid35.00 [125.00-505.00]

LPC 16:0 (m/z 496.4, [M+H]+)

090708_LPCs_EY_Pos_CE25_02 #56-117 RT: 0.11-0.86 AV: 4 NL: 1.39E4 T: Average spectrum MS2 496.46 (56-117)

Positive mode 🧕

EY_Pos_CE25_02 #56-117 RT: 0.11-0.86 AV: 4 NL: 1.96E2 ctrum MS2 496.46 (56-117)

Plasmalogen PC (P-18:0, 18:1, *m/z* 772.7 [M+H]+)

Plasmalogen PE (P-18:0, 18:1, *m/z* 730.7 [M+H]+)

Plasmalogen PE (P-18:0, 18:1, *m/z* 752.7 [M+Na]+)

- Positive mode
- Characteristic ion of plasmalogen PE
 - P-20:0: m/z 442
 - P-20:1: m/z 440
 - P-18:0: m/z 414
 - P-18:1: m/z 412
 - P-16:0: m/z 386
 - P-16:1: m/z 384

Plasmalogen PE (P-18:0, 18:1, *m/z* 728.6 [M-H]-)

LPE (18:0, *m/z* 482.4 [M+H]+)

LPE (18:0, *m/z* 504.4 [M+Na]+)

LPE (16:0, *m/z* 452.3 [M-H]-)

LPE (18:0, *m/z* 480.5 [M-H]-)

All LPE: m/z 196 and m/z 214

LPE (16:0, *m/z* 454.4 [M+H]+)

LPE (16:0, *m/z* 476.4 [M+Na]+)

DMPS (14:0, 14:0, *m/z* 680.6 [M+H]+)

DMPS (14:0, 14:0, *m/z* 702.6 [M+Na]+)

DMPS (14:0, 14:0, *m/z* 678.6 [M-H]-)

POPS (16:0, 18:1, *m/z* 760.7 [M-H]-)

SM 38:0 (d18:0, 20:0 (N-Acyl), m/z 761.7, [M+H]+)

SM 38:0 (d18:0, 20:0 (N-Acyl), m/z 783.6, [M+Na]+)

SM 36:1 (d18:0, 18:1 (N-Acyl), m/z 731.6, [M+H]+)

0 090708_SMs_BB_Pos_CE35_01 #65-122 RT: 0.23-0.98 AV: 2 NL: 7.97E3 - Choline T: Average spectrum MS2 753.57 (65-122) 694.45 100-80 Relative Abundance 60-40-- PC 20-570.55 723.00 736.00 233,27 258,82 283.09 309.27 339.91 379.36 411.09 452.82 481.45 507.55 548.64 612,45 628.55 650.45 692.09 O٠ 200 250 300 350 400 450 500 550 600 650 700 750 m/z

SM 34:1 (d18:1, 16:0)

TG 54:0 (17:0, 17:0, 17:0, m/z 866.8, [M+NH₄]+)

TG 48:0 (16:0, 16:0, 16:0, m/z 824.7, [M+NH₄]+)

DG 32.0 (16:0, 16:0, m/z 586.6, [M+NH₄]+)

090814_DG_DP_Pos_CE35_MSMS_400_1000_01#64-125_RT: 0.11-0.83_AV: 4_NL: 1.66E3 T: Average spectrum MS2 586.57 (64-125)

Cardiolipin 14:0 (CL 14:0, m/z 620, [M-2H]2-)

Exact Mass: 227.2 0

- Negative mode
- Characteristic ion
 - m/z 1448: [M-H]-
 - m/z 831.5: loss of diacyl group
 - m/z 751.6: loss of diacyl + 80
 - m/z 695.6: loss of diacyl + 136
 - m/z 433.3: acyl chain information
 - m/z 415.3: acyl chain information

✓ Positive mode: No signal

Cardiolipin 18:2 (CL 18:2, m/z 724, [M-2H]2-)

m/z

Negative mode

Relative Abundance

- Characteristic ion
 - m/z 724: [M-2H]2-
 - m/z 695.4
 - m/z 593.1: loss of monoacyl group
 - m/z 415.5: loss of diacyl group
 - m/z 279.6: 18:2

Li Adduct

By adding LiOH in reconstitution solvent (Final concentration of Li: 2 mM)

PLPC (16:0, 18:1, m/z 760.6, [M+H]+)

PLPC (16:0, 18:1, m/z 766.6, [M+Li]+)

Identified Lithium Adduct of Phosphatidylcholine

- Lithium adduct: Acyl chain information
- Sodium adduct: no acyl chain information

	PL	Acyl chain	[MH]+	[M+Li]+	PL	Acyl chain	[MH]+	[M+Li]+
F	PC 34:2	16:0, 18:2	758.7	764.7	PC 36:2	18:0, 18:2	786.7	792.7
F	PC 34:1	16:0, 18:1	760.7	766.7	PC 36:1	18:0, 18:1	788.7	794.7
F	PC 34:0	16:0, 18:0	762.7	768.7	PC 38:7	16:1, 22:6	804.6	810.6
F	PC 36:6	16:1, 20:5	778.7	784.7	PC 38:6	16:0, 22:6	806.6	812.6
F	PC 36:5	16:0, 20:5	780.7	786.7	PC 38:5	18:1, 20:4	808.6	814.6
F	PC 36:4	18:2, 18:2	782.7	788.7	PC 38:4	18:0, 20:4	<mark>810</mark> .6	816.6
F	PC 36:3	18:1, 18:2	784.7	790.7	PC 38:3	18:0, 20:3	812 .6	818.6

Identification of major PL and NL from standard blood

m/z	PL/TG	m/z	PL/TG	m/z	PL/TG	m/z	PL/TG	m/z	PL/TG
468.5	LPC 14:0	614.5	DG 34:0 NH4+	780.7	PC 34:2 Na	850.6	TG 50:1 NH4+	904.6	TG 54:2 NH4+
480.5	LPC P-16:0	638.5	DG 36:2 NH4+	782.7	PC 34:1 Na	852.6	PC 39:1 Na	906.5	TG 54:1 NH4+
482.5	LPC 15:0	640.5	DG 36:1 NH4+	784.7	PC 34:0 Na	854.6	PC 39:0 Na	908.6	TG 54:0 NH4+
494.7	LPC 16:1	642.5	DG 36:0 NH4+	786.7	PC 36:2	856.6	PC 40:6 Na	916.5	TG 56:10 NH4+
496.6	LPC 16:0	666.5	DG 38:2 NH4+	788.7	PC 36:1	858.6	PC 40:5 Na	918.5	TG 56:9 NH4+
508.7	LPC P-18:0	668.5	DG 38:1 NH4+	794.6	PC 35:2 Na	860.6	PC 40:4 Na	920.6	TG 56:8 NH4+
510.6	LPC 17:0	669.4	SM 30:1 Na	796.6	PC 35:1 Na	862.6	PC 40:3 Na	922.6	TG 56:7 NH4+
518.5	LPC 18:3	670.5	DG 38:0 NH4+	798.6	PC 35:0 Na	864.6	PC 40:2 Na	924.6	TG 56:6 NH4+
520.6	LPC 18:2	671.6	SM 30:1 Na	800.7	PC 36:6 Na	866.6	PC 40:1 Na	926.6	TG 56:5 NH4+
522.6	LPC 18:1	675.6	SM 32:1	802.7	PC 36:5 Na	868.6	PC 40:0 Na	928.6	TG 56:4 NH4+
524.6	LPC 18:0	677.5	SM 32:0	804.7	PC 36:4 Na	870.6	TG 52:5 NH4 ⁺	930.6	TG 56:3 NH4+
526.6	LPE 22:6	697.4	SM 32:1 Na	806.6	PC 36:3 Na	872.7	TG 52:4 NH4+	932.6	TG 56:2 NH4+
536.7	LPC P-20:0	699.4	SM 32:0 Na	808.7	PC 36:2 Na	874.6	TG 52:3 NH4+	934.6	TG 56:1 NH4+
538.6	LPC 19:0	703.7	SM 34:1	810.7	PC 36:1 Na	876.6	TG 52:2 NH4+	936.6	TG 56:0 NH4+
542.5	LPC 20:5	705.8	SM 34:0	812.7	PC 36:0 Na	878.6	TG 52:1 NH4+	938.6	TG 58:12 NH4+
544.6	LPC 20:4	725.5	SM 34:1 Na	814.7	PC 37:6 Na	880.6	TG 52:0 NH4+	940.6	TG 58:11 NH4+
546.6	LPC 20:3	727.5	SM 34:0 Na	820.6	PC 37:3 Na	886.6	TG 53:4 NH4+	942.6	TG 58:10 NH4+
548.6	LPC 20:2	753.3	SM 36:1 Na	822.6	PC 37:2 Na	888.5	TG 53:3 NH4+	946.6	TG 58:9 NH4+
550.9	LPC 20:1	755.1	SM 36:0 Na	824.6	PC 38:8 Na	890.6	TG 54:9 NH4+	952.6	TG 58:6 NH4+
552.9	LPC 20:0	756.5	PC 34:3	826.6	PC 38:7 Na	892.6	TG 54:8 NH4+	954.6	TG 58:5 NH4+
568.6	LPC 22:6	758.7	PC 34:2	832.6	PC 38:4 Na	894.6	TG 54:7 NH4+	956.6	TG 58:4 NH4+
570.6	LPC 22:5	760.7	PC 34:1	834.7	PC 38:3 Na	896.6	TG 54:6 NH4+	958.6	TG 58:3 NH4+
578.6	LPC 22:1	762.7	PC 34:0,	836.7	PC 38:2 Na	898.7	TG 54:5 NH4+	960.6	TG 58:2 NH4+
610.5	DG 34:2 NH4+	768.7	PE 38:4	846.6	TG 50:3 NH4+	900.7	TG 54:4 NH4+	986.6	TG 60:3 NH4+
612.5	DG 34:1 NH4+	774.6	PE 32:1	848.7	TG 50:2 NH4+	902.7	TG 54:3 NH4+		

Reconstitution solvent: Chloroform/Methanol (1/9) containing 7.5 mM ammonium acetate

LipidBlast - In silico created MS/MS libraries for lipid profiling

Custom modeling for other instruments

http://fiehnlab.ucdavis.edu/projects/LipidBlast

Tobias Kind, Oliver Fiehn FiehnLab – Metabolomics UC Davis Genome Center, Davis, USA Supplement: Custom creation of LipidBlast libraries New PC library for QTOF Time to create new library <10 min using EXCEL templates.

Q-TOF spectrum of PC 36:2; [M+H]+; 786.5987 can not be found in standard LipidBlast library, due to missing fragments in the spectrum. A custom library can be created to model specific m/z values (next slide).

Source MS/MS data Agilent 6530 QqTOF; [M+H]+;

Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry; Sandra K, Pereira Ados S, Vanhoenacker G, David F, Sandra P.; Journal of Chromatography A, 1217 (2010) 4087-4099

RIST MS Search 2.0 - [Peptide, Presearch Default - empty]	
Eile Search View Tools Options Window Help	
X 🖻 🖻 🝜 🛄 🎬 🌆 📲 🖽 ₩″ ← 🦻	
🚳 🗫 🗃 📮 1. Agilent 6530 QqTOF; [M+H]+; 💽 🛞 🖳 🔍	
# Src. Name 22 A Agilent 6410 triple quadrupole MS; [M-H]-; 23 A Agilent 6520 Q-TOF; [M-H]-; 24 A Agilent 6530 QqTOF; [M+H]+; 25 A Agilent 6530 QqTOF; [M+H]+; 26 A Agilent 6530 QqTOF; [M+H]+; 27 A Agilent 6530 QqTOF; [M+H]+; PC/PE mix 27 A Agilent 6530 QqTOF; [M+H]+; TAG 28 A Agilent 6530 QqTOF; [M+N]+; TAG 29 A Agilent LC/MSD 1100 Ion Trap; [M-H]; 30 A Agilent Ion Trap SL; [M+Na]+; V Image: A Spec List	100- 786.5987 50- ? 20 330 440 550 660 770 (Text File) Agilent 6530 QqTOF; [M+H]+; Plot/Text of Search Spectrum A Plot of Search Spectrum A Plot/Text of Spec List / . .
lipidblast-neg; lipidblast-pos; 212516 total spectra # Library Score Dot Product Prob. (%) Rev-Dot Name	
Names (Structures / Hit List	Plot/Text of Hit / Plot of Hit /
Lib, Search Other Search Names Compare Librarian	

Peptide

Peptide

The custom LipidBlast library correctly identifies PC 36:2 from MS/MS data of a Q-TOF mass spectrometer.

For QTOFs at selected voltage only precursor and product ion m/z 184 are observed.

Source MS/MS data:

Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry; Sandra K, Pereira Ados S, Vanhoenacker G, David F, Sandra P.; Journal of Chromatography A, 1217 (2010) 4087-4099

	MS Search	2.0 - [Pepti	de, Pres	earch Defau	ilt - 179 spe	ectra]													_	
🗖 Eile	<u>S</u> earch <u>V</u>	iew <u>T</u> ools <u>O</u>	ptions \	<u>M</u> indow <u>H</u> elp															_	Ð
X 🗈	n R 🖨	n: MS 513	a 🖂	m/z 🔶 🤶																
] •• -																				
60	 🖉 🖬	🛛 🛛 1. Agile	nt 6530	QqTOF; [M	+H]+;	- B	L . 🔎	0												
	Stc N						<u> </u>							Name: Agilent	6530 Q.d.1	OF: [M+H]+:				_
22	A A	ailent 6410 trip	ole quadru	upole MS; [M-ł	41-:				100-	1				<u>MW:</u> 786 <u>ID#</u> :	1366 DB	Text File				
23	A A	gilent 6520 Q-	TOF; [M-I	H]-;	•								786.5987	2 largest peak	36:2 ; [M+ <mark>8:</mark>	H]+; 786.598	37; Comprei	nensive bloc	ia piasma i	.piao
24		gilent 6530 Qa gilent 6530 Qa	TUF; [M TOF: [M	+HCUUJ-; +H1+:										184.0728 99	9.00 78	6.5987 800.	00			
26	A A	gilent 6530 Qo	TOF; [M·	+H]+; PC/PE r	nix				50-		4			no synonyms:						
27		gilent 6530 Qo ailant 6520 Qo	TOF; [M-	+H]+; PE+PC	MIX															
20		ailent 6530 Qt. ailent LC/MSE.	атон; (м.) 1100 lo	+NH4j+; TAG n Trap : [M-H]	-:															
30	A A	gilent Ion Trap	SL; [M+I	Na]+;				-	ľ	220 330	440 550	660	770			_				
▁▁	((Text Fi	e) Agilent 6530 Qo	TOF; [M+H]+;	Cara	h Et							
		Jres /					;	spec List		ext of search spect	rum 🔨 Plot of Si	earch spec		ot/lext of Spec Lis	π./					
lipidbla:	st-neg; lipidb -neg msp: 2	last-pos; msms /35420 total en	lib; custor ectra	mpc+hpos.msp	o; custompc+i	napos.msp); pc-ac-neg.m	sp;	100										700.50	
1000-	neg.msp, z	.00420 (0(a) sp	ecua																786.59 I	87
100								_	50-											
10									머											_
									50-					504.34554		603.53522		727.5277	6 786.601	126
1									100											
1	000 900) 800	700	600 50	0 400	300	200 10	O Ó		· 							 			_
#	Library		Score	Dot Product	t Prob. (%)	Rev-Do	t Name		I	200 240	280 320	360	400 440	0 480 520	560	600 6	40 680	720	760 8	:Ó0
1	custompo	+hpos.msp	7	737	0.61	737	PC 36:2;	[M+H]+	Differe	Agilent 6530 Qo	(TOF; [M+H]+; it A Side by Side	λ Subtra	Head to	Tail MF=7 RMF=7	37	I▼PC 36:	2; [M+H]+; I	GPCho(18:1	(11E)/18:1	(11) 1 P
2	custompo	+hpos.msp	7	737	0.61	737	PC 36:2;	[M+H]+.		nce V Head to Ta		V_ocona							73711 0.6	11
3	custompo	+hpos.msp	7	737	0.61	737	PC 36:2;	[M+H]+.						Name: PC 36:	2; [M+H]+	; GPCho(18:1	/(11E)/18:1	(11E))		-
	custompo	+hpos.msp	7	737	0.61	737	PC 36:2;	[M+H]+.	1004					Comment: Par	2009 <u>06</u> ent=786.6	0126 Mz_exa	act=786.60	126 ; PC 36:	2; [M+H]+,	;
C C	custompo	+npos.msp +hpos.msp	7	737 737	0.61	737	PC 36(2) PC 36(2)	[M+H]+. [M+H]+						7 largest peak	<u>s:</u> 00.001 =	-	0.001.500	05010,000		
7	custompo	+hpos.msp	7	737	0.61	737	PC 36:2:	[M+H]+						786.60126 2	99.0015 00.0017	04.34554 2L 68.59070 1	70.00 522 10.00	.30610-200	.001-603.5).
8	custompo	+hpos.msp	7	737	0.61	737	PC 36:2;	[M+H]+						7 m/z Values a	and Intens	ities:				
9	custompo	+hpos.msp	7	737	0.61	737	PC 36:2;	[M+H]+	50-	1 1				184.07387 99	19.00 frag	ment C5H15 H1.op1-H20-J	NO4P II MuHlaní	2.420		
10	custompo	+hpos.msp	7	737	0.61	737	PC 36:2;	[M+H]+.						522.35610 20	0.00 [M+	H]-sn1 [M+l	H]-sn2	5120		
11	custompo	+hpos.msp	7	737	0.61	737	PC 36:2;	[M+H]+.			504.34554	727	7.52776	603.53522 20	0.00 (M+	H]-C5H14NC	14P (-183)			
12	custompo	+hpos.msp	7	/37	0.61	737	PC 36:2;	[M+H]+.						768.59070 10	0.00 [M+ .00 [M+	nj-congn (-: H1-H20 (-18)	10)			
13	custompo	+npos.msp +bpos.msp	7	737	0.61	737	PC 36:2; PC 36:2;	[™I+FI]+. [M+H]+ ▼I	ــلە 🛛	220 220	440 550		770	786.60126 20	0.00 (M+	H])				Ţ
	custompt	прозтвр	r	1.51	0.01	rur	r C 30.2,	Po *0 (*. ≦	foustom	220 330 ne+hnos msn) PC	36:2: [M+H]+: GP	000 Cho(18:1)	11E1/18-10							۲
Nam	es 🖉 Structo	ires /						Hit List	Plot/Te	xt of Hit / Plot of	Hit /									-
Lib.	Search [Other Searc	:h	Names	Compare	e	Librarian													

Peptide

Peptide

Supplement: Custom creation of LipidBlast libraries New formate adduct library [M+HCOO]-Time to create new library <10 min using EXCEL templates.

Q-TOF spectrum of PC 36:2 ; [M+HCOO]-; m/z 830.5966 is falsely identified as PE (with low hit score). A custom library can be created to model specific m/z values (next slide).

Source MS/MS data Agilent 6530 QqTOF; [M+H]+;

Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry; Sandra K, Pereira Ados S, Vanhoenacker G, David F, Sandra P.; Journal of Chromatography A, 1217 (2010) 4087-4099

Q-TOF spectrum of PC 36:2; [M+HCOO]-; m/z 830.5966 is correctly identified using the custom format pc-form-neg library.

Source MS/MS data Agilent 6530 QqTOF; [M+H]+;

Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry; Sandra K, Pereira Ados S, Vanhoenacker G, David F, Sandra P.; Journal of Chromatography A, 1217 (2010) 4087-4099

NIST MS Search 2.0 - [Peptide, Presearch Default - 394 spectra]	
<u> </u>	
X 🖻 🖻 🖨 🛄 🎇 📲 🖂 ≈″≠ 🗲 💡	
🚳 🎾 🗃 📮 1. Agilent 6530 QqTOF; [M+HCOO]-; 💽 🛞 🏪 💉 🍭 🔍	
# Src. Name 22 A Agilent 6410 triple quadrupole MS; [M-H]-; 23 A Agilent 6520 Q-T0F; [M-H]-; 24 A Agilent 6530 QqT0F; [M+HC00]-; 25 A Agilent 6530 QqT0F; [M+H]+; 26 A Agilent 6530 QqT0F; [M+H]+; 27 A Agilent 6530 QqT0F; [M+H]+; 28 A Agilent 6530 QqT0F; [M+H]+; 29 A Agilent 6530 QqT0F; [M+N]+; 30 A Agilent Ic/MSD 1100 Ion Trap ; [M+N]+;	100- 770.5758 50- ? 50- ? 830.5966 830.5966 300 400 500 600 700 300 400 500 600 700 800 (Text File) Agilent 6530 QqTOF; [M+HCOO]; Intersities: 279.2344 200.00 283.2645 100.00 770.5758 999.00 830.5966 25 Synonyms: no synonyms: <t< td=""></t<>
Names Structures Spec List	Plot/Text of Search Spectrum / Plot of Search Spectrum / Plot/Text of Spec List /
lipidblast-neg; lipidblast-pos; custompc+hpos.msp; custompc+napos.msp; msmslib; pc-ac-neg.msp; pc-form-neg.msp; 235420 total spectra 1000- 100- 10- 1-	100- 770.5758 50- 279.2344 0- 4 279.23226 830.59110
	- 100- 770.56997
# Library Score Dot Product Prob. (%) Rev-Dot Name 1 pc-form-neg.msp 683 991 7.54 992 PC 36:2; [M+HCC 2 pc-form-neg.msp 683 991 7.54 992 PC 36:2; [M+HCC	280 320 360 400 440 480 520 560 600 640 680 720 760 800 840 Agilent 6530 QqT0F; [M+HC00]; I Head to Tail MF=683 RMF=991 I ▼PC 36:2; [M+HC00]; GPCho(18:0/18:2/18:2/18:2/18:2/18:2/18:2/18:2/18:2
3 pc-form-neg.msp 683 991 7.54 992 PC 36.2; [M+HCl 4 pc-form-neg.msp 683 991 7.54 992 PC 36.2; [M+HCl 5 pc-form-neg.msp 683 991 7.54 992 PC 36.2; [M+HCl 5 pc-form-neg.msp 683 991 7.54 992 PC 36.2; [M+HCl	Name: PC 36:2; [M+HC00]; GPCho(18:0/18:2(2E,4E)) 100- MW: 830 ID#; 2563 DB; pc-form-neg.msp Comment: Parent=830.59110 Mz_exact=830.59110 ; PC 36:2; [M+HC00]; 4 largest peaks: Parent=830.59110 Mz_exact=830.59110 ; PC 36:2; [M+HC00];
6 pc-form-heg.msp 683 991 7.54 992 PC 36.2; [M+HCU 7 pc-form-heg.msp 683 991 7.54 992 PC 36.2; [M+HCU 8 pc-form-heg.msp 683 991 7.54 992 PC 36.2; [M+HCU 9 pc-form-heg.msp 683 991 7.54 992 PC 36.2; [M+HCU 9 pc-form-heg.msp 683 991 7.54 992 PC 36.2; [M+HCU 10 pc-form-heg.msp 683 991 7.54 992 PC 36.2; [M+HCU 11 pc-form-heg.msp 683 991 7.54 992 PC 36.2; [M+HCU	50- ? 279.23226 100.00 283.26354 100.00 830.5911 4 m/2 Values and Intensities; 279.23226 100.00 FA sn2 283.26354 100.00 FA sn1 279.23226 100.00 FA sn1 770.56997 999.00 [M-CH3]- (-15) 830.59110 100.00 [M+HC00]- (M+44.9976)
12 pc-form-neg.msp 683 991 7.54 992 PC 36:2; [M+HCl 13 pc-form-neg.msp 83 838 0.07 951 PC 36:2; [M+HCl 14 pc-form-neg.msp 83 838 0.07 951 PC 36:2; [M+HCl ▲ ▲ ▲ ▲ ▲ ▲ ▲ Names Structures ✓ Hit List ➡	O 300 400 500 600 700 800 (pc-form-neg.msp) PC 36:2; [M+HCDO]-; GPCho(18:0/18:2(2E,4E) Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian	
	Peptide Peptide

LipidBlast - In silico created MS/MS libraries for lipid profiling

Supplement data mass spectral search All raw files and software can be found under:

http://fiehnlab.ucdavis.edu/projects/LipidBlast

Tobias Kind, Kwang-Hyeon Liu, Do Yup Lee, Oliver Fiehn FiehnLab – Metabolomics UC Davis Genome Center, Davis, USA The MS/MS search results are shown here for peer review and proof of concept. The complete set of the electronic 134 spectra (*.MSP) is found in the supplement section.

All machine readable spectra and all supplement data can be found at: <u>http://fiehnlab.ucdavis.edu/projects/LipidBlast</u>

For questions please contact the curator: Dr. Tobias Kind http://fiehnlab.ucdavis.edu/staff/kind/

NIST MS Search GUI – Search parameters

NIST MSPepSearch mass spectral library search program Written by Dmitrii V. Tchekhovskoi and Stephen E. Stein Mass Spectrometry Data Center National Institute of Standards and Technology (NIST)

Visit http://peptide.nist.gov or http://chemdata.nist.gov for more information, software, or MS libraries.

About NIST MS Search 2.0

The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral Library Version 2.0 f, build Dec 3 2009 X

Software by S. Stein, Y. Mirokhin, D. Tchekhovskoi, and G. Mallard. Data Evaluation by A. Mikaia, V. Zaikin, J. Little, Damo Zhu, E. White and D. Sparkman.

NIST uses its best effort to deliver a high quality copy of the database and to ensure that the data shown are accurate. However, NIST makes no warranties to that effect,

This is a special compiled version

NIST <u>MS Search 2.0</u> The built date must be minimum May 2010 Version 2.0g 2011 produces slightly different hit scores.

The latest NIST.EXE is available from

http://peptide.nist.gov/ Search scores can change slightly with new versions. NIST MS Search is an independent product from LipidBlast.

4000 Q-Trap mass spectrometer; [M-H]-Ceramide-phosphate CerP(d18:1/12:0); [M-H]-; Prec. m/z: 874.8; LipidMaps http://www.lipidmaps.org/data/standards/standards.php?lipidclass=LMSP

SNIST MS Search 2.0 - [Peptide, Presearch Default - 39 spectra]	
Eile Search View Iools Options Window Help	<u>_6</u> ×
å 🖻 🖻 🚑 🛄 📴 📲 🖂 #/z ← 💡	
🚳 🎾 🚔 📮 1. ABI 4000 Q-Trap; [M-H]-; CerP(d18:1/ 💌 🛞 🖳 😥 🔍	
# Src. Name 1 A ABI 4000 Q-Trap; [M-H]; CerP(d18:1/12:0) 2 A ABI 4000 Q-Trap; [M-H]; CerP(d18:1/12:0) 3 A ABI QTRAP 4000; [M-H]; Lipid A (diPP-14-hexaacyl) 4 A ABI 4000 Q-Trap; [M-H]; Pl 36:1 5 A ABI 4000 Q-Trap; [M-H]; GM2(d18:1/C18:0) 7 A ABI-API 4000 QTrap; [M-H]; GM2(d18:1/C18:0) 8 A ABI 4700 MALDI-TOF; [M-H]; GM2(d20:1/C18:0) 8 A ABI 4700 MALDI-TOF; [M-H]; GM2(d18:1/N124:1) 10 A ABI 4700 MALDI-TOF; [M-H]; Sulfatide(d18:1/N124:1) 11 A ABI 4700 MALDI-TOF/TOF; [M-H]; Lipid A 10 A ABI 4700 MALDI-TOF/TOF; [M-H]; Sulfatide(d18:1/N124:1) 11 A ABI API 2000 triple quadrupole; [M-H]; CL 76:12 4 ABI 000 CTADEX D- actional DOF/TOF: M-H]; Sulfatide(d18:1/N124:1) 11 A ABI API 2000 triple quadrupole; [M-H]; CL 76:12 14 ABI 000 CTADEX D- actional DOF/TOF/TOF/TOF/TOF/TOF/TOF/TOF/TOF/TOF/T	100- 97.0 100- 378.2 0 378.2 0 378.2 0 378.2 0 370.0 280 560 (Text File) ABI 4000 Q-Trap; Values and Intensities: 97.0
10-	50-
# Library Score Dot Product Prob. (%) Rev-Dot Name	ABI 4000 Q-Trap; [M-H]; CerP(d1 Head to Tail MF=149 RMF=761 ▼CerP 30:1; [M-H]; CerP(d18:1(4E)
1 lipidblast-neg 149 761 63.8 762 CerP 30:1; [M-H]-; CerP(d18:1(4E)/12:0)	Difference A Head to Tail Side by Side A Subtraction / 149 761R 63.8P
2 lipidblast-neg 55 517 5.22 649 CerP 30:1; [M-H]-; CerP(d14:1(4E)/16:0)	Name: CerP 30:1; [M-H]; CerP(d18:1(4E)/12:0)
3 lipidblastineg 55 517 5.22 649 CerP 30:1; [M-H]-; CerP(d16:1(4E)/14:0)	100- <u>MW:</u> 560 <u>ID#</u> : 22881 <u>DB</u> : lipidblast-neg
4 Custompo+n 13 261 1.23 422 FC 16.0, [M+Na]+, GFCh0(12:0) 5 custompo+n 19 261 1.29 422 FC 18:0: [M+Na]+; GFCh0(12:0/6:0)	5 largest peaks:
6 linidblast-ons 5 91 0.80 150 PC 18:0: [M+Na]+; GPCbo(6:0/12:0)	78,95851 999.00 96,96908 999.00 360.2
7 lipidblast-pos 5 91 0.80 150 PC 18:0; [M+Na]+; GPCho(12:0/6:0)	360.23049 542.39745 542.39745 542.39745 78 95951 999 00 ion PD2 (79 95951)
8 custompc+h 1 24 0.68 122 PC 20:3; [M+H]+; GPCho(2:0/18:3(6Z,9Z,12Z))	0.4 100 200 300 400 500 96.96908 999.00 ion H2P04- (96.96908)
	(lipidblast-neg) CerP 30:1; [M-H]-; CerP(d18:1(4E)/12:0)
Names Structures Hit List	Plot/Text of Hit Plot of Hit
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide //

4000 Q-Trap mass spectrometer; M+H

Ceramide-phosphate CerP(d18:1/12:0); M+H; Prec. m/z: 874.8; LipidMaps http://www.lipidmaps.org/data/standards/standards.php?lipidclass=LMSP

ABI QTRAP 4000; Lipid A (diPP-14-hexaacyl); [M-H]-;

Accurate Mass should be 1824.24287; ELECTROPHORESIS, Volume 29, Issue 10 (p 2171-2181) ; Characterization of intact lipopolysaccharides

0.8 precursor SET

Comment Curator: Precursor Search set to 0.8 Da (accurate mass not reported in publication)

ABI 4000 Q-Trap mass spectrometer; [M-H]-

PI(18:0/18:1) (putative); [M-H]-; Prec. m/z: 863.6; Applied Biosystems/MDS Sciex; Metabolomic identification of potential phospholipid biomarkers for chronic glomerulonephritis by using high performance liquid chromatography-mass spectrometry; Lewen Jia, Chang Wang, Sumin Zhao, Xin Lu and Guowang Xu

📕 NIST MS Search 2.0 - [Peptide, Presearch Default - 65 spectra]	
Eile Search View Tools Options Window Help	_ 8 ×
🚳 🗫 🗃 📮 1. ABI 4000 Q-Trap; [M-H]-; PI 36:1 💽 🛞 🖳 😥 🍭 🚳	
# Src. Name: ABI 4000 Q-Trap; [M-H]; PI 36:1	
1 A ABI 4000 Q-Trap; [M-H]; CerP(d18:1/12:0)	usti
2 A ABI 4000 Q-1 rap ; [M+H]+; CerP(d18:1/12:0) 3 A ABI QTRAP 4000; [M-H]-; Lipid A (diPP-14-bexaacvi) 410.1 863.6 <u>8 largest peaks:</u>	10
4 A ABI 4000 Q-Trap; [M-H]; PI 36:1 281.3 570.00 863.6 300.00 410.1 200.00 303.1 4 A ABI 4000 Q-Trap; [M-H]; PI 36:1 340 680 403.4 50.00 591.0 50.00 297.0 10.00	"코
5 A ABI 4000 Q-Trap; [M+NH4]+; TG 52:3 6 A ABI-API 4000 QTrap; [M-H]; GM2[d18:1/C18:0] Interference of Second List (Control	<u> </u>
7 A ABI-API 4000 QTrap; [M-H]-; GM2(d20:1/C18:0)	
8 A ABI 4/00 MALDI-TUF/TUF/ [M-H]; AC2PIM I[16:0/methyl-18:0] 9 A ABI 4700 MALDI TUF/TUF/ [M-H]: Lipid A 100	
10 A ABI 4800 MALDI-TOF/TOF; [M-H]-; Sulfatide(d18:1/N24:1)	
Names / Structures / Spec List /10.1	63.6
linidblast-pos: custompo+boos msp: custompo+boos msp: pc-ac-ped msp: pc-form-ped msp: 234420 total spectral	
	I
10-	
	ð I
H Library Score Dot Product Prob. (%) Rev-Dot Name ABI 4000 Q-Trap; (M-H); PI 36:1 Head to Tail MF=143 RMF=577 ▼PI 36:1; (M-H); GPIns(18:0/	18:10 4000
1 Ipidplast-neg 143 577 5.18 639 P13617 (M-H); GPIns(18:0/18:1(11E)) 143 0776 0.18 143 0776 0.18 2 Inidblast-neg 143 577 5.18 639 P13617 (M-H); GPIns(18:0/18:1(11E)) 143 0776 0.18 143 0776 0.18	
3 lipidblast-neg 143 577 5.18 639 PI 36:1; [M-H]; GPIns(18:0/18:1(13Z)) 597.30413 <u>Name:</u> PI 36:1; [M-H]; GPIns(18:0/18:1(11E))	-
4 lipidblast-neg 143 577 5.18 639 PI 36:1; [M-H]-; GPIns(18:0/18:1(17Z))	545
5 lipidblast-neg 143 577 5.18 639 PI 36:1; (M-H)-; GPIns(18:0/18:1(4E)) 50- 417.24074 281.24790 999.00 283.26354 999.00 597	7.31
7 lipidplastneg 143 577 5.18 639 PI 36:1; [M-H]; defins[16.0/16:1[62]])	1.3
8 lipidblast-neg 143 577 5.18 639 PI 36:1; [M-H]-; GPIns(18:0/18:1(9E))	-
(lipidblast-neg) PI 36:1; (M-H]-; GPIns(18:0/18:1(11E))	
Hit List Plot of Hit / Plot of Hit /	
Lib. Search Other Search Names Compare Librarian MSMS	
Peptide Peptide	

4000 Q-Trap mass spectrometer; M+NH4

TAG(16:0/18:1/18:2); M+NH4; Prec. m/z: 874.8; Detection of the abundance of diacylglycerolnext term and triacylglycerol molecular species in cells using neutral loss mass spectrometry; doi:10.1016/j.ab.2007.03.012; Robert C. Murphy, Corresponding Author Contact Information, E-mail The Corresponding Author, Patrick F. James, Andrew M. McAnoy, Jessica Krank, Eva Duchoslav and Robert M. Barkley

Name: ABI-API 4000 QTrap; [M-H]-; GM2(d18:1/C18:0) <u>MW:</u> 1383 <u>ID#:</u> 276 <u>DB:</u> Text File <u>Comment:</u> GM2(d18:1/C18:0); [M-H]-; Prec. m/z: 1383.0; Imaging MALDI Mass Spectrometry Using an Oscillating Capillary Nebulizer Matrix Coating System and Its Application to Analysis of Lipids in Brain from a Mouse Model of Tay-Sachs/Sandhoff Disease; Anal. Chem., 2008, 80 (8), pp 2780-2788; http://pubs.acs.org/doi/full/10.1021/ac702350g 10 largest peaks:

Name: ABI-API 4000 QTrap; [M-H]-; GM2(d20:1/C18:0)

MW: 1411 ID#: 4241 DB: Text File

Comment: GM2(d20:1/C18:0); [M-H]-; Prec. m/z: 1411; Imaging MALDI Mass Spectrometry of Sphingolipids Using an Oscillating Capillary Nebulizer Matrix Application System Series: Methods in Molecular Biology | Volume: 656 | Year: 2010 | Page ; 10.1007/978-1-60761-746-4_7

<u>Name:</u> ABI 4700 MALDI-TOF/TOF; [M-H]-; Ac2PIM1(16:0/methyl-18:0) <u>MW:</u> 1013 <u>ID#:</u> 4240 <u>DB:</u> Text File <u>Comment:</u> Ac2PIM1(16:0/methyl-18:0); [M-H]-; Prec. m/z:1013.63; Synthesis and Structure of Phosphatidylinositol Dimannoside; http://pubs.acs.org/doi/full/10.1021/jo0625599; Supplement

塔 NIST MS Search 2.0 - [Peptide, Presearch Default - 22 spectra]	
Eile Search View Tools Options Window Help	
X 🖻 🖻 🚑 🔠 🌇 🚮 🚔 🗆 #/z ← 🎗	
🚳 🎥 🚔 🗐 1. ABI 4700 MALDI-TOF/TOF; [M-H]-; / 💌 🛞 🖳 🔍 🥘	
# Src. Name	100 391.2299 Name: ABI 4700 MALDI-TOF/TOF; [M-H]; Ac
4 A ABI 4000 Q-Trap; [M-H]-; PI 36:1 5 A ABI 4000 Q-Trap; [M+NH4]+; TG 52:3	255.2307 Comment: Ac2PIM1(16:0/methyl-18:0); [M-H]-;
6 A ABI-API 4000 QTrap; [M-H]; GM2(d18:1/C18:0)	1013.075 <u>101argest peaks:</u> 50 1 715.3599 ? 391.2299 999.00 255.2307 800.00 2
8 A ABI-API 4000 QTrap; [M-H]-; GDTa 8 A ABI-API 4000 QTrap; [M-H]-; GM2(d20:1/C18:0)	403.0551 550.00 78.9465 400.00 4
9 A ABI 4700 MALDI-TOF/TOF; [M-H]; Ac2PIM1(16:0/methyl-18:0)	
	210 420 630 840 237.2791 /30.001 331.2239 999.001 4 ▼
Names Structures Spec List	Plot/Text of Search Spectrum Plot of Search Spectrum P
lipidblast-neg; 134202 total spectra	201 2200
	100-255,2307
	152,9803
14	50- 715.3599 🦅
1000 900 800 700 600 500 400 300 200 100 0	
# Library Score Dot Product Prob. (%) Rev-Dot Name	
1 lipidblast-neg 483 603 26.1 807 Ac2PIM2 35:0; [M-H]-; A	50 255 2226 291 2251 4 9
2 lipidblast-neg 483 603 26.1 807 Ac2PIM2 35:0; [M-H]-; A	1013.6177
3 lipidblast-neg 480 599 23.1 802 Ac2PIM2 350; [M-H]-; A 4 lipidblast-neg 480 599 23.1 802 Ac2PIM2 350; [M-H]-; A	100-
5 lipidblast-neg 187 272 0.23 707 DGDG 41:2; [M-H]-; DGI	
6 lipidblast-neg 187 272 0.23 707 DGDG 41:2; [M-H]-; DGI	90 180 270 360 450 540 630 720 810 900 990
8 lipidblast-neg 187 272 0.23 707 DGDG 41:2; [M-H]-; DGL 8 lipidblast-neg 187 272 0.23 707 DGDG 41:2; [M-H]-; DGL	Difference Head to Tail Side by Side Subtraction 483 603R 26.1P
9 lipidblast-neg 187 272 0.23 707 DGDG 41:2; [M-H]-; DGI	Name: Ac2PIM2 35:0: [M-H]-: Ac2PIM1(methyl-18:0/16:1
10 lipidblast-neg 187 272 0.23 707 DGDG 41:2; [M-H]-; DG[100- /15.330/8 MW: 1013 ID#: 135 DB: lipidblast-neg
11 lipidblast-neg 160 236 0.06 707 DGDG 41:2; [M-H]-; DGL 12 lipidblast-neg 160 236 0.06 707 DGDG 41:2; [M-H]-; DGL	1012 C177 9largest peaks:
13 lipidblast-neg 58 90 0.00 236 SQDG 48:2; [M-H]-; SQC	
14 lipidblast-neg 58 90 0.00 236 SQDG 48:2; [M-H]-; SQD	9 m/z Values and Intensities:
15 iipiadiast-neg 58 90 0.00 236 SQDG 48:2; [M-H]-; SQL 16 ligidblast-neg 58 90 0.00 236 SQDG 48:2: [M-H]-: SQC	270 540 810
Names A Structures / Liet	(lipidblast-neg) Ac2PIM2 35:0; [M-H]-; Ac2PIM
Lib Search Other Search Names Compare Librarian MS	
Enclude avera Et	Derivite Derivite
For Help, press F1	ireptide ireptide i i i i i i i i i i i i i i i i i i

Name: ABI 4700 MALDI TOF/TOF; [M-H]-; Lipid A <u>MW</u>: 1796 <u>ID#</u>: 4239 <u>DB</u>: Text File <u>Comment</u>: Lipid A from E coli F583; [M-H]-; Prec. m/z: 1796.521; C94H178N2O25P2; LipidA-PP-[14('O-14)/14('O-12)/14/14]; Determination of pyrophosphorylated forms of lipid A in Gram-negative bacteria using a multivaried mass spectrometric approach; DOI: 10.1073/pnas.0800445105

Name: ABI 4800 MALDI-TOF/TOF; [M-H]-; Sulfatide(d18:1/N24:1)

<u>MW:</u> 888 <u>ID#:</u> 272 <u>DB:</u> Text File

Comment: Sulfatide(d18:1/N24:1); [M-H]-; Prec. m/z:888.67; Selective desorption/ionization of sulfatides by MALDI-MS facilitated using 9- aminoacridine as matrix;Hua Cheng, Gang Sun, Kui Yang, Richard W. Gross, and Xianlin Han;Journal of Lipid Research, Vol. 51, 1599-1609, June 2010

9 largest peaks:

API 2000 triple quadrupole; [M-H]-;

Cardiolipin CL 76:12 (MIX from rat heart); [M-H]-; Prec. m/z: 1495.97;

Journal of Lipid ResearchVolume 46, 2005;

Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry

<u>Name:</u> ABI-QSTAR-XL-Quadrupol-TOF; [M+Na]+ ; PC 34:0 <u>MW:</u> N/A <u>ID#:</u> 4236 <u>DB:</u> Text File <u>Comment:</u> PC 34:0; [M+Na]+ ; Prec. m/z: 784.55; Application of electrospray ionization mass spectrometry to characterize glycerophospholipids in Francisella tularensis subsp. novicida;X. Wang et al. / International Journal of Mass Spectrometry 293 (2010) 4550

🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - 327 spectra]	
Eile Search View Tools Options Window Help	<u></u>
× 🖻 🖻 🎒 🛄 📲 🖬 🗤 🗲 🎖	
🝈 🎾 🖆 🚔 1. ABI-QSTAR-XL-Quadrupol-TOF; [M+N 🛛 🛞 崖 😥 🔍	
# Src. Name	1146.98
12 A ABI API 2000 triple quadrupole; [M-H]-; CL 76:12	100- House Spectrometry 293 (2010) 4550
13 A ABI-QSTAR-XL-Quadrupol-TOF; [M+Na]+; PC 34:0	601.49
15 A ABI Sciex API III QQQ; [M-H]; PE MIX	50- ?? 725.48
16 A ABI Sciex API III QQQ; [M-H]-; PE 40:6	
17 A ABI Sciex API III QQQ; [M+H]+; PE MIX	
	(Text File) ARI-QSTAR-XI -Quadrupol-TOF: [M+Na]+ : P
Names Structures Spec List	Plot/Text of Search Spectrum Plot of Search Spectrum Plot/Text of Spec List
lipidblast-neg; custompc+hpos.msp; custompc+napos.msp; lipidblast-pos; pc-ac-neg.msp;	
pc-torm-neg.msp; 234420 total spectra	100-146.98
	601.49
	50- 725.48 204.55
	123,40 784,55
# Library Score Dot Product Prob. (%) Rev-Dot Name	455.25399
1 lipidblast-pos 231 580 4.96 943 PC 34:0; [M+Na]+; GPC)	50-
2 lipidblast-pos 221 567 3.50 922 PC 34:0; [M+Na]+; GPC	601.51717
3 lipidblast-pos 221 567 3.50 922 PC 34:0; [M+Na]+; GPC	100
4 lipidblast-pos 221 567 3.50 922 PC 34:0; [M+Na]+; GPC	725.50971
5 lipidblast-pos 221 567 3.50 922 PL 34(0) [M+Na]+) GPCF	180 240 300 360 420 480 540 600 660 720 780
0 iipidulast-pos 221 367 3.30 322 FC 34.0; [M+Na]+; GPCF 7 iipidulast-pos 221 567 3.50 922 PC 34.0; [M+Na]+; GPCF	ABI-QSTAR-XL-Quadrupol-TOF; I Head to Tail MF=231 RMF=580 TC 34:0; (M+Na)+; GPCho(17:0/
8 lipidblast-pos 221 567 3.50 922 PC 34:0; [M+Na]+; GPC	Uttrerence A Head to Tail A Side by Side A Subtraction / 231 580R 4.96P
9 lipidblast-pos 221 567 3.50 922 PC 34:0; [M+Na]+; GPC	725 50971 Name: PC 34:0; [M+Na]+; GPCho(17:0/17:0)
10 lipidblast-pos 221 567 3.50 922 PC 34:0; [M+Na]+; GPC}	100- <u>MW:</u> 784 <u>ID#:</u> 44465 <u>DB:</u> lipidblast-pos <u>Comment: Parent-784 58321 Mar. eu-ty-704 59321 - PC</u>
11 lipidblast-pos 221 567 3.50 922 PC 34:0; [M+Na]+; GPCł	601.51717 5 largest peaks:
12 lipidblast-pos 221 567 3.50 922 PC 34:0; [M+Na]+; GPC	50-
13 lipidblast-pos 221 567 3.50 922 PC 34:0; [M+Na]+; GPC}	455,25399 455,25399 40.00 [M+NaL59.on2
14 lipidbiast-pos 221 567 3,50 922 PC 34;0; [M+Na]+; GPC	0 180 360 540 720 514.32749 20.00 [M+Na]-sn1-H20 [M+Na]-sn2-H20 ↓
13 IIUIUUIas(0005 221 307 3.00 322 FC 34.0. IM+NaI+: 0FC →	(lipidblast-pos) PC 34:0: [M+Na]+: GPCho(17:0
Names Structures Hit List	Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSM	15
For Help, press F1	Peptide Peptide //

Name: ABI QSTAR-XL QTOF; [M-H]-; Sulfatide (d18:1/C22:0) <u>MW:</u> 862 <u>ID#:</u> 269 <u>DB:</u> Text File <u>Comment:</u> Sulfatide (d18:1/C22:0); [M-H]-; Prec. m/z: 862.5729; M. Cameron Sullards, Jeremy C. Allegood, and Alfred H. Merrill, Jr.; Identification and Structure Determination of Sulfatides using Chip-based NanoESI with Hybrid Q-TOF MS and MS/MS; <u>5 largest peaks:</u>

<u>Name:</u> ABI Sciex API III QQQ; [M-H]-; PE MIX <u>MW:</u> 750 <u>ID#:</u> 4234 <u>DB:</u> Text File <u>Comment:</u> PE MIX; alkeny/acyl PE(18:0/20:4) and PE(16:0/22:4); [M-H]-; Prec. m/z:750.3; JL Kerwin, AR Tuininga, and LH Ericsson; Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry; J. Lipid Res., Jun 1994; 35: 1102 - 1114.

🚝 NIST MS Search 2.0 - [Peptide, Presearch Default - 229 spectra]	
Eile Search View Tools Options Window Help	<u> </u>
Ă ๒ ₪ ⊕ Щ ₩ ₩ ₩ = = = *** ← ?	
💿 🍉 🚔 📫 1. ABI Sciex API III QQQ; [M-H]-; PE M 🛛 🛞 🏪 😥 🍭 🕸	
# Src. Name 12 A ABI API 2000 triple quadrupole; [M-H]; CL 76:12 13 A ABI-QSTAR-XL-Quadrupol-TOF; [M+Na]+; PC 34:0 14 A ABI QSTAR-XL QTOF; [M-H]; Sulfatide (d18:1/C22:0) 15 A ABI Sciex API III QQQ; [M-H]; PE MIX 16 A ABI Sciex API III QQQ; [M-H]; PE MIX 17 A ABI Sciex API III QQQ; [M-H]; PE MIX 18 A ABI Sciex API III QQQ; [M-H]+; PE MIX 19 A ABI Sciex API III QQQ; [M-H]+; PE MIX 18 A BI Sciex API III QQQ; [M-H]+; PE MIX 19 A ABI Sciex API III QQQ; [M-H]+; PE MIX 18 A ABI Sciex API III QQQ; [M-H]+; PE MIX 19 A ABI Sciex API III QQQ; [M-H]+; PE MIX 19 A ABI Sciex API III QQQ; [M-H]+; PE MIX 19 A ABI Sciex API III QQQ; [M-H]+; PE MIX 19 A ABI Sciex API III QQQ; [M-H]+; PE MIX	Name: ABI Sciex API III QQQ; [M-H]; PE MIX 100- 750.3 50- 331.5 70- 31/2 See See See See See See See See See Se
lipidblast-neg; custompc-hpos.msp; custompc-+napos.msp; lipidblast-pos; pc-ac-neg.msp; pc-form-neg.msp; 234420 total spectra 1 1 1 1000 900 800 700 600 500 400 300 200 100 0	100- 50- 3331.5 ?
.(%) Rev-Dot Name 1.5 877 plasmenyl-PE 38:4; [M-H]; PE(P-16:0/22:4(7Z,10Z,13Z,16Z)) 38 877 plasmenyl-PE 38:4; [M-H]; PE(P-18:0/20:4(5E,8E,11E,14E)) 38 877 plasmenyl-PE 38:4; [M-H]; PE(P-18:0/20:4(5E,8E,11E,14E)) 38 877 plasmenyl-PE 38:4; [M-H]; PE(P-18:0/20:4(5E,8E,211Z,14Z)) 38 877 plasmenyl-PE 38:4; [M-H]; PE(P-18:0/20:4(5E,12E,12E,13E,16E)) 39 632 PE 37:5; [M-H]; GPEtn(15:1(3Z)/22:4(7Z,10Z,13Z,16Z)/15:1(3Z)) 36 632 PE 37:5; [M-H]; GPEtn(22:4(7Z,10Z,13Z,16Z)/15:1(3Z)) 36 632 PE 37:5; [M-H]; GPEtn(22:4(7Z,10Z,13Z,16Z)/15:1(3Z)) 36 632 PE 37:5; [M-H]; GPEtn(22:4(7Z,10Z,13Z,16Z)/15:1(3Z)) 36 632 PE 37:5; [M-H]; GPEtn(12:1(3Z)/20:4(5E,8E,11E,14E)) 37 632 PE 37:5; [M-H]; GPEtn(12:1(3Z)/20:4(5E,7Z,11Z,1Z))	436.28295 ? 100- 331.26354 320 360 400 440 480 520 560 600 640 680 720 760 I_ABI Sciex API III QQQ: [M-H]: PI Head to Tail MF=161 RMF=630 (▼plasmenyl-PE 38:4: [M-H]: PE[P-I Difference Head to Tail Subtraction 161 630R 19.5P
26 632 PE 37:5; [M-H]; GPEth(17:1(§2)/20:4(52,82,112,142)) 26 632 PE 37:5; [M-H]; GPEth(17:1(§2)/20:4(7E,10E,13E,16E)) 26 632 PE 37:5; [M-H]; GPEth(20:4(5E,8E,11E,14E)/17:1(§2)) 26 632 PE 37:5; [M-H]; GPEth(20:4(5E,8E,11E,14E)/17:1(§2)) 26 632 PE 37:5; [M-H]; GPEth(20:4(5E,8E,11E,14E)/17:1(§2)) 26 632 PE 37:5; [M-H]; GPEth(20:4(5E,82,112,142)/17:1(§2)) 26 632 PE 37:5; [M-H]; GPEth(20:4(5E,82,112,142)/17:1(§2)) 35 452 CL 76:9; [M-2H](2-); CL(18:1/20:3/18:1/20:4) 35 452 CL 76:9; [M-2H](2-); CL(18:1/20:2/16:1/20:2/20:4) 35 452 CL 76:9; [M-2H](2-); CL(10:1/20:2/20:4) 35 452 CL 76:9; [M-2H](2-); CL(10:2/20:4) 4 Names Structures	Name: plasmenyl-PE 38:4; (M-H); PE(P-16:0/22:4(72,1C \ MW, 750 ID:ft; 100-1331.26354 MW; 750 ID:ft; 123275 DB; (piddbast-neg) 50-1436.28295 331.26354 MW; 750 ID:ft; 123275 DB; (piddbast-neg) 331.26354 999.001 436.28295 250.001 418.27239 331.26354 999.001 436.28295 250.001 418.27239 31.26354 999.001 436.28295 250.001 418.27239 31.26354 999.001 436.28295 250.001 418.27239 31.26354 999.001 436.28295 250.001 418.27239 31.26354 999.001 418.27239 31.26354 999.001 418.27239 31.26354 999.001 418.27239 31.26354 31.26354 399.001 418.27239 31.26354
Lib. Search Other Search Names Compare Librarian MS	MS
	Peptide Peptide ///

not found

Name: ABI Sciex API III QQQ; [M-H]-; PE 40:6 <u>MW:</u> 790 <u>ID#:</u> 4233 <u>DB:</u> Text File <u>Comment:</u> PE 40:6; PE(18:0/22:6); [M-H]-; Prec. m/z:790.4; JL Kerwin, AR Tuininga, and LH Ericsson; Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry; J. Lipid Res., Jun 1994; 35: 1102 - 1114.

NIST MS Search 2.0 - [Peptide, Presearch Default - 256 spectra]	
Eile Search View Tools Options Window Help	
# Src. Name	100 283.4 Name: ABI Sciex API III QQQ; [M-H]-; PE 40:6
12 A ABI API 2000 triple quadrupole; [M-H]-; CL 76:12	Comment: PE 40:6; PE(18:0/22:6); [M-H]-; Prec
14 A ABI QSTAR XL QTOF; (M-H); Sulfatide (d18:1/C22:0)	50 327.5 790.4 31argest peaks:
15 A ABI Sciex API III QQQ; [M-H]; PE MIX	30- 203.4 333.00 327.3 330.00 1 730.4 300.0
16 A ABI Sciex API III UUU; [M-H]; PE 40:6	
	330 440 550 660 770 <u>no sunnyums</u>
Names & Structures / Specifiet	(Text File) ABI Sciex API III QQQ; (M-H); PE 40:6
linidhlast nog: outcome upper see: outcome upper see: linidhlast nog: po po nog reep:	Plot/Text of Search Spectrum Plot of search spectrum Plot/Text of spec List
pc-form-neg.msp; 234420 total spectra	100 283.4
	100-
	327.5 🥱 790.4
	50-F
1000 900 800 700 600 500 400 300 200 100 0	
# Library Score Dot Product Prob. (%) Rev-Dot Name	
1 lipidblast-neg 257 881 40.2 885 PE 40:6; [M-H]-; GPEtn[50 480.30917 50 7
2 lipidblast-neg 257 881 40.2 885 PE 40:6; [M-H]-; GPE tn(;	*
3 lipidblast-neg 50 534 0.40 536 CL 82:11; [M-2H](2-); CL	100
4 lipidblast-neg 50 534 0.40 536 CL 82:11; [M-2H](2-); CL	
5 lipidblast-neg 50 534 0.40 536 0L 82(11) [M-2H][2-); 0L 6 lipidblast-neg 50 534 0.40 536 0L 92(11, [M-2H][2-); 0L	300 350 400 450 500 550 600 650 700 750 800
7 lipidblast-neg 50 534 0.40 536 CL 82.11, [M-2H][21], CL	ABI Sciex API III QQQ; [M-H]; PI Head to Tail MF=257 RMF=881 ▼PE 40:6; [M-H]; GPEth(18:0/22:1
8 lipidblast-neg 50 534 0.40 536 CL 82:11; [M-2H](2-); CL	Difference A Head to Tail A Side by Side A Subtraction / 257 881R 40.2P
9 lipidblast-neg 50 534 0.40 536 CL 82:11; [M-2H](2-); CL	Name: PE 40:6; [M-H]-; GPEtn(18:0/22:6(4Z,7Z,10Z,132
10 lipidblast-neg 50 534 0.40 536 CL 82:11; [M-2H](2-); CL	100- <u>MW:</u> 790 <u>D#:</u> 108478 <u>DB:</u> lipidblast-neg
11 lipidblast-neg 50 534 0.40 536 CL 82:11; [M-2H](2-); CL	6 largest peaks:
12 lipidblast-neg 50 534 0.40 536 CL 82:11; [M-2H](2-); CL	
13 lipidblast-neg 50 534 0.40 536 CL 82:11; [M-2H](2-); CL 14 lipidblast-neg 50 534 0.40 536 CL 82:11; [M-2H](2-); CL	400.30317 505.25733 50.001 6 m/z Values and Intensities:
14 iipidbiast-neg 50 554 0.40 556 CL 82:11; [M-2H][2-]; CL 15 linidbiast-neg 25 361 0.12 452 CL 82:11 (M-2H)[2.)· CL ▼	300 450 600 750 283.26354 999.00 sn1 FA
	(lipidblast-neg) PE 40:6; [M-H]-; GPEtn(18:0/2
Names Structures Hit List	Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSM	S
	Peptide Peptide ///

Name: ABI Sciex API III QQQ; [M+H]+; PE MIX <u>MW</u>: 752 <u>ID#</u>: 4232 <u>DB</u>: Text File <u>Comment</u>: PE MIX; alkeny/acyl PE(18:0/20:4) and PE(16:0/22:4) alkenyl-acyl PE; [M+H]+; Prec. m/z:752.4; JL Kerwin, AR Tuininga, and LH Ericsson; Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry; J. Lipid Res., Jun 1994; 35: 1102 - 1114.

not found

<u>Name:</u> ABI Sciex API III QQQ; [M+H]+; PE 40:6 <u>MW:</u> 792 <u>ID#:</u> 4231 <u>DB:</u> Text File <u>Comment:</u> PE 40:6; PE(18:0/22:6); [M+H]+; Prec. m/z:792.2; JL Kerwin, AR Tuininga, and LH Ericsson; Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry; J. Lipid Res., Jun 1994; 35: 1102 - 1114.

Name: ABI-QSTAR-Pulsar-Quadrupol-TOF MALDI; [M-H]-; PI 38:4 <u>MW:</u> 885 <u>ID#:</u> 4230 <u>DB</u>: Text File <u>Comment:</u> PI 38:4; PI(18:0/20:4);Elevation of sulfatides in ovarian cancer: An integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry;;doi:10.1186/1476-4598-9-186

Name: ABI-QSTAR-Pulsar-Quadrupol-TOF PSer; [M-H]-; PS 40:6 <u>MW</u>: 834 <u>ID#</u>: 263 <u>DB</u>: Text File <u>Comment</u>: 834.75; PSer(18:0/22:6);MALDI-MS DIRECT TISSUE ANALYSIS OF PROTEINS:IMPROVING SIGNAL SENSITIVITY USING ORGANIC TREATMENTS;R. Lemaire, M. Wisztorski, A. Desmons, J.C. Tabet, R. Day, M.Salzet, I. Fournier;DOI : 10.1021/ac060565z <u>8 largest peaks</u>:

Name: ABI-QSTAR-Pulsar-Quadrupol-TOF; [M-H]-; SQDG 34:2 MW: 817 ID#: 262 DB: Text File

Comment: SQDG(18:2/16:0); [M-H]-; Prec. m/z: 817.51; SQDG(18:2/16:0); Characterization by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry of the lipid fraction of Spirulina platensis pressurized ethanol extract; Rapid Commun. Mass Spectrom. 2007; 21: 1729-1738;Miguel Herrero, Maria J. Vicente, Alejandro Cifuentes and Elena Ibanez

8 largest peaks:

Name: ABI-QSTAR-Pulsar-Quadrupol-TOF MALDI; [M-H]-; ST 34:1 <u>MW:</u> 778 <u>ID#:</u> 4227 <u>DB:</u> Text File <u>Comment:</u> ST 34:1; ST(d18:1/16:0);Elevation of sulfatides in ovarian cancer: An integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry;;doi:10.1186/1476-4598-9-186

Name: Agilent 6410 triple quadrupole MS; [M-H]-; PI3P 37:1 <u>MW:</u> 957 <u>ID#:</u> 12671 <u>DB:</u> Text File <u>Comment:</u> PI3P 37:1; [M-H]-; m/z 957.6; STRESS-INDUCED SYNTHESIS OF PHOSPHATIDYLINOSITOL 3-PHOSPHATE IN MYCOBACTERIA; http://www.jbc.org/cgi/doi/10.1074/jbc.M110.119263 9 largest peaks:

PI3P species (Phosphatidylinositol 3-Phosphates) not in LipidBlast – very low hit score (24) therefore false ID

🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - 22 spectra]	
Eile Search View Tools Options Window Help	<u>_ 8 ×</u>
🔟 🏷 🗁 📮 1. Agilent 6410 triple quadrupole MS; [M 📉 🕅 🛓 🗮 😥 🗮 🥨	
# Src. Name	659.0 Name: Agilent 6410 triple quadrupole MS; [M-H
1 A Agilent 6410 triple quadrupole MS; [M-H]-; PI3P 37:1	100- 253.3 <u>MW:</u> 957 <u>ID#:</u> 1257 <u>IDB:</u> Text File Comment: PI3P 37:1: [M-H]-: m/z 957 6: STBE
2 A Agilent 5410 triple quadrupole MS; [M-H]-; PI 34:1	9 largest peaks:
4 A Agilent 6530 QcT OF; [M+HCDO]; PC 36:2	
5 A Agilent 6530 QqTOF; [M+H]+; PC 36:2	100.1 200.0 200.0 200.0 417.2 200.0
6 A Agilent 6530 QqTOF; [M+H]+; PC/PE mix	
7 A Aailant 6530 DaTOF: IM+HI+: PE+PC MIX	340 510 680 850 <u>417 2 250 001 595 0 400 001 659 0 999 0</u>
Names Structures Spec List	Plot/Text of Search Spectrum A Plot of Search Spectrum A Plot/Text of Spec List
lipidblast-neg; 134202 total spectra	
100-1	100 659.0
	253.3
	321.1 595.0 🤊
1-	504 595.0 °
1000 900 800 700 600 500 400 300 200 100 0	957.6
1 lipidblast-neg 24 61 5.17 236 SQD6 44:2; [M-H]-; SQL 2 Faidblast-neg 24 61 5.17 236 SQD6 44:2; [M-H]-; SQL	50-
2 lipidblast-neg 24 61 5.17 236 5QDG 44:2; [M-H]-; 5QL 2 lipidblast-neg 24 61 5.17 236 5QDG 44:2; [M-H]-; 5QL	
3 lipidblastmeg 24 61 5.17 236 5QDG 44:2; [M-H]-; 5QL 4 lipidblastmeg 24 61 5.17 236 SODG 44:2; [M-H]-; 5QL	100
5 lipidblast-neg 24 61 517 236 SQDG 44:2; [M-H]-; SQD	
6 lipidblast-neg 24 61 517 236 SQDG 44:2: [M-H]; SQC	
7 lipidblast-neg 24 61 5.17 236 SQDG 44:2; [M-H]-: SQE	Agilent 6410 triple quadrupole MSI Head to Tail MF=24 RMF=61 I▼SQDG 44:2; [M-H]-; SQDG[18:1[]
8 lipidblast-neg 24 61 5.17 236 SQDG 44:2; [M-H]-; SQD	Dimenence A Head to fail A side by side A subtraction 24 61k 6.17P
9 lipidblast-neg 24 61 5.17 236 SQDG 44:2; [M-H]-; SQD	Name: SQDG 44:2; [M-H]-; SQDG(18:1(11E)/26:1(5Z))
10 lipidblast-neg 24 61 5.17 236 SQDG 44:2; [M-H]-; SQE	100-223.00030 <u>MW:</u> 957 <u>ID#:</u> 130332 <u>DB:</u> lipidblast-neg
11 lipidblast-neg 24 61 5.17 236 SQDG 44:2; [M-H]-; SQE	5 largest peaks:
12 lipidblast-neg 24 61 5.17 236 SQDG 44:2; [M-H]-; SQC	
13 lipidblast-neg 24 61 5.17 236 SQDG 44:2; [M-H]-; SQC	393.37302 5 m/z Values and Intensities:
14 lipidblast-neg 24 61 5.17 236 SQDG 44:2; [M-H]-; SQD	QL 220,00000 00000 00000 000000 000000 000000
15 lipidblast-neo 24 61 5. 7 236 SODG 44:2: IM-H1: SOL	(ipidblact.neg) SODG 44/2 (M.H1: SODG(19)
Names Structures Hit List	Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSM	IS
	Peptide Peptide

Name: Agilent 6410 triple quadrupole MS; [M-H]-; PI 34:1 <u>MW:</u> 835 <u>ID#:</u> 12670 <u>DB:</u> Text File <u>Comment:</u> PI (16:0/18:1); [M-H]-; m/z 835.6; STRESS-INDUCED SYNTHESIS OF PHOSPHATIDYLINOSITOL 3-PHOSPHATE IN MYCOBACTERIA; http://www.jbc.org/cgi/doi/10.1074/jbc.M110.119263 <u>8 largest peaks:</u>

Name: Agilent 6520 Q-TOF; [M-H]-; PI 35:0 <u>MW:</u> 851 <u>ID#:</u> 25 <u>DB:</u> Spec. List <u>Comment:</u> PI (16:0/19:0); [M-H]-; 851.5650; Comprehensive LC-MS Profiling of Mycobacterium tuberculosis Complex Lipids; Mark J. Sartain; COSMOS 2009 <u>6 largest peaks:</u>

Name: Agilent 6530 QqTOF; [M+HCOO]-; PC 36:2 <u>MW</u>: 830 <u>ID#</u>: 12668 <u>DB</u>: Text File <u>Comment</u>: PC 36:2 ; [M+HCOO]-; 830.5966; Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry; Journal of Chromatography A, 1217 (2010) 4087-4099 <u>4 largest peaks</u>:

<u>Name:</u> Agilent 6530 QqTOF; [M+H]+; PC 36:2 <u>MW:</u> 786 <u>ID#:</u> 27 <u>DB:</u> Spec. List <u>Comment:</u> PC 36:2 ; [M+H]+; 786.5987; Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry; Journal of Chromatography A, 1217 (2010) 4087-4099 <u>2 largest peaks:</u>

RIST MS Search 2.0 - [Peptide, Presearch Default - 179 spectra]	
Eile Search View Iools Options Window Help	<u>- 8 ×</u>
🚳 🍉 🗃 📮 1. Agilent 6530 QqTOF; [M+H]+; PC 36:: 💌 🛞 🖳 🔍 🍭 🚳	
# Src. Name	Name: Agilent 6530 QqTOF; [M+H]+; PC 36:2
20 L ABI-QSTAR-Pulsar-Quadrupol-TOF PSer; [M-H]-; PS 40:6	100- 786,5987 <u>MW:</u> 786 <u>ID#:</u> 27 <u>DB:</u> Spec. List <u>Comment:</u> PC 36:2 ; [M+H]+; 786,5987; Comprehensive blood plasma lipidon
21 L ABI-QSTAR-Pulsar-Quadrupol-TOF; [M-H]; SQDG 34:2 22 L ABI-QSTAR-Pulsar-Quadrupol-TOF MALDI; [M-H]; ST 34:1;	2 largest peaks: 104.0729.099.001.795.5997.900.001
23 L Agilent 6410 triple quadrupole MS; [M-H]; PI3P 37:1	360 720 2 m/z Values and Intensities:
24 L Agilent 6410 triple quadrupole MS; [M-H]; PI 34:1 25 L Agilent 6520 Q-TDE: [M-H]-: PI 35:0	(Spec. List) Agilent 6530 Qq1
26 L Agilent 6530 QqTOF; [M+HCOO]-; PC 36:2	Plot/Text of Search Spectrum Plot of Search Spectrum Plot/Text of Spec List
27 L Agilent 6530 QqTOF; (M+H)+; PC 36;2 28 L Agilent 6530 QqTOF; (M+H)+; PC/PE mix	100
29 L Agilent 6530 QqT0F; [M+H]+; PE+PC MIX	786,5987
30 L Agilent 6530 QqTOF; [M+NH4]+; TG 54:3	
	. 50-
Names Structures Spec List	
acylooa+mol+hpos; acylooa+mol-hneg; mainlib; acyloarnitine+custom+mol+hpos; acyloarnitine+mol+hpos; acyloarnitine+mol+napos; custompo+hpos msp; custompo+napos msp; hilio-urine; linidblast-neg; po-ac-neg msp; po-form-neg msp;	
respectdbinmdlformat; 365886 total spectra	504.34554 603.53522 727.52776
1000-1	50-
10-	
1-	100
# Library Score Dot Product Prob (%) Rev-Dot Name	200 250 300 350 400 450 500 500 600 650 700 750 800
1 custompc+h 7 737 0.61 737 PC 36:2; [M+H]+; GPCho(18:1(11E)/18:1(11E))	Difference Head to Tail Side by Side A Subtraction 7 737R 0.61P
2 custompc+h 7 737 0.61 737 PC 36:2; [M+H]+; GPCho(18:1(11E)/18:1(11Z))	Name: PC 36/2: [M+H]+: GPCbo(18:1(11E)/18:1(1
3 custompc+h 7 737 0.61 737 PC 36:2; [M+H]+; GPCho(18:1(11E)/18:1(13Z))	100- <u>MW:</u> 786 <u>ID#</u> , 2569 <u>DB</u> : custompc+hpos.msp
4 custompc+h 7 737 0.61 737 PC 36:2; [M+H]+; GPCho[18:1(11E]/18:1(17Z)]	Comment: Parent=786.60126 Mz_exact=786.6012 7 Jaroest peaks:
6 custompc+n 7 737 0.61 737 PC 36.2; [M+H]+; GPCho(18:1(1E)/18:1(4E)]	50-
7 custompc+h 7 737 0.61 737 PC 36:2; [M+H]+; GPCho(18:1(11E)/18:1(7Z))	004.34554 727.52776 786.60126 200.00 768.59070 10.00
8 custompc+h 7 737 0.61 737 PC 36:2; [M+H]+; GPCho(18:1(11E)/18:1(9E))	280 420 560 700 184.07387 999.00 fragment C5H15N04P
	(custompc+hpos.msp) PC 36:2; [M+H]+; GPCho(18:1(1
Names A outocures Hit List	Plot/Text of Hit Plot of Hit
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide

Name: Agilent 6530 QqTOF; [M+H]+; PC/PE mix <u>MW:</u> 744 <u>ID#:</u> 28 <u>DB</u>: Spec. List <u>Comment:</u> PC 36:2 + PE 36:2 mix ; [M+H]+; 744.5864; Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry; Journal of Chromatography A, 1217 (2010) 4087-4099 <u>3 largest peaks</u>:

MIX of different compounds (here annotated as PC36:2

NIST MS Search 2.0 - [Peptide, Presearch Default - 66 spectra]	
Eile Search View Tools Options Window Help	_ B ×
🔞 🖕 🗃 📮 1. Agilent 6530 QqTOF; [M+H]+; PC/PE 🗾 🛞 🖳 😥 🍭 🔍	
	Name: Apilent 6530 QpTOF: [M+H]+: PC/PE mix
20 L ABI-QSTAR-Pulsar-Quadrupol-TOF PSer; [M-H]-; PS 40:6	100- 744 E02 0 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 26 26 26 26 26 26 26 26 26 26 26 26
21 L ABI-QSTAR-Pulsar-Quadrupol-TOF; [M-H]; SQDG 34:2	3 largest peaks:
22 L ABI-USTAH-Pulsan-Quadrupol-FOF MALDI; [M-H]; ST 34:1; 23 L Agilent 6410 triple guadrupole MS; [M-H]; PI3P 37:1	0 1 1 184.0723 999.00 744.5864 500.00 603.5311 200.00 330 660 2 m (2) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
24 L Agilent 6410 triple quadrupole MS; [M-H]-; PI 34:1	(Spec. List) Agilent 6530 Dg1
25 L Agilent 6520 Q-TOF; [M-H]; PI 35:0	Plot/Text of Search Spectrum Plot of Search Spectrum Plot/Text of Spec List
27 L Agilent 6530 QqT0F; [M+H]+; PC 36:2	
28 L Agilent 6530 QqTDF; [M+H]+; PC/PE mix	100-
29 L Agilent 6530 QqT UF; (M+H)+; PE+PC MIX 30 L Agilent 6530 QqT OF; (M+NH4)+; TG 54:3	
	50 744.5864
Names Structures Spec List	603 5311
aculona+mol+bnos: aculona+mol-bneg: mainlib: aculorarritine+custom+mol+bnos: aculorarritine+mol+bnos:	
acylcamitine+mple; bybos unto ming, maining; byboan and book action in the report option main poor, acylcamitine+mple; pc-ac-neg.msp; pc-form-neg.msp;	
respectdbinmdlformat; 365886 total spectra	352.18913 561.48829 632.46557 744.55433
	50-
1-	100-
# Library Score Dot Product Prob. (%) Rev-Dot Name	[Agilent 6530 QqT0F; [M+H]+; PC.[Head to Tail MF=19 RMF=621 [▼PC 33;2; [M+H]+; GPCho(7:0/26;2
1 custompc+h 19 621 1.72 676 PC 33:2; [M+H]+; GPCho(7:0/26:2(5E,9Z))	Difference Head to Tail Side by Side Subtraction / 19 621R 1.72P
2 custompc+h 19 621 1.72 676 PC 33:2; [M+H]+; GPCho(7:0/26:2(5Z,9E))	Name: PC 33:2; [M+H]+; GPCho(7:0/26:2(5E,9Z))
3 custompc+h 19 621 1.72 676 PU 33:2; [M+H]+; GPCho[7:0/26:2(52,52]]	100- <u>MW:</u> 744 <u>ID#:</u> 1648 <u>DB:</u> custompc+hpos.msp
4 custompc+h 19 621 1.72 676 PC 33.2; [vi+h]+; GPCho[1::0/22.2[132,162]]	Comment: Parent=744.00403 Mz_exact=744.0042 Jargest peaks:
6 custompc+h 19 621 1.72 676 PC 33:2; [M+H]+; GPCho(13:0/20:2[5Z.8Z])	50- 252 19912 551 49929 744 5542 999.00 352,18913 200.00 370.11
7 custompc+h 19 621 1.72 676 PC 33:2; [M+H]+; GPCho(15:0/18:2(2E,4E))	302.10313 301.40023 744.3343 632.46557 200.00 685.48083 200.00 744.5
8 custompc+h 19 621 1.72 676 PC 33:2; [M+H]+; GPCho(15:0/18:2(6Z,9Z))	240 360 480 600 720 184.07387 999.00 fragment C5H15N04P
	(custompc+hpos.msp) PC 33:2; [M+H]+; GPCho(7:0/2€ ▲
IV Names A STRUCTURES Hit List	Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide //

Name: Agilent 6530 QqTOF; [M+H]+; PE+PC MIX <u>MW:</u> 744 <u>ID#:</u> 29 <u>DB</u>: Spec. List <u>Comment:</u> PE 36:2 + PC18:1/P-16:0; [M+H]+; 744.5538; Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry; Journal of Chromatography A, 1217 (2010) 4087-4099 <u>3 largest peaks:</u>

<u>Name:</u> Agilent 6530 QqTOF; [M+NH4]+; TG 54:3 <u>MW:</u> 902 <u>ID#:</u> 30 <u>DB:</u> Spec. List <u>Comment:</u> TG 54:3 (TG(18:1/18:1); [M+H]+; 902.8133; Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry; Journal of Chromatography A, 1217 (2010) 4087-4099 <u>1 largest peaks:</u>

TAG M+H adduct not in library

🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - empty]	
Eile Search View Tools Options Window Help	<u>_ 8 ×</u>
× 🖻 🖻 🗇 🗮 🎬 🜉 📲 🖽 🕫 🔶 👘	
© ▶ ≥ 🚔 1. Agilent 6530 QqTOF; [M+NH4]+; TG ! 🗹 🔞 🖳 🔍	
# Src. Name 20 L ABI-QSTAR-Pulsar-Quadrupol-TOF PSer; [M-H]; PS 40:6 21 L ABI-QSTAR-Pulsar-Quadrupol-TOF; [M-H]; SQDG 34:2 22 L ABI-QSTAR-Pulsar-Quadrupol-TOF MALD); [M-H]; ST 34:1; 23 L Agilent 6410 triple quadrupole MS; [M-H]; PI3P 37:1 24 L Agilent 6410 triple quadrupole MS; [M-H]; PI 35:0 26 L Agilent 6530 QqTOF; [M+H]+; PI 35:0 26 L Agilent 6530 QqTOF; [M+H]+; PC 36:2 28 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 29 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 30 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 30 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 30 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 30 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 30 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 30 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 30 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 30 L Agilent 6530 QqTOF; [M+H]+; PC 7PE mix 310 L Agilent 653	100- Name: Agilent 6530 QqT0F; [M+NH4]+; TG 54:3 100- MW: 902 [DH: 30 DB: Spec. List Comment: TG 54:3 (TG(18:1/18:1/18:1); [M+H]+; 902.8133; Comprehensive 1 largest peaks: 603.5315 603.5315 900 1 m/z Values and Intensities: Plot/Text of Search Spectrum Plot/Text of Search Spectrum
acylcarnitme+mol+napos; custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; respectdbinmdlformat; 365886 total spectra	Difference A Head to Tail A Side by Side A Subtraction
Names Structures Hit List Lib. Search Other Search Names Compare Librarian MSMS	Plot/Text of Hit / Plot of Hit /
	Peptide Peptide //

<u>Name:</u> Agilent LC/MSD 1100 Ion Trap ; [M-H]-; PE 34:1 <u>MW:</u> 716 <u>ID#:</u> 31 <u>DB:</u> Spec. List <u>Comment:</u> PE 34:1; [M-H]-;716.5 ;Use of electrospray ionization mass spectrometry for profiling of crude oil effects on the phospholipid molecular species of two marine bacteria; DOI: 10.1002/rcm.2231 <u>5 largest peaks:</u>

🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - 145 spectra]	
Eile Search View Tools Options Window Help	_ B ×
🔞 🍉 🚔 📮 1. Agilent LC/MSD 1100 Ion Trap ; [M-H 🗸 🛞 🐘 🔎 📵 🚳	
	Name Asland CAVED 1100 Jan Tree (M H1) DE 24-1
	100- 281.2 MW: 716 ID#: 31 DB: Spec. List
28 L Agilent 6530 QqTOF; [M+H]+; PC/PE mix	Comment: PE 34:1; [M-H]-;716.5 ;Use of electrospray ionization mass spectro
29 L Agilent 6530 QqTOF; (M+H)+; PE+PC MIX	
31 L Agilent LC/MSD 1100 Ion Trap ; (M-H); PE 34:1	Shee List Anilent LC/MSD
32 L Agilent Ion Trap SL; [M+Na]+; PC 34:1	Plot/Text of Search Spectrum Plot of Search Spectrum Plot/Text of Spec List
34 L Agilent Ion Trap XCT ESI; [M-H]-; PI 38:4	201.2
35 L Agilent Ion Trap XCT ESI; [M+H]+; PE 34:2	100-
37 L Agilent Ion Trap XCT ESI; [M-H]; PI 38:4	
100 I A THURD 1100 MAR THAT IS NO. 101.101.00 22.0	50- 255.2
Names Spec List	7105
acylcoa+mol+hpos; acylcoa+mol-hneg; mainlib; acylcarnitine+custom+mol+hpos; acylcarnitine+mol+hpos;	
acylcarnitine+mol+napos; custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; respect/dbimmdformat; 365896; total spectra	
1004	452.27790
	50-
	100- 255.23226
	150 200 250 300 350 400 450 500 550 600 650 700
# Library Score Dot Product Prob. (%) Rev-Dot Name	Agilent LC/MSD 1100 Ion Trap : [/ Head to Tail MF=236 RMF=851 / PE 34:1; [M-H]-; GPEtn(16:0/18:1]
1 lipidblast-neg 236 851 5.38 881 PE 34:1; [M-H]-; GPEtn(16:0/18:1(11E))	Unterence A Head to Tail A side by side A subtraction 236 851R 5.38P
2 lipidplast-neg 236 651 5.38 661 PE 34.1; [M-H]-; GPEtn(16:0/18:1(12)) 3 lipidplast-neg 236 851 5.38 881 PE 34:1: [M-H]-; GPEtn(16:0/18:1(137))	Name: PE 34:1; [M-H]-; GPEtn(16:0/18:1(11E))
4 lipidblast-neg 236 851 5.38 881 PE 34:1; [M-H]-; GPEtn(16:0/18:1(17Z))	Tuu- <u>Comment:</u> Parent=716.52306 Mz_exact=716.5230
5 lipidblast-neg 236 851 5.38 881 PE 34:1; [M-H]-; GPEtn(16:0/18:1(4E))	50-
6 lipidblast-neg 236 851 5.38 881 PE 34:1; [M-H]-; GPEtn(16:0/18:1(62))	452.27790 460.28298 50.00
7 lipidplast-neg 236 851 5.38 881 PE 34:1; [M-H]; GPEth(16:0/18:1(72)) 8 linidplast-neg 236 851 5.38 881 PE 34:1: [M-H]; GPEth(16:0/18:1(9E)) =1	6 m/z Values and Intensities:
	(inidblast-neg) PE 3411 [M-H]- GPE In(16:0/18:1(11E))
Names Structures / Hit List	Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide //

<u>Name:</u> Agilent Ion Trap SL; [M+Na]+; PC 34:1 <u>MW:</u> 782 <u>ID#:</u> 32 <u>DB:</u> Spec. List <u>Comment:</u> PC (18:1/16:0); [M+Na]+; LC/MS Analysis of Bronchoalveolar Lavage Fluid Phospholipids as Biomarkers for Chronic Lung Inflammation; 5989-1491EN; Barroso, Bischoff <u>6 largest peaks:</u>

Name: Agilent Ion Trap XCT; [M+H]+; NA <u>MW:</u> 808 <u>ID#:</u> 33 <u>DB</u>: Spec. List <u>Comment:</u> PC (18:1/20:4) putative; [M+H]+; Alterations in phospholipid and fatty acid lipid profiles in primary neocortical cells during oxidant-induced cell injury; http://dx.doi.org/10.1016/j.cbi.2008.05.028 <u>3 largest peaks</u>:

<u>Name:</u> Agilent Ion Trap XCT ESI; [M-H]-; PI 38:4 <u>MW:</u> 885 <u>ID#:</u> 34 <u>DB:</u> Spec. List <u>Comment:</u> PI 38:4; Prec: 750.6; Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry ;http://dx.doi.org/10.1016/j.bbalip.2006.03.022 <u>5 largest peaks:</u>

NIST MS Search 2.0 - [Peptide, Presearch Default - 10 spectra]	
File Search View Tools Options Window Help	_ l=l
# Src. Name	100 303.3 Name: Agilent Ion Trap XCT ESI; [M-H]; PI 38:4
27 L Agilent 6530 QqT0F; [M+H]+; PC 36:2 28 L Agilent 6530 QgT0F; [M+H]+; PC/PE mix	Comment: PI 38:4; Prec: 750.6; Analysis of phospholipid species in rat peritc
29 L Agilent 6530 QqTOF; [M+H]+; PE+PC MIX	
30 L Agilent 6530 QqT0F; [M+NH4]+; TG 54:3 31 L Agilent LC/MSD 1100 lon Tran : [M-H]+; PE 34:1	380 760 5 m/z Values and Intensities:
32 L Agilent Ion Trap SL; [M+Na]+; PC 34:1	Spec. List) Aglient Ion Trap?
33 L Agilent Ion Trap XCT; [M+H]+; NA 24 L Agilent Ion Trap XCT ESI: [M H] - PI 29:4	
35 L Agilent Ion Trap XCT ESI; [M+H]+; PE 34:2	100- 303.3
36 L Agilent Ion Trap XCT ESI; [M-H]-; PI 38:4	
20 L Agrent tion Trap Act Est (M-H): P1 36.4	50
Names / Structures / Spec List	259.3 331 3 484.3
aculcoa+mol+boos: aculcoa+mol-boos: mainlib: aculcarritine+custom+mol+boos: aculcarritine+mol+boos:	436.3
acylcarnitine+mol+napos; custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp;	
respectdbinmdiformat; 365886 total spectra 10-	
	50- 419.25640
	100-283.26354 599.31979
	300 360 420 480 540 600 660 720 780 840 900
# Library Score Dot Product Prob. (%) Rev-Dot Name	Agilent Ion Trap XCT ESI; [M-H];: Head to Tail MF=37 RMF=331 🔽 PI 38:4; [M-H]-: GPIns(18:0/20:4(
1 lipidblast-neg 37 331 12.2 438 PI 38:4; [M-H]-; GPIns(18:0/20:4(5E,8E,11E,14E	Difference A Head to Tail Side by Side A Subtraction / 37 331R 12.2P
2 lipidblast-neg 37 331 12.2 438 PI 38:4; [M-H]-; GPIns(18:0/20:4(5Z,8Z,11Z,14Z)	1283 26354 599 31979 Name: PI 38:4; [M-H]; GPIns(18:0/20:4(5E,8E,111
4 linidblast-neg 37 331 12.2 436 PI 36.4, [M-H]-; GPIns(16.0/20.4(7E, 10E, 13E, 16	100-203.2034 333.1313 MW: 885 ID#: 119419 DB: lipidblast-neg
5 lipidblast-neg 37 331 12.2 438 Pl 38:4; [M-H]; GPIns(20:4(5Z,8Z,11Z,14Z)/18:(8 largest peaks:
6 lipidblast-neg 37 331 12.2 438 PI 38:4; [M-H]-; GPIns(20:4(7E,10E,13E,16E)/18	
7 lipidblast-neg 24 239 7.89 707 MGDG 44:6; [M-H]-; MGDG(22:2[132,162]/22:4]	0 8 m/z Values and Intensities:
0 inprovidescriteg 24 233 7.03 707 MidDid 44.0, [m+n]+, MidDid (22.4(72,102,132,16 €	280 420 560 700 840 283.20394 533.00 sni FA ▼
Names Structures Hit List	Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide

Name: Agilent Ion Trap XCT ESI; [M+H]+; PE 34:2 <u>MW:</u> 714 <u>ID#:</u> 35 <u>DB:</u> Spec. List <u>Comment:</u> PE 34:2; PE(16:0/18:2); Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry ;http://dx.doi.org/10.1016/j.bbalip.2006.03.022 4 largest peaks:

Name: Agilent Ion Trap XCT ESI; [M-H]-; PI 38:4 <u>MW:</u> 885 <u>ID#:</u> 36 <u>DB:</u> Spec. List <u>Comment:</u> PI 38:4; PI(18:0/20:4); Prec: 885.6; Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry ;http://dx.doi.org/10.1016/j.bbalip.2006.03.022 8 largest peaks:

Name: Agilent Ion Trap XCT ESI; [M-H]-; PS 38:4 <u>MW:</u> 810 <u>ID#:</u> 134 <u>DB:</u> Text File <u>Comment:</u> PS 38:4; PS(18:0/20:4); Prec:810.5; Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry ;http://dx.doi.org/10.1016/j.bbalip.2006.03.022 <u>6 largest peaks:</u>

Name: Agilent MSD 1100 single quadrupole MS; [M+H]+; PE 32:0 <u>MW:</u> 692 <u>ID#:</u> 38 <u>DB:</u> Spec. List <u>Comment:</u> PE (16:0/16:0); [M+H]+; Quantitation and characterization of phospholipids in pharmaceutical formulations by liquid chromatography-mass spectrometry; http://dx.doi.org/10.1016/S0021-9673(00)00148-5 7 largest peaks:

Hit score lower than 20, or 100 in dot product, non-hit, also obtained from single quad, no-MSMS

Name: Agilent QTOF; [M+NH4]+; TG <u>MW:</u> 896 <u>ID#:</u> 39 <u>DB:</u> Spec. List <u>Comment:</u> TAG LLL 878; +NH4=896; No accurate precursor assigned, 0.8 Da error;Maximizing Detection of Complex Hydrophobic Lipids: Optimization Efficiency and Nano-Chromatography; ASMS 2009 David A. Weil1, Michael Woodman and Carol Ball, Agilent Technologies Inc.,Schaumburg, IL1 and Raleigh, NC2 <u>3 largest peaks:</u>

no precursor assigned, hit score = 0

Efe Search Yew Total Search Yew Ye	🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - 2 spectra]	
Image: Appler Line: Image: Example 520 0p10F; [M+NH4]+: T6 Image: Appler Line: Appler 1010F; [M+NH4]-: T6 Image: Appler Line: Appler 1010F; [M-NH4]-: T6 Image: Appler Line: Apple: T010F; [M-NH4]-: T6 Image: Apple	I File Search View Iools Options Window Help	
Image: Source Totagient QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+NH4]+: T6 Image: Applent QTDF: [M+1]+: N4 Image: Applent QTDF: [M+1]+: N4 Image: Applent QTDF: [M+1]+: P8 344 Image: Applent QTDF: [M+1]+: P8 344 Image: Applent QTDF: [M+1]+: P8 344 Image: Applent QTDF: [M+1]+: P8 344 Image: Applent QTDF: [M+1]+: P8 344 Image: Applent QTDF: [M+1]+: P8 344 Image: Image: QTDF: Image: Applent QTDF: [M+1]+: P8 344 Image: QTDF: QTDF: [M+1]+: P8 344 Image: QTDF: QTDF: [M+1]+: P8 344 Image: QTDF: Image: QTDF: Image: QTDF: QTDF: P8 344 Image: QTDF: QTDF: QTDF: QTDF: QTDF: QTDF: QTDF: QTDF: QT	1 🗈 🖻 ở 🏭 🕎 📲 🖽 🚧 🔶 🦻	
# Sice Name Sign: Aglent IC/Si 00 qTOF; [M+NH4+; T6 54:3 31 L Aglent IC/Si 00 qTOF; [M+NH4+; T6 54:3 1 <t< th=""><th>© > ≥ = 1. Agilent QTOF; [M+NH4]+; TG S</th><th></th></t<>	© > ≥ = 1. Agilent QTOF; [M+NH4]+; TG S	
37 L Aglert Ion Trap XCT ESI; [M+H]: P1 38.4 38 L Aglert Ion Trap XCT ESI; [M+H]: P1 38.4 38 L Aglert Ion Trap XCT ESI; [M+H]: P1 38.4 38 L Aglert Ion Trap XCT ESI; [M+H]: P1 38.4 39 L Aglert ND TO Signed WS; [M+H]: P1 38.4 30 L Aglert ND TO Signed WS; [M+H]: P1 38.4 31 L Butter Existic 2000 in the ESI FICR APEXAg. [M+H]: P1 38.4 41 L Butter Existic 2000 in the ESI FICR APEXAg. [M+H]: PC MX 41 L Butter Existic 2000 in the ESI FICR APEXAg. [M+H]: PC MX 41 Dutter Existic 2000 in the ESI FICR APEXAg. [M+H]: PC MX 41 Dutter Existic 2000 in the ESI FICR APEXAg. [M+H]: PC MX 41 Dutter Existic 2000 in the ESI FICR APEXAg. [M+H]: PC MX 41 Dutter Existic 2000 in the ESI FICR APEXAg. [M+H]: PC MX 420 stand Spectra Spec List 430 stand Spectra Spec List 430 stand Spectra Spec List 441 spectra Spec List 533499 total spectra Spec List 1 Ipidblast-reg 70 500 70 50.0 700 <th># Src. Name 31 L Agilent 6530 QqTOF; [M+NH4]+; TG 54:3 32 L Agilent LC/MSD 1100 Ion Trap; [M+H]; PE 34:1 33 L Agilent Ion Trap SL; [M+Na]+; PC 34:1 34 L Agilent Ion Trap XCT; [M+H]+; NA 35 L Agilent Ion Trap XCT ESI; [M+H]+; PI 38:4 36 L Agilent Ion Trap XCT ESI; [M+H]+; PI 34:2</th> <th>100- 599.5 100- 599.5 100- 599.5 100- 380 [D#; 39 DB; Spec. List 100- 100-</th>	# Src. Name 31 L Agilent 6530 QqTOF; [M+NH4]+; TG 54:3 32 L Agilent LC/MSD 1100 Ion Trap; [M+H]; PE 34:1 33 L Agilent Ion Trap SL; [M+Na]+; PC 34:1 34 L Agilent Ion Trap XCT; [M+H]+; NA 35 L Agilent Ion Trap XCT ESI; [M+H]+; PI 38:4 36 L Agilent Ion Trap XCT ESI; [M+H]+; PI 34:2	100- 599.5 100- 599.5 100- 599.5 100- 380 [D#; 39 DB; Spec. List 100- 100-
Names Spec List acylcoarmol+hpos; acylcoarmol+hops; acylcoarmo	37 L Agilent Ion Trap XCT ESI; [M-H]; PI 38:4 38 L Agilent Ion Trap XCT ESI; [M-H]; PI 38:4 39 L Agilent MSD 1100 single quadrupole MS; [M+H]+; PE 32:0 40 L Agilent QTOF; [M+NH4]+; TG 41 L Bruker DESI FTICR APEX-Q, [M+H]+; PC MIX 41 L Bruker DESI FTICR APEX-Q, [M+H]+; PC MIX	100- 599.5 50- 50-
# Library Score Dot Product Prob. (%) Rev-Dot Name 1 lipidblast-neg 0 70 50.0 707 MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)) 2 lipidblast-neg 0 70 50.0 707 MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)) 37.31046 Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) 100 337.31046 Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) 100 337.31046 Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) 100 337.31046 Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) 100 337.31046 Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) 100 337.31046 Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) 100 337.31046 Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) Name; MGDG 44:1; [M-H]; MGDG(22:0/22:1(132)/22:0) 100 337.31046 Name; MGDG 4	Names (Structures / Spec List acylcoa+mol+hpos; acylcoa+mol-hneg; mainlib; acylcarnitine+custom+mol+hpos; acylcarnitine+mol+hpos; acylcarnitine+mol+napos; custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; 359499 total spectra	0 <u>337.27</u> 50
	# Library Score Dot Product Prob. (%) Rev-Dot Name 1 lipidblast-neg 0 70 50.0 707 MGDG 44:1; [M-H]-; MGDG(22:0/22:1(13Z)) 2 lipidblast-neg 0 70 50.0 707 MGDG 44:1; [M-H]-; MGDG(22:1(13Z)/22:0)	337.31046 300 360 420 480 540 600 660 720 780 840 900 ▲ Agilent OTDF: [M+NH4]+: TG Head to Tail MF=0 RMF=70 ▼MGDG 44:1: [M+H]: MGDG[22:07 Difference Head to Tail Side by Side Subtraction 0 708 600 100- 337.31046 Name: MGDG 44:1; [M+H]: MGDG[22:07/22:1[132 ▲ 100- 337.31046 Name: MGDG 44:1; [M-H]: MGDG[22:07/22:1[132 ▲ 50- 2 largest peaks: 337.31046 99.00 339.32610 99.00
Image: Structures 0 337.31046 999.00 sn2 FA 280 420 500 700 840 339.32610 999.00 sn1 FA Init List	Names <u>Structures</u> Hit List Hit List Lib. Search Other Search Names Compare Librarian MSMS	0 280 420 560 700 840 337.31046 999.00 sn2 FA (lipidblast-neg) MGDG 44:1; [M-H]; MGDG(22:0/22:1(1) Image: Constraint of the state

Name: Bruker DESI FTICR APEX-Q, [M+H]+; PC MIX <u>MW</u>: 758 <u>ID#</u>: 40 <u>DB</u>: Spec. List <u>Comment:</u> PC MIX PC (34:2); 758.5694; [M+H]+; Characterization of DESI-FTICR mass spectrometry from ECD to accurate mass tissue analysis <u>9 largest peaks</u>:

PC -MIX

Name: Bruker Esquire 3000 ion trap; ESI, [M-H]-; LipidA-PP 56:26:0 <u>MW</u>: 1796 <u>ID#</u>: 41 <u>DB</u>: Spec. List <u>Comment:</u> LipidA-PP 56:26:0; LipidA-PP [14/14/14/3O-(12)/3O-(14)]; [M+H]+; Prec. m/z: 1796.2;Gram-negative bacterial lipid A analysis by negative electrospray Gram-negative bacterial lipid A analysis by negative electrospray Gram-negative bacterial lipid A analysis by negative electrospray; International Journal of Mass Spectrometry 249250 (2006) 7792 <u>10 largest peaks</u>:

Name: Bruker Esquire 3000 ion trap; ESI, [M-H]-; LipidA-PP 56:26:0 <u>MW:</u> 1796 <u>ID#:</u> 42 <u>DB:</u> Spec. List <u>Comment:</u> LipidA-PP 56:26:0; LipidA-PP [14/14/14/3O-(12)/3O-(14)]; [M+H]+; Prec. m/z: 1796.2;Gram-negative bacterial lipid A analysis by negative electrospray Gram-negative

bacterial lipid A analysis by negative electrospray Gram-negative bacterial lipid A analysis by negative electrospray; International Journal of Mass Spectrometry 249250 (2006) 7792

10 largest peaks:

🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - 400 spectra]	
Eile Search View Iools Options Window Help	_ <u>-</u> - <u>-</u> ×
X 🖻 💼 🚭 🏭 📲 🖽 🚧 🔶 🖌	
🔞 🍉 😅 🚔 1. Bruker Esquire 3000 ion trap; ESI, [M 🔽 😥 🖳 🔍 🍭	
# Src. Name 36 L Agilent Ion Trap XCT ESI; [M+H]+; PE 34:2 37 L Agilent Ion Trap XCT ESI; [M-H]; PI 38:4	Name: Bruker Esquire 3000 ion trap; ESI, [M-H]-; LipidA-PP 56:26:0 100- 1035.6 1470 1035.6 1470 201/201/201/201/201/201/201/201/201/201/
38 L Agilent Ion Trap XCT ESI; [M-H]-; PI 38:4 39 L Agilent MSD 1100 single quadrupole MS; [M+H]+; PE 32:0 40 L Agilent QTOF; [M+NH4]+; TG 41 L Bruker DESI FTICR APEX-Q, [M+H]+; PC MIX	0 1 1088.2 999.00 1470 400.00 1035.6 333.00 1243.8 333.00 101; 1410 999.6 180.00 1225.8 100.00 1261.8 100.00 1454.0 50.00 1495. Ispec. List) Bruker Esquire 3: Image: Construction of Search Sections Image: Construction of Sections Image: Constructing : Constructions Image: Construction
42 L Bruker Esquire 3000 ion trap; ESI, [M-H]-; LipidA-PP 56:26:0 43 L Bruker Esquire 3000 ion trap; ESI, [M-H]-; LipidA-PP 56:26:0 44 L Bruker Esquire ion trap; ESI MS/MS, [M+H]+; PC 34:1 45 L Bruker Esquire ion trap; ESI MS/MS, [M-H]-; DGDG 36:8	100- 1698.2
46 L Bruker Esquire ion trap; ESI MS/MS, [M+NH4]+; NA 46 L Bruker Esquire ion trap; ESI MS/MS, [M+NH4]+; NA 47 Names Structures Spec List	50- 1035.6 1243.8 1470
acylcoa+mol+hpos; acylcoa+mol-hneg; mainlib; acylcarnitine+custom+mol+hpos; acylcarnitine+mol+hpos; acylcarnitine+mol+napos; custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; 359499 tota 1000-	
100- 10- 1-	50- 1698.23467
# Library Score Dot Product Prob. (%) Rev-Dot Name 1 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/10/18/30-(12)]	Image: Provide and to Tail Figure 3000 ion trap; ESI. Head to Tail MF=167 RMF=436 Image: Provide Arrow 100 rmin and 1
2 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/10/18/30-[14 3 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/12/16/30-[12 4 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/12/16/30-[12 4 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/12/16/30-[12	100- 1552.00785 Name: LipidA-PP 56:26:0; LipidA-PP [14/14/14/14] MW: 1796 [D#: 87941 DB: lipidblast-neg Comment: Parent=1796 21157 Mz exact=1796 21
5 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/14/14/30-(12 6 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/14/14/30-(12 7 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/14/14/30-(14 7 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/14/14/30-(14 7 lipidblast-neg 167 436 0.99 592 LipidA-PP 56:26:0; LipidA-PP [14/14/14/14/14/14/14/14/14/14/14/14/14/1	1698.23467 9 largest peaks: 50- 1552.00785 999.00 1698.23467 600.00 175 111 11 1454.03095 250.00 1568.00277 250.00 155
r inploudastrieg for 436 0.33 332 LipidA-PP (14/14/16/12/30-(12/3	0 9 m/2 Values and Intensities: 1080 1260 1440 1620 1800 (lipidblast-neg) LipidA-PP 56:26:0; LipidA-PP [14/14/14]
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide //

Name: Bruker Esquire ion trap; ESI MS/MS, [M+H]+; PC 34:1 <u>MW</u>: 760 <u>ID#</u>: 43 <u>DB</u>: Spec. List <u>Comment</u>: PC 34:1; PC(16:0/18:1); [M+H]+; Prec. m/z: 760.7; Developmental profiling by mass spectrometry of phosphocholine containing phospholipids in the rat nervous system reveals temporo-spatial gradients; DOI: 10.1111/j.1471-4159.2010.06836.x 5 largest peaks:

<u>Name:</u> Bruker Esquire ion trap; ESI MS/MS, [M-H]-; DGDG 36:8 <u>MW:</u> 931 <u>ID#:</u> 44 <u>DB:</u> Spec. List <u>Comment:</u> DGDG(18:4/18:4); DGDG 36:8; [M-H]-; Prec. m/z: 931.8; Chimica e biologia a confronto: pigmenti e altri metaboliti secondari prodotti da dinoflagellati del Lago di Tovel; Studi Trent. Sci. Nat., Acta Biol., 81 (2004), Suppl. 2: 413-426;Rita FRASSANITO, Ines MANCINI & Graziano GUELLA <u>5 largest peaks:</u>

🕌 NIST MS Search 2.0 - [Peptide, Presearch Default - 4 spectra]	
Eile Search View Tools Options Window Help	_ @ ×
※ 凾 ■ ● ಝ 響 ■ = □ ** ← ?	
	[
# Src. Name 931.8 Name: Bruker Esquire ion trap; E 100 931.8 MW/ 931 ID#: 44 DB: Spec List	SI MS/MS, [M-H]-; DGDG 36:8
36 L Aglient Ion Trap XCT ESI; [M+H]+; PE 34:2 37 L Aglient Ion Trap XCT ESI; [M+H]+; PE 34:2 Comment: DGDG(18:4/18:4); DC	GDG 36:8; [M-H]-; Prec. m/z: 931.8; Chimic.
38 L Agilent Ion Trap XCT ESI; [M-H]; PI 38:4	
39 L Agilent MSD 1100 single quadrupole MS; [M+H]+; PE 32:0 390 780 5 m/z Values and Intensities:	
41 L Bruker DESI FTICR APEX-Q, [M+H]+; PC MIX	Plot/Text of Spec List /
42 L Bruker Esquire 3000 ion trap: ESI, [M-H]; LipidA-PP 56:26:0	
43 L Bruker Esquire Jobo for trap; ESI MS/MS, [M+H]+; PC 34:1	673.7 931.8
45 L Bruker Esquire ion trap; ESI MS/MS, [M-H]; DGDG 36:8	
40 L Brutes Esquite for day, Estimotives, Internative, NA 47 L Brutes Esquite for the for the DALUE ACCE 2000	
Names / Structures / Spec List 275.5	
custompc+hpos msp: custompc+napos msp: hilic-urine: lipidblast-neg: pc-ac-neg msp: pc-form-neg msp: lipidblast-pos: 235370	
total spectra	· · · · · · · · · · · · · · · · · · ·
10-	
# Library Score Dot Product Prob. (%) Rev-Dot Name	F=381 ITDGDG 36:8; [M-H]-; DGDG(18:4(6
1 lipidblast-neg 12 381 25.0 1e+3 DGDG 36:8; [M-H]-; DGDG(18:4(6Z,9Z,12Z,15Z)/1{ Difference Head to Tail Side by Side Subtraction /	12 381R 25.0P
2 lipidblast-neg 12 381 25.0 1e+3 DGDG 36.8; [M-H]-; DGDG(18:4(62,92,122,152)/18	DGDG 36:8; [M-H]-; DGDG(18:4(6Z,9Z,12Z
4 linidblast-neg 12 381 25.0 1e+3 DGDG 36.8; (M-H]; DGDG(18:4(3E,11E,13E,15E)/ 100-	031 <u>ID#:</u> 76774 <u>DB:</u> lipidblast-neg ent: Parent=931 54192 Mz_exact=931 5415
	ist peaks:
2/5.2 1 m/z	Values and Intensities:
	0098 999.00 sn1 FA sn2 FA
300 450 600 750 900 3000	
Names Structures / Hit List Plot/Text of Hit / Plot	
Lib. Search Other Search Names Compare Librarian MSMS	
For Help, press F1 Peptide	Peptide

<u>Name:</u> Bruker Esquire ion trap; ESI MS/MS, [M+NH4]+; NA <u>MW:</u> 374 <u>ID#:</u> 45 <u>DB:</u> Spec. List <u>Comment:</u> MG(18:1); MG(16:0); [M+NH4]+; Prec. m/z: 374.3; Identification of molecular species of simple lipids by normal phase liquid chromatographypositive electrospray tandem mass spectrometry, and application of developed methods in comprehensive analysis of low erucic acid rapeseed oil lipids <u>4 largest peaks:</u>

Name: Bruker Esquire ion trap; ESI MS/MS, [M-H]-; MGDG 38:9 <u>MW:</u> 795 <u>ID#:</u> 46 <u>DB:</u> Spec. List <u>Comment:</u> MGDG(20:5/18:4); MGDG 38:9; [M-H]-; Prec. m/z: 795.5; Chimica e biologia a confronto: pigmenti e altri metaboliti secondari prodotti da dinoflagellati del Lago di Tovel; Studi Trent. Sci. Nat., Acta Biol., 81 (2004), Suppl. 2: 413-426;Rita FRASSANITO, Ines MANCINI & Graziano GUELLA 6 largest peaks:

<u>Name:</u> Bruker Esquire ion trap;ESI MS/MS, [M+Na]+; MGDG 38:9 <u>MW:</u> 819 <u>ID#:</u> 47 <u>DB:</u> Spec. List <u>Comment:</u> MGDG(20:5/18:4); MGDG 38:9; [M+Na]+; Prec. m/z: 819.7; Chimica e biologia a confronto: pigmenti e altri metaboliti secondari prodotti da dinoflagellati del Lago di Tovel; Studi Trent. Sci. Nat., Acta Biol., 81 (2004), Suppl. 2: 413-426;Rita FRASSANITO, Ines MANCINI & Graziano GUELLA

3 largest peaks:

NIST MS Search 2.0 - [Peptide, Presearch Default - 16 spectra]	
🗖 File Search View Tools Options Window Help	<u>_8</u> ×
🔞 🍃 🚔 🚔 1. Bruker Esquire ion trap;ESI MS/MS, 💽 🛞 🖺 🛞 🔍	
	Name: Bruker Esquire ion tran: ESLMS/MS_IM+Nal+: MGDG-38:9
39 L Agilent MSD 1100 single quadrupole MS; [M+H]+; PE 32:0	100- 517.5 MW: 819 ID#: 47 DB: Spec. List
40 L Agilent QTOF; [M+NH4]+; TG 41 D D D S S S S S S S S S S S S S S S S	3 largest peaks:
41 L Bruker DEST FTICH APEX-Q, [M+H]+; PC MIX 42 L Bruker Esquire 3000 ion trap; ESI, [M-H]-; LipidA-PP 56:26:0	517.5 999.00 819.7 600.00 543.5 250.00 540 720 3m/z Values and Intensities:
43 L Bruker Esquire 3000 ion trap; ESI, [M-H]; LipidA-PP 56:26:0	(Spec. List) Bruker Esquire io
44 L Bruker Esquire ion trap; ESI MS/MS, [M+H]+; PC 34:1 45 L Bruker Esquire ion trap: ESI MS/MS. [M-H]-: DGDG 36:8	Plot/Text of Search Spectrum Plot of Search Spectrum A Plot/Text of Spec List
46 L Bruker Esquire ion trap; ESI MS/MS, [M+NH4]+; NA	1 517.5
47 L Bruker Esquire ion trap; ESI MS/MS, [M-H]+; MGDG 38;9 48 L Bruker Esquire ion tran: ESI MS/MS, [M+Na]+; MGDG 38;9	100-
49 L Bruker microTOF qQ-TOF; NA	819.7
	50-
Names Spec List	543.5
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	
100-	
	50-
1-	100
# Library Score Dot Product Prob. (%) Rev-Dot Name	ST0 540 570 600 630 660 690 720 750 780 810
1 lipidblast-pos 131 944 22.4 949 MGDG 38:9; [M+Na]+; MGDG(18:4(6Z,9Z,12Z,1	Difference A Head to Tail Side by Side A Subtraction / 131 944R 22.4P
2 lipidblast-pos 131 944 22.4 949 MGDG 38:9; [M+Na]+; MGDG(18:4(9E,11E,13E,	Name: MGDG 38:9; [M+Na]+; MGDG(18:4(6Z.9Z,
3 lipidblast-pos 131 944 22.4 949 MGDG 38:9; [M+Na]+; MGDG(20:5(5Z,8Z,11Z,1	100- 100- <u>MW:</u> 819 <u>ID#</u> , 12656 <u>DB</u> ; lipidblast-pos <u>Converse</u> Baset-919 50227 Ma. susat-919 5022
 4 ipidulas:rpos 131 544 544 545 644 644 745 746 747 744 744 744 745 744 745 744 745 744 744 745 744 744 745 744 744 745 745 746 <l< td=""><td>2 largest peaks:</td></l<>	2 largest peaks:
6 lipidblast-pos 9 513 1.10 577 PA 42:7; [M+Na2:H]+; GPA(22:2(13Z,16Z)/20:5(504 517.27793 999.00 543.29357 999.00 2 m/z Values and Intensities
7 lipidblast-neg 2 222 0.84 250 PG 39:0; [M-H]-; GPGro(14:0/25:0)	0 517.27793 999.00 [M+Na]-sn2
8 lipidblast-neg 2 222 0.84 250 PG 40:7; [M-H]; GPGro(20:2(112,142)/20:5(52,1	560 630 700 770 543.29357 999.00 [M+Na]-sn1
Names Structures Hit List	[IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Lib. Search Other Search Names Compare Librarian MSMS	
or Help, press F1	Peptide Peptide

<u>Name:</u> Bruker microTOF qQ-TOF; NA <u>MW:</u> 744 <u>ID#:</u> 48 <u>DB:</u> Spec. List <u>Comment:</u> PC(16:0/18:1) wrongly assigned?; 744.4; [M+H]+; MS/MS mass spectra of 1palmitoyl-, 2-oleyl-phosphatidycholine; Hyphenated Tools for Lipidomics;Jan Willmann1,Herbert Thiele2, Dieter Leibfritz1;HUPO 2007, Poster M-195 <u>5 largest peaks:</u>

📕 NIST MS Search 2.0 - [Peptide, Presearch Default - 326 spectra]	
Eile Search View Tools Options Window Help	. 8 ×
6 b 2 i i Bruker microTOF qQ-TOF; NA 🕑 🖳 🔎 🖳 🔍	
# Stc. Name 45 L Bruker Esquire ion trap; ESI MS/MS; [M+NH4]+; NA 46 L Bruker Esquire ion trap; ESI MS/MS; [M+NH4]+; MS/MS mass 47 L Bruker Esquire ion trap; ESI MS/MS; [M+NH4]+; MS/MS mass 48 L Bruker microTOF qQ-TOF; NA 49 L Bruker ultrafeski IMALDI TOF-TOF; [M+Na]+; SM(d18:1/16:0) 50 L Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; SM(d18:1/16:0) 51 L Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; SM(d18:1/16:0) 52 L Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; SO20 53 L Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; SO20 54 L Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; SO20 54 L Bruker ultraFlex II MALDI TOF-TOF; [M+Na]+; SO20 53 L Bruker ultraFlex II MALDI TOF-TOF; [M+Na]+; SO20 54 L Bruker ultraFlex II MALDI TOF-TOF; [M+Na]+; SO20 55 L Bruker ultraFlex II MALDI TOF-TOF; MH3]+; SO20 54 L Bruker ultraFlex II MALDI TOF-TOF; MH4; IV-DC 24:1 56 Bruker ultraFlex II MALDI TOF-TOF; MH4; IV-DC 24:1 IMALDI TOF-TOF; MH4; IV-DC 24:1	× 5 ▼ ▼ ↓
	<u>_</u>
200 320 360 400 440 480 520 560 600 640 680 720	718-1
1 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(11E)) 2 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(11Z)) 3 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(13Z)) 4 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(13Z)) 5 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(17Z)) 6 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(17Z)) 7 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(12Z)) 7 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(7Z)) 7 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(7Z)) 8 lipidblast-neg 86 676 2.37 700 PE 36:1; [M-H]; GPEtn(18:0/18:1(7Z)) 8 lipidblast-neg 86 676	77₽ 43 .2 ▼
Peptide Peptide Deptide	

Name: Bruker ultraflex II MALDI TOF/TOF; [M+Na]+; SM(d18:1/16:0) <u>MW:</u> 725 <u>ID#:</u> 49 <u>DB:</u> Spec. List <u>Comment:</u> SM 34:1; SM(d18:1/16:0); Prec. m/z: 725.6; [M+Na]+;Comparison of Phospholipid Molecular Species between Terminal and Stem Villi of Human Term Placenta by Imaging Mass Spectrometry;Placenta 31 (2010) 245248; http://dx.doi.org/10.1016/j.placenta.2009.12.026 <u>4 largest peaks:</u>

<u>Name:</u> Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; DGDG 30:0 <u>MW:</u> 887 <u>ID#:</u> 50 <u>DB:</u> Spec. List <u>Comment:</u> DGDG 30:0; Prec. m/z: 887.7; [M+Na]+; Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry; <u>6 largest peaks:</u>

🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - 5 spectra]	<u> </u>
Eile Search View Tools Options Window Help	_ & ×
	1
🚳 🍉 🚔 📫 1. Bruker UltraFlex II MALDI TOF-TOF; 💽 🛞 🖳 🕺 🍭	
# Src. Name Style UltraFlex II MALDI TOF-TOF; [M+Na]+; DGDG 30:0	
45 L Bruker Esquire ion trap; ESI MS/MS, [M+NH4]+; NA 46 L Bruker Esquire ion trap; ESI MS/MS, [M+NH4]+; Lipid compositions in E 887.7 Comment: DGDG 30:0; Prec. m/z: 887.7; [M+Na]+; Lipid compositions in E	Es(
47 L Bruker Esquire ion trap; ESI MS/MS, [M+Na]+; MGDG 38:9	15
48 L Bruker microTOF qQ-TOF; NA 49 L Bruker ultraflex II MALDI TOF/TOF: [M+Na]+: SM(d18:1/16:0)	
50 L Bruker UltraFlex II MALDI TOF-TOF: [M+Na]+: DGDG 30:0 Plot/Text of Search Spectrum Plot of Search Spectrum Plot of Search Spectrum Plot of Search Spectrum Plot. Example 2:1	
51 L Bruker UltraFlex II MALDI TOF-TOF; DGDG 31:0	-
53 L Bruker UltraFlex II MALDI TOF-TOF; [M+K]+; PC 36:1 54 J Bruker UltraFlex II MALDI TOF-TOF; [M+K]+; SM(d18:1/16:0)	
55 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; lysoPC 18:0 ↓	77
Names Structures Spec List 323.1 382.2 731.1	
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; lipidblast-pos; 235370	
10-	
50-	
	900
	G(15: 9.4P
2 lipidblast-pig 9 131 10.2 438 PI 38:3; [M-H]-; GPIns(18:3(6Z,9Z,12Z)/20:0)	
3 lipidblast-neg 9 131 10.2 438 Pl 38:3; [M-H]-; GPIns(18:3(92,122,152)/20:0) 483.29351 645.34633 MV: 887 ID#: 4747 DB; lipidblast-pos	" 41
4 lipidblast-neg 9 131 10.2 438 PI 38:3; [M-H]-; GPIns(20:0/18:3(6Z,9Z,12Z)) 5 linidblast-neg 9 131 10.2 438 PI 38:3: [M-H]-; GPIns(20:0/18:3(6Z,9Z,12Z)) 2 largest peaks:	/07
483,29351 999,00 645,34633 999,00 2 m/2 (Aluee and Intervitien:	
0 ¹ 483.29351 999.00 [M+Na]-sn1-C6H1005 (-162	2)1
390 520 650 780 645.34633 999.00 [M+Na]-sn2	₋่่
Names Structures / Hit List Plot/Text of Hit / Plot of Hit /	
Lib. Search Other Search Names Compare Librarian MSMS	
Peptide Peptide	

<u>Name:</u> Bruker UltraFlex II MALDI TOF-TOF; DGDG 31:0 <u>MW:</u> 901 <u>ID#:</u> 51 <u>DB:</u> Spec. List <u>Comment:</u> DGDG 31:0; Prec. m/z: 901.7; [M+Na]+; Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry; <u>8 largest peaks:</u>

ANIST MS Search 2.0 - [Peptide, Presearch Default - 15 spectra]		
Eile Search View Iools Options Window Help	_ _ ₽ ×	
🔞 🐚 🛱 📫 🛽 Bruker UltraFlex II MALDI TOF-TOF: 🔽 🔞 🐘 🕢 🖨 🚳		
45 L Bruker Esquire ion tran: ESLMS/MS_IMANIA/1+: NA	45.4 901.7 MW: 901 ID#: 51 DB: Spec. List	
46 L Bruker Esquire ion trap; ESI MS/MS, [M-H1]-; MGDG 38:9	Comment: DGDG 31:0; Prec. m/z: 901.7; [M+Na]+; Lipid compositions in Esc	
47 L Bruker Esquire ion trap;ESI MS/MS, [M+Na]+; MGDG 38:9		
49 L Bruker ultraflex II MALDI TOF/TOF; [M+Na]+; SM(d18:1/16:0)	680 745.2 300.00 523.4 100.00 405.2 50.00	
50 L Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; DGDG 30:0	arch Spectrum / Plot of Search Spectrum / Plot/Text of Spec List /	
51 L Bruker UltraFlex II MALDI TOF-TOF: DGDG 31:0		
53 L Bruker UltraFlex II MALDI TOF-TOF; [M+K]+; PC 36:1 100-	645.4	
54 L Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; SM(d18:1/16:0) 55 L Bruker ultrafleXtreme Mál DI TOF/TOF: [M+H]+; lusoPC 18:0	551.4	
	331.4	
Names Structures Spec List 327.1	745.2	
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	405.2 523.4	
total spectra		
1 50-		
	483,29357 645,34639	
	400 450 500 550 600 650 700 750 800 850 900	
# Library Score Dot Product Prob. (%) Rev-Dot Name	ex II MALDI TOF-TCI Head to Tail MF=219 RMF=504 (▼DGDG 31:0; [M+Na]+; DGDG(15;	
1 lipidblast-pos 219 504 38.8 697 DGDG 31:0; [M+Na]+; DGDG(15:0/16:0)	ead to Tail Side by Side Subtraction / 219 504R 38.8P	
2 lipidblast-pos 219 504 38.8 697 DGDG 31:0; [M+Na]+; DGDG(16:0/15:0)	83 29357 645 34639	
4 linidblast-pos 125 340 1.76 577 TG 55:5: [M+1 i]+: TG(16:0/16:0/22:5)	<u>MW:</u> 901 (<u>D#:</u> 4/49 <u>DB:</u> lipidblast-pos Comment: Parent=901 58647 Mz_exact=901 5864	
5 lipidblast-pos 125 340 1.76 577 TG 55:5; [M+Li]+; TG(16:0/17:1/22:4)	4 largest peaks:	
6 lipidblast-pos 125 340 1.76 577 TG 55:5; [M+Li]+; TG(16:0/17:2/22:3)	483.29357 999.00 497.30921 999.00 645.3 4 // 4 // 2 // 2 // 4 // 2 // 2 // 2 /	
7 lipidblast-pos 125 340 1.76 577 TG 55:5; [M+Li]+; TG(16:0/19:0/20:5)	483.29357 999.00 [M+Na]-sn2-C6H1005 (-162)	
8 iipidblast-pos 120 340 1.76 577 1G 54:6; [M+Naj+; 1G(16:0716:1722:5) 390	520 650 780 910 497.30921 999.00 [M+Naj-sn1-C6H1005 (-162)	
Names (Structures / Hit List Plot/Text of Hit .	CDG 31(0; [M+Na]+; DGDG[15(0/16)] Plot of Hit /	
Lib. Search Other Search Names Compare Librarian MSMS		
Peptide Peptide		

<u>Name:</u> Bruker UltraFlex II MALDI TOF-TOF; DGDG 32:0 <u>MW:</u> 915 <u>ID#:</u> 52 <u>DB:</u> Spec. List <u>Comment:</u> DGDG 32:0; Prec. m/z: 915.7 [M+Na]+; Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry; <u>5 largest peaks:</u>

Name: Bruker UltraFlex II MALDI TOF-TOF; [M+K]+; PC 36:1 <u>MW:</u> 826 <u>ID#:</u> 53 <u>DB:</u> Spec. List <u>Comment:</u> PC 36:1; Prec. m/z: 826.5723; [M+K]+; Solvent-Free Matrix Dry-Coating for MALDI Imaging of Phospholipids ;Satu M. Puolitaival, Kristin E. Burnum, D. Shannon Cornett, Richard M. Caprioli; doi:10.1016/j.jasms.2008.02.013 <u>4 largest peaks:</u> FALSE Positive ID M+K not in LipidBlast

<u>Name:</u> Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; SM(d18:1/16:0) <u>MW:</u> 725 <u>ID#:</u> 54 <u>DB:</u> Spec. List <u>Comment:</u> SM(d18:1/16:0); Prec. m/z: 725.5; [M+Na]+; MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis; http://dx.doi.org/10.1016/j.jchromb.2007.02.037 <u>4 largest peaks:</u>

🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - 6 spectra]	
Eile Search View Tools Options Window Help	_ <u>_</u>
X 🖻 🖻 🎒 🛄 🎦 🚮 🖶 m/z 🔶 🍞	
]
🚳 🍉 🗃 📮 1. Bruker UltraFlex II MALDI TOF-TOF; 💽 🛞 🖳 🔍 🍭 🔍	
# Src. Name	100 666.5 Name: Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; SM(d18:1/16:0)
45 L Bruker Esquire ion trap; ESI MS/MS, [M+NH4]+; NA 46 L Bruker Esquire ion trap; ESI MS/MS, [M-H1: MGDG 38:9	542.5 542.5
47 L Bruker Esquire ion trap;ESI MS/MS, [M+Na]+; MGDG 38:9	
48 L Bruker microTOF qQ-TOF; NA 49 L Bruker ultraflev II Mól DI TOF/TOF: [M+Na]+: SM(d19:1/16:0)	330 660 4 m/z Values and Intensities: ▼
50 L Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; DGDG 30:0	Spec. List) Bruker Ultra-lex Plot of Search Spectrum A Plot/Text of Spec List /
51 L Bruker UltraFlex II MALDI TOF-TOF; DGDG 31:0	
53 L Bruker UltraFlex II MALDI TOF-TOF; [M+K]+; PC 36:1	100-
54 L Bruker UltraFlex II MALDI TOF-TOF; (M+Na)+; SM(d18:1/16:0) 55 L Bruker ultrafleXizere MALDI TOF (TOF: (M+L)+; largeC 19:0	
SO E Dicker didate-Arene MALDI TOF/TOF/ [W+H]+, [ssore 16.0	542.5
Names Structures Spec List	184.0
custompc+hoos msp: custompc+hoos msp: hilic-urine: lipidblast-hog: pc-ac-hog msp: pc-form-hog msp: lipidblast-pos: 235370	722.5
total spectra	542.49129
10	
	50-
	100-
# Library Score Dot Product Prob. (%) Rev-Dot Name	ABruker UltraFlex II MALDI TOF-TCI Head to Tail MF=271 RMF=831 ITSM 34:1; (M+Na)+; SM(d14:1(4E))
1 lipidblast-pos 271 831 24.9 879 SM 34:1; [M+Na]+; SM(d14:1(4E)/20:0)	Difference A Head to Tail A Side by Side A Subtraction / 271831R 24.9P
2 lipidblast-pos 2/1 831 24.9 8/9 5M 34:1; [M+Naj+; 5M(d16:U/18:1(32)] 3 lipidblast-pos 271 831 24.9 879 5M 34:1; [M+Naj+; 5M(d16:14/E)/18:0)	666 48383
4 lipidblast-pos 271 831 24.9 879 SM 34:1; [M+Na]+; SM(d18:1(4E)/16:0]	100- Comment: Parent=725.55733 Mz_exact=725.5573
5 lipidblast-neg 33 336 0.24 438 PI 26:0; [M-H]-; GPIns(12:0/14:0)	2 largest peaks:
6 lipidblast-neg 33 336 0.24 438 PI 26:0; [M-H]-; GPIns(14:0/12:0)	2 m/z Values and Intensities:
	0 542.49129 542.49129 20.00 [M+Na]-C5H14N04P (-183) 240 200 730 566 48383 999.00 [M+Na]-C5H14N04P (-183)
	(lipidblast-pos) SM 34:1; [M+Na]+; SM(d14:1(4E)/20:0)
Names Structures Hit List	Plot/Text of Hit Plot of Hit
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide ///

2nd probability group

Name: Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; lysoPC 18:0 <u>MW:</u> 524 <u>ID#:</u> 55 <u>DB:</u> Spec. List Comment: lysoPC 18:0; Prec. m/7; 524 38 [M+H]+; ultrafleXtreme; Hig

<u>Comment:</u> IysoPC 18:0; Prec. m/z: 524.38 [M+H]+; ultrafleXtreme; High Performance TLC-MALDI; Martin Schürenberg, Beate Fuchs, Annabell Bischoff, Rosemarie Sü, Detlev Suckau, Jürgen Schiller, Gerda Morlock and Ulrike Anders; DGMS2010_185_Poster_TLC-MALDI.pd 6 largest peaks:

<u>Name:</u> Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; PC 34:1 <u>MW:</u> 760 <u>ID#:</u> 56 <u>DB:</u> Spec. List <u>Comment:</u> PC 34:1; PC(16:0/18:1); Prec. m/z: 760.59; [M+H]+; ultrafleXtreme; High Performance TLC-MALDI; Martin Schürenberg, Beate Fuchs, Annabell Bischoff, Rosemarie Sü, Detlev Suckau, Jürgen Schiller, Gerda Morlock and Ulrike Anders; DGMS2010_185_Poster_TLC-MALDI.pd <u>8 largest peaks:</u>

🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - 187 spectra]	
Eile Search View Tools Options Window Help	_ B ×
🚳 🗫 🚔 📮 1. Bruker ultrafleXtreme MALDI TOF/TO 🛛 🛞 🖳 😥 🍭 🚳	
# Src. Name	L 194.06 Name: Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; PC 34:1
49 L Bruker ultraflex II MALDI TOF/TOF; [M+Na]+; SM(d18:1/16:0)	100-104.00 MW: 760 ID#: 56 DB: Spec. List Comment: PC 34:1: PC(16:0/18:1): Prec. m/z: 760.59: [M+H]+: ultrafleXtrem
50 L Bruker UltraFlex II MALDI TUF-TUF; (M+Na]+; DGDG 30:0 51 L Bruker UltraFlex II MALDI TOF-TOF: DGDG 31:0	577,33 8 largest peaks:
52 L Bruker UltraFlex II MALDI TOF-TOF; DGDG 32:0	
53 L Bruker UltraFlex II MALDI TOF-TOF; [M+K]+; PC 36:1	(Spec. List) Bruker ultrafleXtr
55 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; lysoPC 18:0	Plot/Text of Search Spectrum Plot of Search Spectrum Plot/Text of Spec List
56 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; PC 34:1	1 184.06
57 L Bruker ultrafieXtreme MALDI TOF/TOF; [M+Na]+; PC 3b:1 58 L Bruker ultrafieXtreme MALDI TOF/TOF: [M+Na]+; PE 33:1	100-
59 L Bruker ultrafle×treme MALDI TOF/TOF; [M+Na]+; SM(d18:1/16:0)	
	50-
Names Structures Spec List	146 97 577 33 760 59
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	
total spectra	200 20400 577 51000 701 51214
100	306.20400 577.31360 701.31214
10	204
1-	
	- 100- 184.07387
# Library Score Dot Product Prob. (%) Rev-Dot Name	■ Bruker ultrafleXtreme MALDI TOF. Head to Tail MF=25 RMF=683 ▼PC 34:1; (M+H)+; GPCho(8:0/26:1
1 custompc+h 25 683 0.93 737 PC 34:1; [M+H]+; GPCho(8:0/26:1(5Z))	Difference A Head to Tail A Side by Side A Subtraction A 25 683R 0.93P
2 custompo+h 25 683 U.93 737 PC 34:1; [M+H]+; GPCho[10:0/24:1[152]]	Name: PC 34:1; [M+H]+; GPCho(8:0/26:1(5Z))
4 custompc+h 25 683 0.93 737 PC 34.1; [M+H]+; GPCho(12.0/22.1(132))	100- 100- <u>MW:</u> 760 <u>IU#:</u> 1918 <u>DB:</u> custompc+hpos.msp <u>Comment:</u> Parent=760.58564 Mz_exact=760.5856
5 custompc+h 25 683 0.93 737 PC 34:1; [M+H]+; GPCho(14:0/20:1(11Z))	9 largest peaks:
6 custompc+h 25 683 0.93 737 PC 34:1; [M+H]+; GPCho(14:0/20:1(13E))	366.20480 577.51960 634.48124 200.00 701.51214 200.00 760.5
7 custompo+h 25 683 0.93 737 PC 34:1; [M+H]+; GPCho(14:0/20:1(13Z))	
6 custompc+n 20 663 0.33 737 PC 34.1; [M+H]+; GPCh0[14.1(32)/20.0] ♥	150 300 450 600 750 184.07387 993.00 tragment LSH ISNU4P ▼
Names Structures / Hit List	Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide //

Name: Bruker ultrafleXtreme MALDI TOF/TOF; [M+Na]+; PC 36:1 <u>MW:</u> 782 <u>ID#:</u> 57 <u>DB:</u> Spec. List <u>Comment:</u> PC 36:1; PC(16:0/18:1); Prec. m/z: 782.53; [M+Na]+; ultrafleXtreme; BDAL; http://www.bdal.de/uploads/media/ultrafleXtreme-eBook.pdf 10 largest peaks:

Name: Bruker ultrafleXtreme MALDI TOF/TOF; [M+Na]+; PE 33:1 <u>MW:</u> 726 <u>ID#:</u> 58 <u>DB:</u> Spec. List <u>Comment:</u> PE 33:1; Prec. m/z: 726.5 [M+Na]+; Lipid Compositions in Escherichia coli and Bacillus subtilis During Growth as Determined by MALDI-TOF and TOF/TOF Mass Spectrometry; doi:10.1016/j.ijms.2009.03.005. <u>6 largest peaks:</u>

📕 NIST MS Search 2.0 - [Peptide, Presearch Default - 155 spectra]	
Eile Search View Tools Options Window Help	_ <u>_</u> X
X 🗈 🖻 🕌 🞹 🙀 🖶 ⊟ ™/z ← 💡	
🚳 🍃 🚔 🚔 1. Bruker ultrafleXtreme MALDI TOF/TO 🗾 🛞 🖳 😥 🍭 🚳	
# Src. Name	100 164.0
49 L Bruker ultraflex II MALDI TOF/TOF; [M+Na]+; SM(d18:1/16:0) 50 L Bruker Ultraflex II MALDI TOF-TOF: (M+Na]+; DGDG 30:0	726.5 Comment: PE 33:1; Prec. m/z: 726.5 [M+Na]+; Lipid Compositions in Escher
51 L Bruker UltraFlex II MALDI TOF-TOF; DGDG 31:0	
52 L Bruker UltraFlex II MALDI TOF-TOF; DGDG 32:0 53 L Bruker UltraFlex II MALDI TOF-TOF; IM+K1+; PC 36:1	360 720 <u>121.0 100.00</u> ▼
54 L Bruker UltraFlex II MALDI TOF-TOF; [M+Na]+; SM(d18:1/16:0)	Plot/Text of Search Spectrum A Plot of Search Spectrum A Plot/Text of Spec List
55 L Bruker ultrafieXtreme MALDI TUF/TUF/ [M+H]+; lysoPU18:0 56 L Bruker ultrafieXtreme MALDI TOF/TOF: [M+H]+; PC 34:1	
57 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+Na]+; PC 36:1	100-
58 L Bruker ultrafleXtreme MALDI TUF/TUF/ [M+Na]+; PE 33:1 59 L Bruker ultrafleXtreme MALDI TOF/TOF: [M+Na]+; SM(d18:1/16:0)	
	50- 683.5 726.5
Names Structures Spec List	563.5
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	
total spectra	289.08193
	50 585 48587
	30
1-	100
	683.46277
H Libury Com DesDedust Date (%) Des Det Mana	
	Difference λ Head to Tail
2 lipidblast-pos 69 460 1.46 989 PE 33:1; [M+Na]+; GPEtn(9:0/24:1(15Z))	Name: PE 33:1: [MaNala: GPEtn(7:0/26:1(57))
3 lipidblast-pos 69 460 1.46 989 PE 33:1; [M+Na]+; GPEtn(11:0/22:1(13Z))	100- 683.46277 <u>Wallet</u> P 33.1; [WHVary, dr Euly, 0/28,1(32)]
4 lipidblast-pos 69 460 1.46 989 PE 33:1; [M+Na]+; GPEtn(13:0/20:1(11E)) E lipidblast-pos 69 460 1.46 999 PE 33:1; [M+Na]+; GPEtn(13:0/20:1(11Z))	Comment: Parent=726.50497 Mz_exact=726.5049 4 Jargest peaks:
6 lipidblast-pos 69 460 1.46 989 PE 33.1; [M+Na]+; GPEth[13:0/20:1[(12)]	50- 585.48587 585.48587 400.00 289.0
7 lipidblast-pos 69 460 1.46 989 PE 33:1; [M+Na]+; GPEtn(13:0/20:1(13Z))	4 m/z Values and Intensities: 289.08193 289.08193 3.00 [M+Na]-43-SN2-H
8 lipidblast-pos 69 460 1.46 989 PE 33:1; [M+Na]+; GPEtn(14:1(92)/19:0)	140 280 420 560 700 553.36345 3.00 [M+Naj-43-SN1-H
Names A Structures / Hit List	(lipidblast-pos) PE 33:1; [M+Na]+; GPEtn(7:0/26:1(5Z))
13 Cault Other Caulty Caulty Caulty House	
Lib. Search Uther Search Names Compare Librarian MSMS	
	Peptide Peptide //

<u>Name:</u> Bruker ultrafleXtreme MALDI TOF/TOF; [M+Na]+; SM(d18:1/16:0) <u>MW:</u> 725 <u>ID#:</u> 59 <u>DB:</u> Spec. List <u>Comment:</u> SM(d18:1/16:0); Prec. m/z: 725.6 [M+Na]+; ultrafleXtreme; High Performance TLC-MALDI; Martin Schürenberg, Beate Fuchs, Annabell Bischoff, Rosemarie Sü, Detlev Suckau, Jürgen Schiller, Gerda Morlock and Ulrike Anders; DGMS2010_185_Poster_TLC-MALDI.pd <u>10 largest peaks:</u>

🚝 NIST MS Search 2.0 - [Peptide, Presearch Default - 32 spectra]	
Eile Search View Iools Options Window Help	
× ⓑ € ⊜ ⅲ № ₩ = □ */2 ← ?	
🚳 🍉 🚔 🚎 1. Bruker ultrafleXtreme MALDI TOF/TO 🛛 🛞 🖳 🔎 🍭 🚳	
# Src. Name	666.6 Name: Bruker ultrafleXtreme MALDI TOF/TOF; [M+Na]+; SM(d18:1/16:0)
49 L Bruker ultraflex II MALDI TOF/TOF; [M+Na]+; SM(d18:1/16:0) 50 L Bruker Ultraflex II MALDI TOF-TOF: [M+Na]+: DGDG 30:0	TUU4 MW, 725 IDH, 59 DB; Spec. List Comment: SM(d18:1/16:0); Prec. m/z: 725.6 [M+Na]+; ultrafleXtreme; High
51 L Bruker UltraFlex II MALDI TOF-TOF; DGDG 31:0	
52 L Bruker UltraFlex II MALDI TOF-TOF; DGDG 32:0 53 L Bruker UltraFlex II MALDI TOF-TOF; IM+K1+; PC 36:1	390 198.09 10.00 320.84 10.00 429.62 10.00 502.47 10.00 63
54 L Bruker UltraFlex II MALDI TOF-TOF; (M+Na]+; SM(d18:1/16:0)	Plot/Text of Search Spectrum A Plot of Search Spectrum A Plot/Text of Spec List
55 L Bruker ultrafieXtreme MALDI 10F710F; [M+H]+; [ysoPC 18:0 56 L Bruker ultrafieXtreme MALDI TOF/TOF; [M+H]+; PC 34:1	
57 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+Na]+; PC 36:1	100-
58 L Bruker ultrafleXtreme MALDI 10F710F7 [M+Na]+; PE 33:1 59 L Bruker ultrafleXtreme MALDI T0F/T0F7 [M+Na]+; SM(d18:1/16:0)	
	50- 542.53
Names Structures Spec List	86,11
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	0 168,99 320,84 429,62 502,47 630,5
100-1	042.40120
	50-
1	100-
# Library Score Dot Product Prob. (%) Rev-Dot Name	A Bruker ultrafleXtreme MALDI TOF./ Head to Tail MF=270 RMF=819 [▼SM 34:1; [M+Na]+; SM(d14:1(4E).
1 lipidblast-pos 270 819 24.5 889 SM 34:1; [M+Na]+; SM(d14:1(4E)/20:0)	Difference Head to Tail Side by Side Subtraction 270 819R 24.5P
2 lipidblast-pos 270 819 24.5 889 SM 34:1; [M+Na]+; SM(d16:0/18:1(92)) -	666 48383 Name: SM 34:1; [M+Na]+; SM(d14:1(4E)/20:0)
4 lipidblast-pos 270 819 24.5 889 SM 34.1; [M+Na]+; SM(d18:1(4E)/16:0)	100- Comment: Parent=725.55733 Mz_exact=725.5573
5 lipidblast-neg 49 315 0.24 438 Pl 26:0; [M-H]-; GPIns(12:0/14:0)	2 largest peaks:
6 lipidblast-neg 49 315 0.24 438 PI 26:0; [M-H]-; GPIns(14:0/12:0)	2 m/z Values and Intensities:
7 iipiapiast-pos 5 42 0.05 175 DG 43:2; [M+Li]+; DG (17:0/26:2/0:0) 8 iipidblast-pos 5 42 0.05 175 DG 43:2; [M+Li]+; DG (17:1/26:1/0:0)	0 542.49129 542.49129 20.00 [M+Na]-C5H14N04P (-183)
	(ipidblast-pos) SM 34:1; [M+Na]+; SM(d14:1(4E)/20:0)
Names Structures / Hit List Plot/Text of Hit Plot of Hit /	
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide //

Name: JEOL JMS-HX110A/110A Tandem MS; FAB; [M-H]-; DGDG 36:4 <u>MW:</u> 939 <u>ID#:</u> 60 <u>DB:</u> Spec. List <u>Comment:</u> DGDG 36:4; DGDG(18:2/18:2); [M-H]-; Prec. m/z: 939.5; Structural Characterization of Sulfoquinovosyl, Monogalactosyl and Digalactosyl Diacylglycerols by FAB-CID-MS/MS; JOURNAL OF MASS SPECTROMETRY, VOL. 32, 968-977 (1997) <u>8 largest peaks:</u>

<u>Name:</u> JEOL JMS-HX110A/110A Tandem MS; FAB; [M-H]-; GM3 <u>MW:</u> 1151 <u>ID#:</u> 61 <u>DB:</u> Spec. List <u>Comment:</u> Ganglioside GM3; [M-H]-; Prec. m/z: 1151.7; Studies of the Chemical Structure of Gangliosides in Deer Antler, Cervus nippon; Chem. Pharm. Bull. 47(1) 123-127 (1999) <u>9 largest peaks:</u>

NIST MS Search 2.0 - [Peptide, Presearch Default - 1 spectrum]	
File Search View Tools Options Window Help	
,	
🔞 🍃 🖻 🚔 1. JEOL JMS-HX110A/110A 🛛 Tandem M 🔽 🛞 🖺 🖳 🍭 🔍	
# Src Name	Name: JEOL JMS-HX110A/110A Tandem MS; FAB; [M-H]-; GM3
55 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; lysoPC 18:0	100- ^{297,2} 1151.7 <u>MW:</u> 1151 <u>ID#</u> , 61 <u>DB</u> : Spec. List Comment: Ganglioside GM3: IM-HL: Prec. m/z: 1151 7: Studies of the Chem
56 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; PC 34:1 57 L Bruker ultrafleXtreme MALDI TOF/TOF: [M+Na]+; PC 36:1	468.1 860.8 9largest peaks
58 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+Na]+; PE 33:1	
60 L JEOLJMS-HX110A/110A Tandem MS; FAB; [M-H]; DGDG 36:4	Spec. List) JEOL JMS-HX11
61 L JEOLJMS-HX110A/110A Tandem MS; FAB; [M-H];; GM3	
63 L JEDLJMS-HX110A/110A Tandem MS; FAB; [M-H]; MAD d 30.4	1151.7 1004 1
64 L Kratos MALDI-TOF AXIMA-CFR; [M-H]-; Lipid A 65 L SHIMADZU KBATOS MALDI TBAP TOF: [M-H]-; SDDG 36:5	
	50-
Names Structures Spec List	468.1 536 599.3 698 860.8 1031.7
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	
	536.50395 698.55677
	50-
	_ 1001151 7053
	320 400 480 560 640 720 800 880 960 1040 1120
# Library Score Dot Product Prob. (%) Rev-Dot Name	▲JEOL JMS-HX110A/110A_Tandel Head to Tail MF=116 RMF=374 【▼(glycan) Cer 34:1; GM3(d18:1/16:1
1 lipidblast-neg 116 374 100.0 824 [glycan]-Cer 34:1; GM3(d18:1/16:0)); [M-H]-; NeuAr	Difference A Head to Tail A Side by Side A Subtraction / 116 374R 100.0P
	1151.7053 Name: [glycan]-Cer 34:1; GM3(d18:1/16:0)]; [M-H] ▲ 100 MW: 1151 ID#: 79290 DB: lipidblastneg
	Comment: Parent=1151.70534 Mz_exact=1151.70
	50- 50- 50- 50- 502- 502- 502- 502- 502-
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	380 570 760 950 1140 536.50395 200.00 ion ceramide ▼
Names Structures / Hit List	Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSMS	
or Help, press F1	Peptide Peptide

Name: JEOL JMS-HX110A/110A Tandem MS; FAB; [M-H]-; MGDG 36:4 <u>MW:</u> 777 <u>ID#:</u> 62 <u>DB</u>: Spec. List <u>Comment:</u> MGDG 36:4; MGDG(18:2/18:2); [M-H]-; Prec. m/z: 777.4; Structural Characterization of Sulfoquinovosyl, Monogalactosyl and Digalactosyl Diacylglycerols by FAB-CID-MS/MS; JOURNAL OF MASS SPECTROMETRY, VOL. 32, 968-977 (1997) <u>4 largest peaks:</u>

 Name:
 JEOL JMS-HX110A/110A Tandem MS; FAB; [M-H]-; NA

 <u>MW:</u>
 819 <u>ID#:</u>
 63 <u>DB:</u>
 Spec. List

 <u>Comment:</u>
 SQDG 36:1; wrong; m/z 255 and 281 missing; SQDG(18:1/16:0); [M-H]-; Prec. m/z: 819.6; Structural Characterization of

 Sulfoquinovosyl, Monogalactosyl and Digalactosyl Diacylglycerols by FAB-CID-MS/MS; JOURNAL OF MASS SPECTROMETRY, VOL.

 32, 968-977 (1997)

 <u>6 largest peaks:</u>

SQDG 36:1; wrong; m/z 255 and 281 missing; SQDG(18:1/16:0); [M-H]-; Prec. m/z:

NIST MS Search 2.0 - [Peptide, Presearch Default - 12 spectra]	
Eile Search View Tools Options Window Help	<u>_ 8 × </u>
∦ 🖻 🖻 🎒 🇱 📲 🖽 ∞⊄ ← 💡	
(1) 1. JEOL JMS-HX110A/110A Tandem MS (위) 밖 (요) (영) (영)	
	Name: IEOL IMS HV1104 (1104 Tandem MS: EAR-IM H1: NA
Src. Name Soc. Name	100-148 MW: 819 ID#: 63 DB: Spec. List
56 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; PC 34:1	297 819 <u>Comment:</u> SQDG 36:1; wrong; m/z 255 and 281 missing; SQDG(18:1/16:0);
57 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+Na]+; PC 36:1	
59 L Bruker ultrafieXtreme MALDI TOF/TOF; [M+Na]+; SM(d18:1/16:0)	440 /33 100.00 ·
60 L JEOL JMS-HX110A/110A Tandem MS; FAB; [M-H]; DGDG 36:4	Plot/Text of Search Spectrum / Plot of Search Spectrum / Plot/Text of Spec List /
62 L JEOL JMS-HX1104/1104 Tandem MS; FAB; [M-H]; MGDG 36:4	
63 L JEOLJMS-HX110A/110A Tandem MS; FAB; [M-H]-; NA	100-
65 L SHIMADZU KRATOS MALDI TRAP TOF: (M-H1): SQDG 36:5	
	50- 297 819
Names Structures Spec List	
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	
total spectra	297.27918
	521.24223
	504
	- 100- 225,00690
	140 210 280 350 420 490 560 630 700 770
# Library Score Dot Product Prob. (%) Rev-Dot Name	AJEOL JMS-HX110A/110A Tander Head to Tail MF=9 RMF=113 ▼SQDG 34:1; [M-H]-; SQDG(15:1[9])
1 lipidblast-neg 36 341 11.4 707 MGDG 39:4; [M-H]-; MGDG(19:0/20:4(5E,8E,11)	Difference A Head to Tail A Side by Side A Subtraction 9 113R 4.38P
2 lipidblast-neg 36 341 11.4 707 MGDG 39.4 (M-H)-; MGDG (19:0/20:4(52,52,11, 3 lipidblast-neg 36 341 11.4 707 MGDG 39.4 (M-H)-; MGDG (19:0/20:4(7E 10E 1	Name: SQDG 34:1; [M-H]-; SQDG(15:1(92)/19:0)
4 lipidblast-neg 36 341 11.4 707 MGDG 39:4; [M-H]-; MGDG[20:4[5E,8E,11E,14E	100- Comment: Parent=819.52923 Mz_exact=819.5292
5 lipidblast-neg 36 341 11.4 707 MGDG 39:4; [M-H]-; MGDG(20:4(5Z,8Z,11Z,14Z-	50 50 50 50 50 50 50 50 50 50 50 50 50 5
6 lipidblast-neg 36 341 11.4 707 MGDG 39:4; [M-H]-; MGDG(20:4(7E,10E,13E,16	521.24223 223.00650 333.00 521.24223 300.00 573.3.
7 lipidblast-neg 26 269 8.03 559 PG 33:0; [M-H]-; GPGro(13:0/20:0) 8 lipidblast-neg 26 269 8.03 559 PG 39:0; [M-H]-; GPGro(20:0/19:0)	225.00690 999.00 fragment C6H907S
	(inidblast-peg) SDDG 3411 (M.H.)- SDDG(15-1(97)/19
Names (Structures / Hit List	Plot/Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide

<u>Name:</u> Kratos MALDI-TOF AXIMA-CFR; [M-H]-; Lipid A <u>MW:</u> 2048 <u>ID#:</u> 64 <u>DB:</u> Spec. List <u>Comment:</u> Lipid A; The Lipid A 1-Phosphatase of Helicobacter pylori Is Required for Resistance to the Antimicrobial Peptide Polymyxin;JOURNAL OF BACTERIOLOGY, June 2006, p. 45314541 <u>3 largest peaks:</u>

🚝 NIST MS Search 2.0 - [Peptide, Presearch Default - 126 spectra]	
Eile Search View Iools Options Window Help	
🔞 ⊳ ਫ਼ 🚔 🛛 1. Kratos MALDI-TOF AXIMA-CFR; [M-H 🗹 🔞 🖳 😥 🍭 🚳	
	Name: Kratos MALDI-TOE AXIMA-CEB · [M-H1-1 linid A
55 L Bruker ultrafleXtreme MALDI TOF/TOF; [M+H]+; lysoPC 18:0	100- 2048.6 <u>MW:</u> 2048 <u>ID#</u> ; 64 <u>DB</u> ; Spec. List
56 L Bruker ultrafleXtreme MALDI TOF/TOF; (M+H)+; PC 34:1	2071.1 2071.1 3 largest peaks:
57 L Bruker ultrafleXtreme MALDI TOF/TOF/ [M+Na]+; PC 36.1	2048.6 999.00 2021.2 700.00 2071.1 300.00 2040 2070 3 m/z Values and Intensities:
59 L Bruker ultrafleXtreme MALDI TOF/TOF; (M+Na]+; SM(d18:1/16:0)	Spec. List) Kratos MALDI-TC
61 L JEOLJMS-HX1104/1104 Tandem MS; FAB; [M-H]; DiaDia 36:4	Plot/Text of Search Spectrum Plot of Search Spectrum A Plot/Text of Spec List
62 L JEOL JMS-HX1104/110A Tandem MS; FAB; [M-H]; MGDG 36:4	2048.6
64 L Kratos MALDI-TOF AXIMA-CFR; [M-H]-; Lipid A	100-
65 L SHIMADZU KRATOS MALDI TRAP TOF; [M-H]-; SQDG 36:5	
	50-
Names Structures Spec List	
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370 total spectra	
1000-1	
100-]	50-
10-	2048.45327
1-	100
# Library Score Dot Product Prob. (%) Rev-Dot Name	2020 2030 2040 2050 2050 2050 2070 2080 ▲Kratos MALDI-TOF AXIMA-CFR: (Head to Tail MF=13 RMF=117 ▼LipidA-PP 64:36:0: LipidA-PP 114/
1 lipidblast-neg 13 117 0.85 198 LipidA-PP 64:36:0; LipidA-PP (14/14/18/18/30-	Difference Head to Tail Side by Side Subtraction / 13 117R 0.85P
2 lipidblast-neg 13 117 0.85 198 Lipidb-PP 64:36:0; Lipidb-PP (16/16/14/18/30-)	Name: LipidA-PP 64:36:0; LipidA-PP [14/14/18/18
3 lipidblast-neg 13 117 0.85 198 LipidA-PP 64:36:0; LipidA-PP [16/16/16/16/16/30-] 4 lipidblast-neg 12 117 0.95 199 LipidA-PP 64:36:0; LipidA-PP [16/16/16/16/16/30-]	100- 100- MW: 2048 ID#: 88254 DB: lipidblast-neg
5 lipidblast-neg 13 117 0.85 198 LipidA-PP 68:32:0: LipidA-PP [16/16/18/18/30-1	2048.49327 7 largest peaks:
6 lipidblast-neg 13 117 0.85 198 LipidA-PP 64:36:0; LipidA-PP [18/18/10/18/30-]	504 1804.28955 999.00 1950.51637 600.00 204 1764 22191 250 00 1966 51129 50 00
7 lipidblast-neg 13 117 0.85 198 LipidA-PP 64:36:0; LipidA-PP [18/18/12/16/30-]	7.m/z Values and Intensities:
8 lipidblast-neg 13 117 U.85 198 LipidA-PP 64:36:0; LipidA-PP [18/18/14/14/30-]	2020 2030 2040 2050 2060 2070 2080 1666.24501 300.00 [M·H]·P04H3·R2·O·FA [M·▼
Names Structures Hit List	[lipidblast-neg] LipidA-PP 64:36:0; LipidA-PP [14/14/18
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide

Name: SHIMADZU KRATOS MALDI TRAP TOF; [M-H]-; SQDG 36:5 <u>MW:</u> 839 <u>ID#:</u> 65 <u>DB:</u> Spec. List <u>Comment:</u> SQDG(20:5/16:0); [M-H]-; Prec. m/z: 839.8; Sulfoquinovosyldiacylglyceride - antiviral aktive Substanzen; Diss Universitt Erlangen-Nürnberg; 2009; Ivonne Naumann <u>3 largest peaks:</u>

Name: SHIMADZU LCMS-IT-TOF; [M-H]-; PS 32:0 <u>MW:</u> 734 <u>ID#:</u> 66 <u>DB:</u> Spec. List <u>Comment:</u> PS(16:0/16:0); [M-H]-; Prec. m/z: 734.4672; PS(16:0/16:0); Identification of Phospholipid Molecular Species Using Neutral Loss Survey and MS3 Analysis; Shimadzu Technical Report 4 largest peaks:

Name: SHIMADZU LCMS-IT-TOF; [M-H]-; SQDG 34:3 <u>MW:</u> 815 <u>ID#:</u> 67 <u>DB</u>: Spec. List <u>Comment:</u> SQDG(34:3); [M-H]-; Prec. m/z: 815.499; SQDG(34:3);A Chloroplastic UDP-Glucose Pyrophosphorylase from Arabidopsis Is the Committed Enzyme for the First Step of Sulfolipid Biosynthesis;Plant Cell Okazaki et al. 21: 892 ; http://www.plantcell.org/cgi/data/tpc.108.063925/DC1/1; 3 largest peaks:

Name: Thermo Finnigan DecaXP ion trap; [M+Na]+; DGDG 34:1 <u>MW:</u> 941 <u>ID#:</u> 68 <u>DB:</u> Spec. List <u>Comment:</u> DGDG(18:1/16:0); DGDG from K. brevis; [M+Na]+; Prec. m/z: 941.41; <u>6 largest peaks:</u>

<u>Name:</u> Thermo Fisher Exactive Orbitrap; [M-H]-; PS MIX <u>MW:</u> 834 <u>ID#:</u> 69 <u>DB:</u> Spec. List <u>Comment:</u> PS MIX; M-H]-; Prec. m/z: 834.5299; C46H77O10NP; Analysis of whole lipid extracts using on-line high resolution LC-MS; Catharina Crone, Eric Genin and Helmut Muenster <u>10 largest peaks:</u>

RIST MS Search 2.0 - [Peptide, Presearch Default - 400 spectra]	
Eile Search View Tools Options Window Help	<u>_6</u> ×
· X h f A A M Y A A A A A A A A A A A A A A A A	
🔞 🖕 🚘 🔲 1. Thermo Fisher Exactive Orbitrap; [M-I 🔍 🛞 🖳 🔎 🥘 🚳	
	Name: Thermo Eicher Exactive Orbitran: (M.H.): PS MIX
	100- 747.4981 MW: 834 ID#: 69 DB: Spec. List
62 L JEOL JMS-HX110A/110A Tandem MS; FAB; [M-H]; MGDG 36:4	Comment: PS MIX; M-H]; Prec. m/z: 834.5299; C46H77010NP; Analysis of 10 largest peaks:
63 L JEULJMS-HX11UA/11UA/1Andem MS; FAB; [M-H]-; NA 64 L Kratos MALDI-TOF AXIMA-CFR: [M-H]-; Lipid A	
65 L SHIMADZU KRATOS MALDI TRAP TOF; (M-H)-; SQDG 36:5	(Spec. List) Themo Fisher E>
67 L SHIMADZU LCMS+T+T0F; [M-H]; PS 32:0	Plot/Text of Search Spectrum Plot of Search Spectrum Plot/Text of Spec List
68 L Thermo Finnigan DecaXP ion trap; [M+Na]+; DGDG 34:1	
E I hermo Fisher Exactive Urbitrap; [M-H]-; PS MIX Thermo Finnigan LCQ ion trap; ESI: [M+NH4]+; DGDG 36;4	100-
71 L Thermo Finnigan LCQ DECA ion trap; [M·H]-; Lipid A	419.25/6
	50-
Names Structures Spec List	480.3100 621.4589 701.5142
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370 total spectra	
1000-1	283.26354 419.25639
100-	50-
10-	
	100-
# Library Score Dot Product Prob. (%) Rev-Dot Name	▲ Thermo Fisher Exactive Orbitrap: Head to Tail MF=385 RMF=648 ▼PS 40:6; (M-H]-: GPS er(18:0/22:6
1 lipidblast-neg 385 648 42.1 845 PS 40:6; [M-H]-; GPSer(18:0/22:6(4Z,7Z,10Z,13	<u>∫ Difference</u> <u>A Head to Tail</u> <u>Side by Side</u> <u>A</u> <u>Subtraction</u> <u>385 648R 42.1P</u>
2 lipidblastneg 385 648 42.1 845 PS 40:6; [M-H]-; GPSer(22:6(4Z,7Z,10Z,13Z,16Z	747 49647 Name: PS 40:6; [M-H]; GPSer(18:0/22:6(4Z,7Z,1)
4 lipidblastneg 193 414 0.61 773 PS 40:6; [M-H]-; GPSet(20:1(112)/20:5(52,82,11	100- <u>Comment:</u> Parent=834.52850 Mz_exact=834.5285
5 lipidblast-neg 193 414 0.61 773 PS 40:6; [M-H]-; GPSer(20:1(13E)/20:5(5Z,8Z,11	7 largest peaks:
6 lipidblast-neg 193 414 0.61 773 PS 40:6; [M-H]-; GPSer(20:1(13Z)/20:5(5Z,8Z,11	419.25639 283.26354 100.00 327.23226 100.00
7 iipiapiaseneg 133 414 0.61 773 PS 40:6; [M-H]-; GPSet(20:5(52,82,112,142,172 8 lipidblast-neg 193 414 0.61 773 PS 40:6: [M-H]-; GPSet(20:5(52,82,112,142,172 -	0 7 m/z Values and Intensities:
	(lipidblast-neg) PS 40:6; [M-H]-; GPSer(18:0/22:6/4Z,7Z
Names Structures Hit List Plot/Text of Hit Plot of Hit	
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide //

PS-MIX

3rd probability group

<u>Name:</u> Thermo Finnigan LCQ ion trap; ESI; [M+NH4]+; DGDG 36:4 <u>MW:</u> 958 <u>ID#:</u> 70 <u>DB:</u> Spec. List <u>Comment:</u> DGDG 36:4; DGDG(18:1/18:3); [M+NH4]+; Prec. m/z: 958.4; Simultaneous analysis of glycolipids and phospholids molecular species in avocado (Persea americana Mill) fruit; http://dx.doi.org/10.1016/j.chroma.2006.10.022 <u>10 largest peaks:</u>

🚝 NIST MS Search 2.0 - [Peptide, Presearch Default - 30 spectra]	
Eile Search View Iools Options Window Help	
🚳 Þ 🗃 📮 1. Thermo Finnigan LCQ ion trap; ESI; [I 🔄 🛞 🖺 😥 🍭 🚳	
# Src. Name	Name: Thermo Finnigan LCQ ion trap; ESI; [M+NH4]+; DGDG 36:4
61 L JEOL JMS-HX110A/110A Tandem MS; FAB; [M-H]; GM3	100- 001-3 MW: 958 ID#: 70 DB; Spec. List Comment: DGDG 36:4: DGDG(18:1/18:3): [M+NH4]+: Prec. m/z: 958 4: Sir
62 L JEOLJMS-HX110A/110A Tandem MS; FAB; [M-H]; MGDG 36:4	339.2 933.0 <u>10 largest peaks:</u>
64 L Kratos MALDI-TOF AXIMA-CFR; [M-H]-; Lipid A	
65 L SHIMADZU KRATOS MALDI TRAP TOF; [M-H]; SQDG 36:5	Spec. List) Thermo Finnigan
67 L SHIMADZU LUMSHT-TDF; [M-H]; PS 32:0	Plot/Text of Search Spectrum Plot of Search Spectrum A Plot/Text of Spec List
68 L Thermo Finnigan DecaXP ion trap; [M+Na]+; DGDG 34:1	691 3
69 L Thermo Fisher Exactive Orbitrap; [M-H]; PS MIX 70 L Thermo Finningen LCD ion trans ESI: [M-NH4]+: DGDG 36:4	100-
71 L Thermo Finnigan LCQ DECA ion trap; [M-H]-; Lipid A	
	50- 617.3
Names Structures / Spec List	
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	- 0 <u>339.2 425.4 506.6 591.9</u> 797.5 933.0
total spectra	
10-	504
	- 100- 455.26233 581.40309 743.45591
	360 420 480 540 600 660 720 780 840 900 960
# Library Score Dot Product Prob. (%) Rev-Dot Name	▲ Thermo Finnigan LCQ ion trap; ESI Head to Tail MF=12 RMF=240 I▼DGDG 35:0; [M+Na]+; DGDG(13:
1 lipidblast-pos 19 340 5.67 707 TG 58:6; [M+Na]+; TG(18:3/18:3/22:0)	Difference A Head to Tail Side by Side A Subtraction / 12 240R 4.22P
2 lipidblast-pos 14 277 4.57 577 TG 59:5; [M+Li]+; TG(17:0/20:5/22:0)	A55 26233 7/3 /5591 Name: DGDG 35:0; [M+Na]+; DGDG(13:0/22:0)
4 linidblast-pos 14 277 4.57 577 TG 59:5; [M+Li]+; TG(17:1/20:4722:0)	100- 100-
5 lipidblast-pos 14 277 4.57 577 TG 58:6; [M+Na]+; TG(16:1/20:5/22:0)	
6 lipidblast-pos 12 240 4.22 500 DGDG 35:0; [M+Na]+; DGDG(13:0/22:0)	455.26233 999.00 581.40309 999.00 517.3
7 lipidblast-pos 12 240 4.22 500 DGDG 35:0; [M+Na]+; DGDG(22:0/13:0)	455.26233 999.00 [M+Na]-sn2-C6H1005 (-162)
8 lipidbias(meg 11 223 4.05 452 Subla 44:2; [M-H]; Subla(22:0/22:2(132,162,)) -	420 560 700 840 581.4U309 999.00 [M+Na]-sn1-C6H1005(-162)
Names Structures Hit List	Inplablasr-pos) DaDia 35:0; [M+Naj+; DiaDia[13:0722:1]
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide

(exclude M+Li)

Name: Thermo Finnigan LCQ DECA ion trap; [M-H]-; Lipid A <u>MW:</u> 1796 <u>ID#:</u> 71 <u>DB:</u> Spec. List <u>Comment:</u> Lipid A from E coli; [M-H]-; Prec. m/z: 1796.3; C94H178N2O25P2; LipidA-PP-[R2(14:0)(3-OH)/R3(14:0)(3-OH)/R2'(14:0)/R3'14:0)/R2'-3-O-(12:0)/R3'-3O-(14:0)]; DOI: 10.1002/jms.614; Structural analysis of lipid A from Escherichia coli O157:H7:K- using thin-layer chromatography and ion-trap mass spectrometry <u>10 largest peaks:</u>

Name: Thermo Finnigan LCQ ion trap; ESI; [M+NH4]+; MGDGD MIX <u>MW:</u> 800 <u>ID#:</u> 72 <u>DB</u>: Spec. List <u>Comment:</u> MGDGD MIX; MGDG(18:2/18:0)+MGDG(18:1/18:1); [M+NH4]+; Prec. m/z: 800.4; Simultaneous analysis of glycolipids and phospholids molecular species in avocado (Persea americana Mill) fruit; http://dx.doi.org/10.1016/j.chroma.2006.10.022 <u>6 largest peaks:</u>

MGDG MIX

Name: Thermo LCQ iontrap ESI; [M+NH4]+; TG 52:2 <u>MW:</u> 876 <u>ID#:</u> 73 <u>DB:</u> Spec. List <u>Comment:</u> TAG 52:2; TAG(18:1/18:1/16:0); [M+NH4]+; Prec. m/z: 876.9; 1,3-dioleoyl-2-palmitoylglycerol (OPO); Structural Characterization of Triacylglycerols Using Electrospray Ionization-MSn Ion-Trap MS; 10.1007/s11746-003-0676-2 <u>4 largest peaks:</u>

Name: Thermo LCQ iontrap ESI; [M+NH4]+; TG 48:1 <u>MW:</u> 822 <u>ID#:</u> 74 <u>DB:</u> Spec. List <u>Comment:</u> TAG(14:0/18:1/16:0); [M+NH4]+; Prec. m/z: 822.6; 1-myristoyl-2-oleoyl-3-palmitoyl glycerol (MOP); Structural Characterization of Triacylglycerols Using Electrospray Ionization-MSn Ion-Trap MS; 10.1007/s11746-003-0676-2 <u>5 largest peaks:</u>

<u>Name:</u> Thermo LCQ iontrap ESI; [M+NH4]+; TG 54:1 <u>MW:</u> 906 <u>ID#:</u> 75 <u>DB:</u> Spec. List <u>Comment:</u> TAG; [M-H]-; Prec. m/z: 906.7; 1,3-distearoyl-2-oleoyl glycerol (SOS); Structural Characterization of Triacylglycerols Using Electrospray Ionization-MSn Ion-Trap MS; 10.1007/s11746-003-0676-2 <u>4 largest peaks:</u>

<u>Name:</u> Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM1 35:0 <u>MW:</u> 1013 <u>ID#:</u> 76 <u>DB:</u> Spec. List <u>Comment:</u> PIM1(19:0/16:0); [M-H]-; Prec. m/z: 1013.7; Hsu and Turk, Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Gurin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and lyso-PIMs. <u>10 largest peaks:</u>

757 999.00 |

Name: Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM2 35:0 <u>MW:</u> 1175 <u>ID#:</u> 77 <u>DB:</u> Spec. List <u>Comment:</u> PIM2(19:0/16:0); [M-H]-; Prec. m/z: 1175.6; Hsu and Turk, Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Gurin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and Iyso-PIMs.

10 largest peaks:

Name: Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM2 51:0 <u>MW</u>: 1413 <u>ID#</u>: 78 <u>DB</u>: Spec. List <u>Comment</u>: PIM2(16:0/19:0/16:0); [M-H]-; Prec. m/z: 1413.9; Hsu and Turk, Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Gurin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and Diacyl-PIMs <u>10 largest peaks</u>:

Name: Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM2 69:2 <u>MW:</u> 1676 <u>ID#:</u> 79 <u>DB:</u> Spec. List <u>Comment:</u> PIM2(16:0/18:1/19:0/16:1); [M-H]-; Prec. m/z: 1676.1; Hsu and Turk, Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Gurin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and Diacyl-PIMs 10 largest peaks:

Peptide

Peptide

Name: Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM2 69:1 <u>MW</u>: 1678 <u>ID#</u>: 80 <u>DB</u>: Spec. List <u>Comment</u>: PIM2(16:0/18:1/19:0/16:0); [M-H]-; Prec. m/z: 1678.1; Hsu and Turk, Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Gurin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and Diacyl-PIMs <u>10 largest peaks</u>:

Name: Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM2 70:0 <u>MW</u>: 1694 <u>ID#</u>: 81 <u>DB</u>: Spec. List <u>Comment</u>: PIM2(16:0/19:0/19:0/16:0); [M-H]-; Prec. m/z: 1694.2; Hsu and Turk, Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Gurin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and Diacyl-PIMs <u>10 largest peaks</u>:

Name: Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM3(19:0/16:0) MW: 1337 ID#: 82 DB: Spec. List

<u>Comment:</u> PIM3(19:0/16:0); [M-H]-; Prec. m/z: 1337.9; Hsu and Turk, Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Gurin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and Iyso-PIMs.

7 largest peaks:

Compounds not in LipidBlast

🖪 NIST MS Search 2.0 - [Peptide, Presearch Default - empty]	List all tabs
File Search View Tools Options Window Help	_ 8 ×
🚳 📚 🚔 🚺 1. Thermo Finnigan LCQ DECA ion trap; 🗹 🛞 🔛 🍭 🔍	
# Src. Name 73 L Thermo LCQ iontrap ESI; [M+NH4]+; TG 52:2 74 L Thermo LCQ iontrap ESI; [M+NH4]+; TG 54:1 75 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN1 35:0 76 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN1 35:0 77 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 35:0 78 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 51:0 78 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 51:0 79 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 50:0 79 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 50:0 79 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 50:0 79 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 50:0 80 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 50:0 81 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 50:0 82 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 50:0 83 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 50:0 84 L Thermo Finnigan LCQ DECA ion trap; [M+]; PIN2 50:0 81 L Th	0/16:0)
# Library Score Dot Product Prob. (%) Rev-Dot Name Difference Head to Tail Side by Side Subtraction	=
Names Structures / Hit List / Plot of Hit / Plot of Hit /	
Lib. Search Other Search Names Compare Librarian MSMS	
Peptide Peptide Peptide	

Name: Thermo LCQ Deca XP MAX ion trap; [M+Na]+; DGDG 34:1 <u>MW:</u> 941 <u>ID#:</u> 83 <u>DB:</u> Spec. List <u>Comment:</u> DGDG(18:1/16:0) from K. brevis; [M+Na]+; Prec. m/z: 941.41; Mono- and digalactosyldiacylglycerol composition of dinoflagellates. II. Lepidodinium chlorophorum, Karenia brevis, and Kryptoperidinium foliaceum, three dinoflagellates with aberrant plastids Jeffrey D. Leblond ; Andrew D. Lasiter;European Journal of Phycology, 1469-4433, Volume 44, Issue 2, First published 2009, Pages 199 - 205 <u>6 largest peaks:</u>

Name: Thermo LCQ Deca XP MAX ion trap ESI; [M+H]+; NA <u>MW:</u> 787 <u>ID#:</u> 84 <u>DB:</u> Spec. List <u>Comment:</u> wrong prec (786.6); PC 36:2; PC(18:2/18:0); [M+H]+; Prec. m/z: 787.3; Profiling of phospholipids in lipoproteins by multiplexed hollow fiber flow field-flow fractionation and nanoflow liquid chromatographytandem mass spectrometry ;http://dx.doi.org/10.1016/j.chroma.2010.01.006 5 Jargest peaks:

Name: Thermo LTQ; [M+H]+;PC 34:1; <u>MW:</u> N/A <u>ID#:</u> 85 <u>DB:</u> Spec. List <u>Comment:</u> PEPMASS=760.61; PC 34:1; [M+H]+ ; Prec. m/z: 760.5856; GPCho(16:0/18:1(11E)); C42H82NO8P 10 largest peaks:

Name: Thermo Finnigan LTQ linear ion trap; [M+Na]+; TG 52:1 <u>MW:</u> 883 <u>ID#:</u> 196 <u>DB:</u> Text File <u>Comment:</u> TAG(16:0/18:1/18:0); [M+Na]+; Prec. m/z: 883.6; Electrospray Ionization Multiple-Stage Linear Ion-trap Mass Spectrometry for Structural Elucidation of Triacylglycerols: Assignment of Fatty Acyl Groups on the Glycerol Backbone and Location of Double Bonds; Fong-Fu Hsu and John Turk 7 largest peaks:

<u>Name:</u> Thermo Finnigan LTQ linear ion trap; [M+NH4]+; TG 52:1 <u>MW:</u> 878 <u>ID#:</u> 87 <u>DB:</u> Spec. List <u>Comment:</u> TAG(16:0/18:0/18:1); [M+NH4]+; Prec. m/z: 878.7; Electrospray Ionization Multiple-Stage Linear Ion-trap Mass Spectrometry for Structural Elucidation of Triacylglycerols: Assignment of Fatty Acyl Groups on the Glycerol Backbone and Location of Double Bonds; Fong-Fu Hsu and John Turk <u>6 largest peaks:</u>

<u>Name:</u> Thermo Finnigan LTQ linear ion trap; [M+Li]+; TG 52:1 <u>MW:</u> 867 <u>ID#:</u> 88 <u>DB:</u> Spec. List <u>Comment:</u> TAG(16:0/18:1/18:0); [M+Li]+; Prec. m/z: 867.6; Electrospray Ionization Multiple-Stage Linear Ion-trap Mass Spectrometry for Structural Elucidation of Triacylglycerols: Assignment of Fatty Acyl Groups on the Glycerol Backbone and Location of Double Bonds; Fong-Fu Hsu and John Turk <u>7 largest peaks:</u>

<u>Name:</u> Thermo Finnigan LTQ linear ion trap; [M+Li]+; TG 50:1 <u>MW:</u> 839 <u>ID#:</u> 89 <u>DB:</u> Spec. List <u>Comment:</u> TAG(16:0/18:1/16:0); [M+Li]+; Prec. m/z: 839.0; Electrospray Ionization Multiple-Stage Linear Ion-trap Mass Spectrometry for Structural Elucidation of Triacylglycerols: Assignment of Fatty Acyl Groups on the Glycerol Backbone and Location of Double Bonds; Fong-Fu Hsu and John Turk <u>6 largest peaks:</u>

🖷 NIST MS Search 2.0 - [Peptide, Presearch Default - 354 spectra]	
Eile Search View Tools Options Window Help	
X 🖻 🖻 🎒 🛄 🥦 🚅 ⊟ 🚧 ← 💡	
🚳 ⊳ 😅 🚔 1. Thermo Finnigan LTQ linear ion trap; 🗹 🛞 🖳 😥 🍭 🙉	
t Sto Name	Name: Thermo Finnigan LTQ linear ion trap; [M+Li]+; TG 50:1
79 L Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM2 69:2	100- 583 MW: 839 ID#: 899 DB: Spec. List Comment: TAC(15:0/19:1/16:0): Mul ils: Prec. m/z: 829 0: Electrospray lon
80 L Thermo Finnigan LCQ DECA ion trap; [M-H]; PIM2 69:1	839 <u>6 largest peaks:</u>
81 L Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM2 70:0 82 L Thermo Finnigan LCQ DECA ion trap: [M-H]-; PIM3(19:0/16:0)	
83 L Thermo LCQ Deca XP MAX ion trap; [M+Na]+; DGDG 34:1	Spec. List) Thermo Finnigan
84 L Thermo LCQ Deca XP MAX ion trap ESI; [M+H]+; NA	Plot/Text of Search Spectrum / Plot of Search Spectrum / Plot/Text of Spec List /
85 L Thermo El Q; [M+H]+,PC 34:1; 86 L Thermo Finnigan LTQ linear ion trap: [M+Na]+; TG 52:1	
87 L Thermo Finnigan LTQ linear ion trap; [M+NH4]+; TG 52:1	100- 583
88 L Thermo Finnigan LTQ linear ion trap; (M+Li)+; TG 52:1	
09 L Thems Finders LTO faces in here 041 3 - TO 2010	50
Names / Structures / Specifiet	557 000
	803
custompc+hpos.msp; custompc+hapos.msp; hilic-urine; lipidblast-heg; pc-ac-heg.msp; pc-form-heg.msp; lipidblast-pos; 230370 total spectra	
1000-1	
100-	50-
10-	
	¹⁰⁰ 557.51181
	560 580 600 620 640 660 680 700 720 740 760 780 800 820 840
📕 📕 Library Score Dot Product Prob. (%) Rev-Dot Name 🛕	▲ Thermo Finnigan LTQ linear ion tra Head to Tail MF=169 RMF=895 I▼TG 50:1; [M+Li]+; TG(16:0/16:0/1
1 lipidblast-pos 169 895 16.1 949 TG 50:1; [M+Li]+; TG(16:0/16:0/18:1)	LITTERENCE A Head to Tail A Side by Side A Subtraction / 169 895R 16.1P
2 lipidblast-pos 169 895 16.1 949 16.50(1) [M+Li]+; 16(16:0/16:0/18:1) 2 lipidblast-pos 24 596 0.61 707 TG 49(2) [MuNaturi TG(16:0/16:0/17:2)	Name: TG 50:1; [M+Li]+; TG(16:0/16:0/18:1)
4 inidialscepts 34 350 0.01 for 10 452, (MHXay, 10(10.010017.2) 1	100- Comment: Parent=839.76753 Mz_exact=839.7675
5 lipidblast-pos 22 487 0.40 577 TG 50:1; [M+Li]+; TG[16:0/17:0/17:1]	2 largest peaks:
6 lipidblast-pos 22 487 0.40 577 TG 49:2; [M+Na]+; TG(16:0/16:1/17:1)	557.51181 999.00 583.52745 999.00 2 m/z Values and Intensities:
7 lipidblast-neg 12 344 0.28 408 SQDG 36:5; [M-H]-; SQDG(16:0/20:5(5Z,8Z,11Z	01 557.51181 999.00 [M+Li]·sn3+Li
8 lipidblast-neg 12 344 0.28 408 SQDG 36:5; [M-H]-; SQDG(20:5(52,82,11Z,14Z,	600 660 720 780 840 583.52745 999.00 [M+Li]·sn1+Li [M+Li]·sn2+Li
Names & Structures / UB 1:-4	lipidblast-pos) TG 50.1; (M+Li)+; TG(16:0/16:0/18:1)
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide //

<u>Name:</u> Thermo Finnigan LTQ linear ion trap; [M+Li]+; TG 60:12 <u>MW:</u> 957 <u>ID#:</u> 90 <u>DB:</u> Spec. List <u>Comment:</u> TAG(20:4/20:4/20:4); [M+Li]+; Prec. m/z: 957.6; Electrospray Ionization Multiple-Stage Linear Ion-trap Mass Spectrometry for Structural Elucidation of Triacylglycerols: Assignment of Fatty Acyl Groups on the Glycerol Backbone and Location of Double Bonds; Fong-Fu Hsu and John Turk <u>7 largest peaks:</u>

A NIST MS Search 2.0 - [Peptide, Presearch Default - 52 spectra]	
Eile Search View Tools Options Window Help	_ & ×
🔞 🗫 🛱 🖬 1. Thermo Finninan I. T.Q. linear ion tran: 🔽 🔞 🐁 🕢 😂 🚳	
	1. 70.0010
	.ij+; 1G 60:12
oz Comment: TAG(20:4/20:4); [M+Li]+; Prec. m 83 L Thermo LCQ Deca XP MAX ion trap; [M+Na]+; DGDG 34:1 957.6 Zlargest peaks;	1/z: 957.6; Electrospray Ion
84 L Thermo LCQ Deca XP MAX ion trap ESI; [M+H]+; NA	, 361 10.00 483 1
85 L Thermo Li U; [M+H]+; PC 34; 1; 86 L Thermo Finnigan LTQ linear ion trap; [M+Na]+; TG 52;1 (Gene Lin) Thermo Finnigan LTQ linear ion trap; [M+Na]+; TG 52;1	
87 L Thermo Finnigan LTQ linear ion trap; [M+NH4]+; TG 52:1 Plot/Text of Search Spectrum / Plot of Search Spectrum / Plot/Text of Spec List	ist /
88 L Thermo Finnigan LTQ linear ion trap; [M+Li]+; TG 50:1	
90 L Thermo Finnigan LTQ linear ion trap; [M+Li]+; TG 60:12 100-	
91 L Thermo Fisher LTQ-FT; [M-H]-; GM2-alpha 92 L Thermo Fisher LTQ-FT: (M-H)-PG-20-2	
Names Structures Spec List	957.6
custompo+bnos msp: custompo+papos msp: bilic-urine: linidblast-pen; pc-ac-pen msp: pc-form-pen msp: linidblast-pos; 235370 0 311 361 483	
total spectra	
10-	
50-	
🗰 Library Score Dot Product Prob. (%) Rev-Dot Name 🔺 🔺 Thermo Finnigan LTQ linear ion tra Head to Tail MF=3 RMF=978	60:12; [M+Li]+; TG(20:4/20:4/
1 lipidblast-pos 3 978 2.17 1e+3 TG 60:12; [M+Li]+; TG(20:4/20:4/20:4) 🗌 🚺 Difference 🔪 Head to Tail 🖉 Side by Side 🔪 Subtraction 🖊	3 978R 2.17P
2 lipidblast-pos 0 621 1.91 632 TG 59:5; [M+Li]+; TG(19:0/20:1/20:4)	i]+; TG(20:4/20:4/20:4)
3 lipidblast-pos 0 621 1.91 632 1G 58:6; [M+Na]+; 1G [18:1/20:1/20:4] 100- 4 lipidblast-pos 0 564 1.91 577 TG 59:5: [M+I]+; 1G [17:1/20:4/22:1] 100-	<u>/B:</u> lipidblast-pos 75189 Mz_exact=957 7518
5 lipidblast-pos 0 564 1.91 577 TG 59:5; [M+Li]+; TG[17:1/20:4/22:0]	
6 lipidblast-pos 0 564 1.91 577 TG 59:5; [M+Li]+; TG(18:1/20:4/21:0) 504 1.91 577 505 504 1.91 507 505 505 504 505 505 505 505 505 505 505	isities:
7 lipidblast-pos 0 564 1.91 577 TG 60:12; [M+Li]+; TG(18:2/20:4/22:6)	+Li]-sn1+Li [M+Li]-sn2+Li
8 lipidblast-pos U 564 1.91 577 TG 60:12; [M+Li]+; TG(18:3/20:4/22:5) 🔽 450 600 750 900 🔂 <u>Synonyms:</u>	
Image: Names (Structures / Structures / Structures / Structures / Structures / Hit List Image: Plot/Text of Hit / Plot of Hit / Structures / Struct	
Lib. Search Other Search Names Compare Librarian MSMS	
Peptide Peptide	

Name: Thermo Fisher LTQ-FT; [M-H]-; GM2-alpha

<u>MW:</u> 1354 <u>ID#:</u> 91 <u>DB:</u> Spec. List <u>Comment:</u> GM2alpha ganglioside (putative); [M-H]-; ; Prec. m/z: 1354.783;Method for Lipidomic Analysis: p53 Expression Modulation of Sulfatide, Ganglioside, and Phospholipid Composition of U87 MG Glioblastoma Cells; Anal. Chem., 2007, 79 (22), pp 84238430; 10.1021/ac071413m 9 largest peaks:

RIST MS Search 2.0 - [Pentide, Presearch Default - 2 spectra]	
File Search View Tools Options Window Help	 X
<u> </u>	
# Src. Name	1063.5 Name: Thermo Fisher LTQ-FT; [M-H]-; GM2-alpha
82 L Thermo Finnigan LCQ DECA ion trap; [M-H]-; PIM3(19:0/16:0)	TUUH <u>MW:</u> 1394 <u>IDH:</u> SFec. List Comment: GM2alpha ganglioside (putative): [M-H]-: : Prec. m/z: 1354.783:M
83 L Inerro LCU Deca XP MAX (on trap; [M+Na+; DibDG 34:1	536.4 <u>9 largest peaks:</u>
85 L Thermol TD (M+H)+PC 341.	
86 L Thermo Finnigan LTQ linear ion trap; [M+Na]+; TG 52:1	300 680.4 100.00 1336.5 100.00 1138.6 50.00 1021.3 30.00
87 L Thermo Finnigan LTQ linear ion trap; [M+NH4]+; TG 52:1	Plot/Text of Search Spectrum λ Plot of Search Spectrum λ Plot/Text of Spec List
88 L Thermo Finnigan LTQ linear ion trap; [M+L]+176 52:1	
90 L Thermo Finnigan LTQ integring that its 16 50.1	860.5 1063.5
91 L Thermo Fisher LTG #104 hor Mark 5 Mark	100-
92 L Thermo Fisher LTQ-FT; [M-H]; PG 36:2	
	50-
Names Structures / Spec List	536.4 698.4 1156.5
custompo+hpos.msp: custompo+hapos.msp: hilic-urine: lipidblast-heg: pc-ac-heg.msp: pc-form-heg.msp: lipidblast-pos: 235370	1021.3 1198.6 1336.5
total spectra	
10-	698.55677
	50-
	1063.68930
1-	
	1354.7847
	560 630 700 770 840 910 980 1050 1120 1190 1260 1330
# Library Score Dot Product Prob. (%) Rev-Dot Name	▲ Thermo Fisher LTQ-FT; [M-H]-; GN Head to Tail MF=168 RMF=436 ▼[glycan]-Cer 34:1; GM2(d18:1/16:)
1 lipidblast-neg 168 436 50.0 617 [glycan]-Cer 34:1; GM2(d18:1/16:0)); [M-H]-; GalNAc	∫ Difference À Head to Tail ∠ Side by Side À Subtraction / 168 436R 50.0P
2 lipidblast-neg 168 436 50.0 617 [glycan]-Cer 34:1; Ganglioside; [M-H]-; NeuAcalpha2	Name: [glycan]-Cer 34:1; GM2(d18:1/16:0)); [M-H]
	100-1354.7847 <u>MW:</u> 1354 <u>ID#</u> : 79298 <u>DB:</u> lipidblast-neg
	Lormment: Parent=1354.78471 Mz_exact=1354.76
	50-
	5 m/z Values and Intensities;
	04 1
	(inidblast-neg) [ducan).Cer 34:1: 6M2(d18:1/16:00): [M]
Names Structures Hit List	Plot/Text of Hit / Plot of Hit /
Lib, Search Other Search Names Compare Librarian MSMS	
	Destride Destride
rui nelų, pressi 1	

Name: Thermo Fisher LTQ-FT; [M-H]; PG 36:2 <u>MW</u>: 773 <u>ID#</u>: 92 <u>DB</u>: Spec. List <u>Comment:</u> PG 36:2; [M-H]; Prec. m/z: 773.5325; Remodeling of phosphatidylglycerol in Synechocystis PCC6803 ;http://dx.doi.org/10.1016/j.bbalip.2009.10.009 <u>7 largest peaks</u>:

<u>Name:</u> Thermo Fisher LTQ-FT; [M+NH4]+; TG 48:2 MW: 820 ID#: 93 DB: Spec. List

Comment: TAG (14:0,16:0,18:2); [M+NH4]+; Prec. m/z: 820.7394;High mass measurement accuracy MS/MS utilizing LTQ-FT; Application of the accurate mass and time tag approach in studies of the human blood lipidome;Jie Ding, Christina M. Sorensen, Navdeep Jaitly, Hongliang Jiang, Daniel J. Orton, Matthew E. Monroe, Ronald J. Moore, Richard D. Smith, Thomas O. Metz;

4 largest peaks:

<u>Name:</u> Thermo Fisher LTQ-FT; [M+NH4]+; TG 50:2 MW: 848 ID#: 94 DB: Spec. List

<u>Comment:</u> TAG (16:0,16:1,18:1) TG 50:2 (putative); [M+NH4]+; Prec. m/z: 848.7707; High mass measurement accuracy MS/MS utilizing LTQ-FT; Application of the accurate mass and time tag approach in studies of the human blood lipidome; Jie Ding, Christina M. Sorensen, Navdeep Jaitly, Hongliang Jiang, Daniel J. Orton, Matthew E. Monroe, Ronald J. Moore, Richard D. Smith, Thomas O. Metz; <u>3 largest peaks:</u>

📕 NIST MS Search 2.0 - [Peptide, Presearch Default - 7 spectra] - 🗆 × _ 8 × 👗 🖻 🖻 🎒 🔠 👎 🌆 👎 🖬 #/z 🔶 🌹 1. Thermo Fisher LTQ-FT; [M+NH4]+; T(🔽 🛞 🗄 🚇 🔍 ىلىستا 60 🍉 😂 Name: Thermo Fisher LTQ-FT; [M+NH4]+; TG 50:2 # Src. Name 100-575.5017 ٠ MW: 848 ID#: 94 DB: Spec. List 91 Thermo Fisher LTQ-FT; [M-H]-; GM2-alpha L Comment: TAG (16:0.16:1.18:1) TG 50:2 (putative); [M+NH4]+; Prec. m/z; 8] 92 Thermo Fisher LTQ-FT; [M-H]; PG 36:2 L 3 largest peak: 93 Thermo Fisher LTQ-FT; [M+NH4]+; TG 48:2 1 575.5017 999.00 | 549.4861 420.00 | 577.5176 350.00 | 94 Thermo Fisher LTQ-FT; [M+NH4]+: TG 50:2 540 720 • 3 m/z Values and Intensities: 95 Thermo MALDI LTQ ion trap; [M-H]-; Lipid A L F (Spec. List) Thermo Fisher L1 96 Thermo LTQ Orbitrap; ???; MGDG 34:6; L 97 1 Thermo LTQ Orbitrap; [M+NH4]+; TG 52:2 ; 98 L Thermo LTQ Orbitrap; [M-H]- ;PC 32:0 575,5017 99 Thermo LTQ Orbitrap : TG 52:2 L 100-100 Thermo Orbitrap Velos ESI ; [M-H]-; GM1(d18:1/18:0); 1 101 Thermo Fisher LTQ with DESI; [M-H]-; PS 36:1 Т Thanks 1 VO (2000) - 04 10 - CL 70-10 1.01 50 549,4861 Names 🖌 Structures 🖊 Spec List custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370 total spectra 10-831.76751 50-100-549.48798 1000 900 800 700 600 500 400 300 200 ά 100 840 540 570 6Ó0 630 660 690 720 750 780 810 # Library Score Dot Product Prob. (%) Rev-Dot Name Thermo Fisher LTQ-FT; [M+NH4]+ Head to Tail MF=568 RMF=941 [TG 50:2; [M+NH4]+; TG[16:0/16: Difference λ Head to Tail \bigwedge Side by Side λ Subtraction , 568 941R 97.3P 568 941 97.3 941 lipidblast-pos TG 50:2; [M+NH4]+; TG(16:0/16:1/18:1) 2 lipidblast-pos 78 506 0.97 674 TG 50:2; [M+NH4]+; TG(16:0/16:0/18:2) Name: TG 50:2; [M+NH4]+; TG(16:0/16:1/18:1) 506 674 3 lipidblast-pos 78 0.97 TG 50:2; [M+NH4]+; TG(16:0/17:1/17:1) MW: 848 ID#: 75736 DB: lipidblast-pos 100H 559 4 lipidblast-pos 56 420 0.38 TG 50:2; [M+NH4]+; TG(16:0/17:0/17:2) Comment: Parent=848.77025 Mz exact=848.7702 34 299 674 4 largest peaks: lipidblast-pos 0.15 TG 50:2: [M+NH4]+: TG(16:1/16:1/18:0) 50-549.48798 999.00 | 575.50362 999.00 | 577.5 26 559 6 lipidblast-pos 248 0.11 TG 50:2; [M+NH4]+; TG(14:1/16:1/20:0) 831.76751 4 m/z Values and Intensities: lipidblast-pos 26 248 0.11 559 TG 50:2; [M+NH4]+; TG(16:1/17:0/17:1) 7 549.48798 999.00 [M+NH4]-sn3-18 575.50362 999.00 [M+NH4]-sn1-18 560 630 700 770 840 (lipidblast-pos) TG 50:2; [M+NH4]+; TG(16:0/16:1/18:1 Names / Structures / Hit List Plot/Text of Hit / Plot of Hit / Other Search MSMS Lib. Search Names Compare Librarian Peptide Peptide

Name: Thermo MALDI LTQ ion trap; [M-H]-; Lipid A <u>MW:</u> 1823 <u>ID#:</u> 95 <u>DB:</u> Spec. List <u>Comment:</u> Lipid A from MKM10 F. tularensis; [M-H]-; Prec. m/z: 1823.9; C94H178N2O25P2; LipidA-PP-[14/14/14/14/14/14]; DOI: 10.1002/jms.614; Identification of LpxL, a Late Acyltransferase of Francisella tularensis; 10.1128/IAI.01288-06 10 largest peaks:

Name: Thermo LTQ Orbitrap; ???; MGDG 34:6;

MW: 769 ID#: 96 DB: Spec. List

<u>Comment:</u> MGDG 34:6; wrong adduct [M+H]+; Prec. m/z: 769.48;RT 10.45 min ; Advanced Mass Spectrometry Methods for Analysis of Lipids from Photosynthetic Organisms; Bettina Seiwert, Patrick Giavalisco, and Lothar Willmitzer; dx.doi.org/10.1007/978-90-481-2863-1_20 <u>3 largest peaks:</u>

<u>Name:</u> Thermo LTQ Orbitrap; [M+NH4]+; TG 52:2 ; <u>MW:</u> 876 <u>ID#:</u> 97 <u>DB:</u> Spec. List <u>Comment:</u> TAG(18:1/18:1/16:0); TAG OOP; APCI ; Prec. m/z: 876.7995; Computer assisted Interpretation of Triacylglycerols Mass Spectra;Josef Cvacka and Edita Kofronová <u>4 largest peaks:</u>

KIST MS Search 2.0 - [Peptide, Presearch Default - 145 spectra]		
Eile <u>S</u> earch <u>Vi</u> ew <u>T</u> ools <u>O</u> ptions <u>W</u> indow <u>H</u> elp		
🚳 🍃 🚔 📮 1. Thermo LTQ Orbitrap; [M+NH4]+; TG 💌 🛞 🖳 😥		
# Src. Name 91 L Thermo Fisher LTQ-FT; [M-H]; GM2-alpha 92 L Thermo Fisher LTQ-FT; [M-H]; PG 36:2 93 L Thermo Fisher LTQ-FT; [M+NH4]+; TG 48:2 94 L Thermo Fisher LTQ-FT; [M+NH4]+; TG 50:2 95 L Thermo ALDI LTQ ion trap; [M-H]; Lipid A 96 L Thermo LTQ Orbitrap; ???; MGDG 34:6; 97 L Thermo ITQ Orbitrap; ???; MGDG 34:6;	100- 876.7995 100- 876.7995 100- 100- <td< th=""></td<>	
37 L Thermo LTQ Orbitrap; [M-H]; PC 32:0 98 L Thermo LTQ Orbitrap; TG 52:2 100 L Thermo Orbitrap (TG 52:2) 100 L Thermo Orbitrap (TG 52:2) 101 L Thermo Fisher LTQ with DESI; [M-H]; PS 36:1 102 L Thermo Fisher LTQ with DESI; [M-H]; PS 36:1 103 L Thermo Fisher LTQ with DESI; [M-H]; PS 36:1 104 Names & Structures / Spec List	1 100- 500- 500- 500- 577.5180 603.5335	
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370 total spectra	859.774	
1000-1 100- 10-	50- 50-	
	- 100- 577.51926 570 500 520 550 500 720 750 750 910 940 970	
# Library Score Dot Product Prob. (%) Rev-Dot Name	A Thermo LTQ Orbitrap; [M+NH4]+; T Head to Tail MF=766 RMF=980 ▼TG 52:2; [M+NH4]+; TG(16:0/18:	
1 lipidblast-pos 765 980 78.2 992 TG 52:2; [M+NH4]+; TG[16:0718:1718:1] 2 lipidblast-pos 53 460 0.78 585 TG 52:2; [M+NH4]+; TG[16:0718:1718:1] 3 lipidblast-pos 53 460 0.78 585 TG 52:2; [M+NH4]+; TG[16:1718:0718:1] 4 lipidblast-pos 53 460 0.78 585 TG 52:2; [M+NH4]+; TG[16:1718:0718:1] 5 lipidblast-pos 53 460 0.78 585 TG 52:2; [M+NH4]+; TG[16:0718:0720:1] 4 lipidblast-pos 53 460 0.78 585 TG 52:2; [M+NH4]+; TG[16:0716:0720:2] 5 lipidblast-pos 49 440 0.66 713 TG 52:2; [M+NH4]+; TG[16:0716:0720:2] 6 custompc+n 42 258 0.50 310 PC 41:3; [M+Na]+; GPCho[15:1[32]/26:2[52,92] ♥ 7 custompc+n 42 258 0.50 310 PC 41:3; [M+Na]+; GPCho[15:1[32]/26:2[52,92] ♥ 8 custompc+n 42 258 0.50 310 PC 41:3; [M+Na]+; GPCho[15:1[32]/26:2[52,92] ♥ Imames Names	Name: TG 52:2; [M+NH4]+; TG [16:0/18:1/18:1] 100-	
	Dentide Dentide	
or nely press rit		

<u>Name:</u> Thermo LTQ Orbitrap; [M-H]- ;PC 32:0 <u>MW:</u> 792 <u>ID#:</u> 98 <u>DB:</u> Spec. List <u>Comment:</u> PC 32:0; PC(14:0/18:0); [M-H]- ; Prec. m/z: 792.57; Essential Lipidomics Experiments Using the LTQ Orbitrap Hybrid Mass Spectrometer; Thermo Application Note 367 <u>1 largest peaks:</u>

RIST MS Search 2.0 - [Peptide, Presearch Default - 21 spectra]	
Eile Search View Iools Options Window Help	
※ 階 電 魯 証 📲 🌆 📲 田 🚧 🔶 🥊	
🚳 🍃 🖻 📫 1. Thermo LTQ Orbitrap; [M-H]- ;PC 32:(🔤 🛞 🖳 🔍 🍭 🔍	
# Src. Name	Name: Thermo LTQ Orbitrap; [M-H]- ;PC 32:0
91 L Thermo Fisher LTQ-FT; [M-H]; GM2-alpha 92 L Thermo Fisher LTD-FT; [M-H]: PG 36:2	100- <u>Comment:</u> PC 32:0; PC(14:0/18:0); [M-H]- ; Prec. m/z: 792.57; Essential Lip
93 L Thermo Fisher LTQ-FT; [M+NH4]+; TG 48:2	0 1 1 argest peaks: 718.53778 999.00 1
94 L Thermo Fisher LTQ-FT; [M+NH4]+; TG 50:2 95 L Thermo MALDILTQ ion tran: [M-H]-: Lipid A	750 800 1 m/z Values and Intensities:
96 L Thermo LTQ Orbitrap; ???; MGDG 34:6;	Plot/Text of Search Spectrum Plot of Search Spectrum Plot/Text of Spec List
97 L Thermo LTQ Urbitrap; [M+NH4]+; TG 52:2 ; 98 L Thermo LTQ Orbitrap; [M-H]+; PC 32:0	
99 L Thermo LTQ Orbitrap ; TG 52:2	100-
100 L Thermo Fisher LTQ with DESI; [M-H]; PS 36:1	
100 I Theme 1900 (colored BALID - OL 70:10	50-
Names Structures Spec List	
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370 total spectra	
	792.57544
	50-
	100- 718 53866
# Library Score Dot Product Prob. (%) Rev-Dot Name	[▲Thermo LTQ Orbitrap; [M-H]- ;PC1 Head to Tail MF=0 RMF=912 [▼PC 32:0; [M-Ac-H]-; GPCho(16:0/1
1 pc-ac-neg.m 0 912 4.76 913 PC 32:0; [M-Ac-H]-; GPCho(16:0/16:0)	Difference A Head to Tail A Side by Side A Subtraction 0 912R 4.76P
2 pc-ac-neg.m 0 876 4.76 877 PC 32:0; [M-Ac-H]-; GPCho(5:0/25:0) 3 pc-ac-neg.m 0 876 4.76 877 PC 32:0; [M-Ac-H]-; GPCho(7:0/25:0)	Name: PC 32:0; [M-Ac-H]; GPCho(16:0/16:0)
4 pc-ac-neg.m 0 876 4.76 877 PC 32:0; [M-Ac-H]-; GPCho(8:0/24:0)	Comment: Parent=792.57544 Mz_exact=792.5754
5 pc-ac-neg.m 0 876 4.76 877 PC 32:0; [M-Ac-H]-; GPCho(9:0/23:0)	50- 50- 50- 50-
7 pc-ac-neg.m 0 876 4.76 877 PC 32:0; [M-Ac-H]-; GPCho[10:0/22:0]	792.57544 3m/z Values and Intensities:
8 pc-ac-neg.m 0 876 4.76 877 PC 32:0; [M-Ac-H]-; GPCho(12:0/20:0)	718.53866 999.00 [M-CH3]-(-15)
Name & Structures / Hit List	(pc-ac-neg.msp) PC 32:0; [M-Ac-H]; GPCho(16:0/16:0
Lik Cause Other Carrola Namos Compare Libration MOME	
Lib, Search Uniel Search Names Compare Libranan MSMS	
or Help, press F1	Peptide Peptide //

<u>Name:</u> Thermo LTQ Orbitrap ; TG 52:2 <u>MW:</u> 876 <u>ID#:</u> 99 <u>DB:</u> Spec. List <u>Comment:</u> TAG(18:1/18:1/16:0); APCI ; Prec. m/z: 876.7995; Computer assisted Interpretation of Triacylglycerols Mass Spectra;Josef Cvacka and Edita Kofronová <u>4 largest peaks:</u>

Name: Thermo Orbitrap Velos ESI ; [M-H]-; GM1(d18:1/18:0); MW: 1544 ID#: 100 DB: Spec. List Comment: GM1 ganglioside; GM1(d18:1/18:0); [M-H]-; Prec. m/z: 1544.9; ; Localization, Imaging and Structural Analysis of Sialylated Glycosphingolipids in Brain Tissue Sections by Mass Spectrometry.; Benoit Colsch1, Shelley N. Jackson1, Sucharita M. Dutta2, Alice M. Delvolv1, Amina S, Woods1,: ASMS2010: http://www.asms.org/asms10pdf/ASMS201020798.0375VER.4.pdf

10 largest peaks:

<u>Name:</u> Thermo Fisher LTQ with DESI; [M-H]-; PS 36:1 <u>MW:</u> 788 <u>ID#:</u> 101 <u>DB:</u> Spec. List <u>Comment:</u> PS(18:0/18:1); [M-H]-; Prec. m/z: 788.2; Desorption Electrospray Ionization (DESI) Mass Spectrometry and Tandem Mass Spectrometry (MS/MS) of Phospholipids and Sphingolipids: Ionization, Adduct Formation, and Fragmentation; Nicholas E. Manicke, Justin M. Wiseman, Demian R. Ifa and R. Graham Cooks; <u>6 largest peaks:</u>

File Search View Tools Options Window Help
Image:
Image: Solution of the second seco
Src Name Name: Thermo Fisher LTO with DESI: [M-H]: PS 36:1
95 L Thermo MALDI LTQ ion trap; [M-H]-; Lipid A 100-701.2 MW: 788 ID#: 101 DB: Spec. List
96 L Thermo LTQ Orbitrap; ???; MGDG 34:6; 97 L Thermo LTQ Orbitrap; ???; MGDG 34:6; 97 419.2 6 largest peaks:
97 L Thermo Li Q Urbitrap; (M+NH4)+; TG 52/2 ; 98 L Thermo LTQ Orbitrap; (M+NH4)+; TG 52/2 ; 98 J Thermo LTQ Orbitrap; (M+NH4)+; TG 52/2 ; 99 J Thermo LTQ Orbitrap; (M+NH4)+; TG 52/2 ; 98 J Thermo LTQ Orbitrap; (M+NH4)+; TG 52/2 ; 99 J Thermo LTQ Orbitrap; (M+NH4)+; TG 52/2 ; 90 J Thermo LTQ Orbitrap; (M+NH4)+; TG 52/2 ; 91 J THERMO LTQ Orbitrap; (M+NH4)+; 91 J THERMO LTQ Orbit
99 L Thermo LTQ Orbitrap ; TG 52:2 (Spec. List) Thermo Fisher L1
100 L Thermo Orbitrap Velos ESI ; [M-H]; GM1(d18:1/18:0); 101 L Thermo Eicher LTD with DECI- (M H1: PS 30:1
102 L Themo LXQ iontrap: [M-H]; CL 76:10
103 L Thermo LXQ iontrap; ESI; [M-H]-; PS 38:4 100-
104 L Thermo LXQ iontrap; ESI; (M-H); PS 422 MX
Names / Structures / Spec List / 10.0
total spectra
1000 ₁ 417.24079
100-
10-
300 350 400 450 500 550 600 650 700 750 800
H Library Score Dot Product Product Product Name A Interno Fisher LTQ with DESt; [M] Head to Tail M F=75 RMF=853 (▼P5.35; 1; [M-H]; GPSer[18:0/18:1] Interno Fisher LTQ with DESt; [M] Head to Tail M F=75 RMF=853 (▼P5.35; 1; [M-H]; GPSer[18:0/18:1] Difference A Head to Tail A Side by Side A Subtraction / 75.863R 1.70P
2 birthasher 75 863 1.70 866 PS 300; (min; di Sec(100/101(112))
3 lipidblast-neg 75 863 1.70 866 PS 36:1; [M-H]; GPSer[18:0/18:1[132]] 100 701.51215 Name: PS 36:1; [M-H]; GPSer[18:0/18:1[14]]
4 lipidblast-neg 75 863 1.70 866 PS 36:1; [M-H]; GPSer(18:0/18:1(17Z))
5 lipidblast-neg 75 863 1.70 866 PS 36.1; [M-H]; GPSer(18:0/18:1(4E)) 50-
6 lipidblast-neg /5 863 1./U 866 PS 36.1; [M-H]; GPSer(18:0/18:1(62)) 417.24079 281.24790 100.00 283.26354 100.00 283.26354 100.00 283.26354 100.00
7 ipipulastrieg 75 003 1.70 000 F5 30.1; [M-H]; GFSet[16.0/10.1(72,1)]
Image: Section of the sectio
Names (Structures / Hit List Plot/Text of Hit / Plot of Hit /
Lib, Search Other Search Names Compare Librarian MSMS
Peptide Peptide

Name: Thermo LXQ iontrap; [M-H]-; CL 76:10 <u>MW</u>: 1499 <u>ID#</u>: 102 <u>DB</u>: Spec. List <u>Comment</u>: CL 76:10; MIX; [M-H]-; Prec. m/z: 1448.0; Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation; doi:10.1152/ajplung.00035.2010 10 largest peaks:

Name: Thermo LXQ iontrap; ESI; [M-H]-; PS 38:4 <u>MW:</u> 810 <u>ID#:</u> 103 <u>DB:</u> Spec. List <u>Comment:</u> PS 38:4; PS(18:0/20:4); [M-H]-; Prec. m/z: 810.5; Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation; doi:10.1152/ajplung.00035.2010 7 largest peaks:

Name: Thermo LXQ iontrap; ESI; [M-H]-; PS 42:2 MIX <u>MW:</u> 870 <u>ID#:</u> 104 <u>DB:</u> Spec. List <u>Comment:</u> PS 42:2 mix (ox); PS(18:1/24:1); [M-H]-; Prec. m/z: 870.5; Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation; doi:10.1152/ajplung.00035.2010 <u>10 largest peaks:</u>

Name: Thermo LTQ Orbitrap; [M-H]-; NA <u>MW:</u> 772 <u>ID#:</u> 105 <u>DB:</u> Spec. List <u>Comment:</u> PE mix (unresolved); [M-H]-; Prec. m/z: 772.5; Shotgun Lipidomics Identifies a Paired Rule for the Presence of Isomeric Ether Phospholipid Molecular Species; Kui Yang, Zhongdan Zhao, Richard W. Gross, Xianlin Han <u>10 largest peaks:</u>

PE MIX (unresolved)

Name: Thermo LTQ Orbitrap; [M-H]-; plasmenyl-PE 38:4 <u>MW:</u> 750 <u>ID#:</u> 176 <u>DB:</u> Text File <u>Comment:</u> plasmenyl-PE 18:0-20:4 (plasmenylethanolamine); [M-H]-; Prec. m/z: 750.54; Shotgun Lipidomics Identifies a Paired Rule for the Presence of Isomeric Ether Phospholipid Molecular Species; Kui Yang, Zhongdan Zhao, Richard W. Gross, Xianlin Han <u>8 largest peaks:</u>

<u>Name:</u> Thermo Finnigan TSQ-7000 triple quadrupole; [M+Li]+; DG 34:1 <u>MW:</u> 601 <u>ID#:</u> 107 <u>DB:</u> Spec. List <u>Comment:</u> DAG(16:0/18:1); [M+Li]+; Prec. m/z: 601.7; Electrospray Ionization/Mass Spectrometric Analyses of Human Promonocytic U937 Cell Glycerolipids and Evidence That Differentiation Is Associated with Membrane Lipid Composition Changes That Facilitate Phospholipase A2 Activation; DOI 10.1074/jbc.M908342199 <u>10 largest peaks:</u>

Name: Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M-H]-; CL 68:3 <u>MW:</u> 1401 <u>ID#:</u> 174 <u>DB:</u> Text File

<u>Comment:</u> Cardiolipin CL (18:1/16:0/18:1/16:1); CL 68:3; [M-H]-; Prec. m/z: 1401.9; Structural Characterization of Cardiolipin by Tandem Quadrupole and Multiple-Stage Quadrupole Ion-Trap Mass Spectrometry with Electrospray Ionization;John Turk, Elizabeth R. Rhoades, David G. Russell, Yixin Shi and Eduardo A. Groisman;http://dx.doi.org/10.1016/j.jasms.2004.12.015 10 largest peaks:

SNIST M5 Search 2.0 - [Peptide, Presearch Default - 160 spectra]		
File Search View Iools Options Window Help		
🕲 🎾 🚔 🗐 1. Thermo Finnigan MAT TSQ 7000 Trip 🗹 🛞 🖳 😥 🔍		
# Src. Name 107 A Thermo Finnigan TSQ-7000 triple quadrupole; [M+L]+; DG 34:1 108 A Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M+H]+; CL 68:3 109 A Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M+H]+; CL 68:3 100 A Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M+H]+; CL 68:2 110 A Thermo Finnigan TSQ Quantum Triple Quadrupole; [M+H]+; PC 32:0 112 A Thermo Finnigan TSQ Quantum Triple Quadrupole; [M+H]+; PC 32:0 113 A Thermo Finnigan TSQ Quantum Triple Quadrupole; [M+H]+; PC 32:0 114 A Waters AutoSpec magnetic sector MS; [M+H]+; PC 36:2 115 A Waters micro QTOF ; [M+Na]+; MGDG 38:4 116 A Waters Micromass Q-TOF Micro ; [M-H]+; PG 44:12 117 A Waters MicroMass QqQ triple quadrupole; [M-H]+; SQDG 30:0 100 A Waters MicroMass QqQ triple quadrupole; [M-H]+; CL 74:0 115 A Waters MicroMass QqQ triple quadrupole; [M-H]+; SQDG 30:0 116 A Waters MicroMass QqQ triple quadrupole; [M-H]+; CL 74:0 117 A Waters MicroMass QqQ triple quadrupole; [M-H]+; CL 74:0 118 A	100 281 100 281 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 111 101 111 102 111 103 111 104 111 105 111 106 1111 107 1111 100 1111 1100 1111 1100 1111 1100 1111 1111 1111 1111 1111 1111 1111 1111<	
# Library Score Dot Product Prob. (%) Rev-Dot Name	240 360 480 600 720 840 360 1080 1200 1320 ▲Themo Finnigan MAT TSQ 7000 Head to Tail MF=366 RMF=582 ▼CL 68:3: (M-H1: CL(16:0/18:1/16)	
1 lipidblast-neg 368 584 35.3 604 CL 68:3; [M-H]-; CL(16:1/18:1/18:1/16:0)	Difference A Head to Tail Side by Side A Subtraction / 366 582R 32.6P	
2 lipidblastneg 366 592 32.6 607 CL 68:3; [M-H]; CL(16:0/18:1/16:1/18:1) 3 lipidblastneg 336 549 9.06 584 CL 68:3; [M-H]; CL(16:0/18:1/18:1/16:0) 4 lipidblastneg 333 545 8.00 569 CL 68:3; [M-H]; CL(16:0/18:1/18:1/18:1/16:1) 5 lipidblastneg 306 515 2.35 549 CL 68:3; [M-H]; CL(16:0/18:1/18:1/18:1) 6 lipidblastneg 306 515 2.35 549 CL 68:3; [M-H]; CL(16:0/18:1/16:1/18:1) 7 lipidblastneg 306 515 2.35 549 CL 68:3; [M-H]; CL(16:0/18:1/16:1/18:1) 7 lipidblastneg 302 510 1.99 548 CL 68:3; [M-H]; CL(16:0/18:1/16:0/18:2) 8 lipidblastneg 301 509 1.91 542 CL 68:3; [M-H]; CL(16:0/18:1/16:1/18:1) ▼ 1 Mames Structures Hit List Hit List Lib. Search Other Search Names Compare Librarian MSMS	100 671.46489 50 417.24045 0 1145.73998 280 560 840 1120 1100 1120 1112 1100 1112 1100 11145.73998 671.46489 11145.73998 10.13724625 11145.73998 11.145.73998 11145.73998 11.145.73998 11145.73998 11.145.73998 11145.73998 11.145.73998 11145.73998 11.145.73998 11145.73998 11.145.73998 11145.73998 11.145.73998 11145.73998 11.145.73998 11145.73998 11.145.73998 11145.73998 11.145.73998 11145.73998 11.145.73998 11120 1120 11120 1120 11120 1120 11120 1120 11120 1120 11120 1120 11120 1120 11120 1120 111120 1120 11120 1120 </th	
	Peptide Peptide //	

Name: Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M-H]-; CL 72:8 <u>MW:</u> 1448 <u>ID#:</u> 109 <u>DB:</u> Spec. List <u>Comment:</u> CL 72:8; Cardiolipin CL (18:2/18:2/18:2); CL 72:8; [M-H]-; Prec. m/z: 1448.0; CARDIOLIPIN LOSS DURING MYOCARDIAL ISCHEMIA; Am J Physiol Heart Circ Physiol 280: H2770-H2778, 2001 3 largest peaks:

<u>Name:</u> Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M-H]-; CL 68:2 <u>MW:</u> 1403 <u>ID#:</u> 110 <u>DB:</u> Spec. List <u>Comment:</u> Cardiolipin CL (18:1/16:0/18:1/16:0); CL 68:2; [M-H]-; Prec. m/z: 1403.9; Structural Characterization of Cardiolipin by Tandem Quadrupole and Multiple-Stage Quadrupole Ion-Trap Mass Spectrometry with Electrospray Ionization <u>10 largest peaks:</u>

Name: Thermo Finnigan TSQ Quantum Triple Quadrupole; [M+H]+; PC 32:0 <u>MW</u>: 734 <u>ID#</u>: 111 <u>DB</u>: Spec. List <u>Comment</u>: PC 32:0; PC(16:0/16:0); [M-H]-; Prec. m/z: 734.8; Lipidomics: An analysis of cellular lipids by ESI-MS; Stephen Milne, Pavlina Ivanova, JeVrey Forrester, H. Alex Brown; Methods 39 (2006) 92-103 <u>6 largest peaks</u>:

<u>Name:</u> Thermo Finnigan TSQ Quantum Triple Quadrupole; [M-H]-; PI 32:0 <u>MW:</u> 809 <u>ID#:</u> 112 <u>DB:</u> Spec. List <u>Comment:</u> PI 32:0; PI(16:0/16:0); [M-H]-; Prec. m/z: 809.7; Lipidomics: An analysis of cellular lipids by ESI-MS; Stephen Milne, Pavlina Ivanova, JeVrey Forrester, H. Alex Brown; Methods 39 (2006) 92-103 <u>10 largest peaks</u>

Name: Thermo Finnigan TSQ Quantum Triple Quadrupole; [M-H]-; PS 36:2 <u>MW:</u> 786 <u>ID#:</u> 113 <u>DB:</u> Spec. List <u>Comment:</u> PS 36:2; PC(18:1/18:1); [M-H]-; Prec. m/z: 786.8; Lipidomics: An analysis of cellular lipids by ESI-MS; Stephen Milne, Pavlina Ivanova, JeVrey Forrester, H. Alex Brown; Methods 39 (2006) 92-103 7 largest peaks:

Name: Waters AutoSpec magnetic sector MS; [M+H]+; PC 24:0 MW: 622 ID#: 114 DB: Spec. List

Comment: PC(12:0/12:0); Matrix-assisted laser desorption/ionization mass spectrometry of phospholipids; D. J. Harvey; Journal of Mass Spectrometry, Volume 30, Issue 9 (p 1333-1346)

5 largest peaks:

📮 NIST MS Search 2.0 - [Peptide, Presearch Default - 96 spectra]		
Eile Search View Tools Options Window Help		
X 🖻 🖻 👙 🏭 🎇 🐺 🛱 🖂 🚧 🔶 🧣		
🔞 🗫 😅 📮 1. Waters AutoSpec magnetic sector M 🔽 🛞 🖺 😥 🍭 🔍		
t Src. Name	Name: Waters AutoSpec magnetic sector MS; [M+H]+; PC 24:0	
109 L Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M-H]-; CL 72:8	100 422.6 MW: 622 ID#: 114 DB: Spec. List	
110 L Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M-H]; CL 68:2	5 largest peaks:	
112 L Thermo Finnigan TSQ Quantum Triple Quadrupole; [M-H]; PI 32:0	622.7 999.00 422.6 620.00 440.3 600.00 644.6 600.00 585.5 10 520 650 5 m/z Values and Intensities:	
113 L Thermo Finnigan TSQ Quantum Triple Quadrupole; [M-H]-; PS 36:2	(Spec. List) Waters AutoSper	
115 L Waters micro QTOF ; [M+Na]+; MGDG 38:4	Plot/Text of Search Spectrum Plot of Search Spectrum Plot/Text of Spec List	
116 L Waters Micromass Q-TOF Micro ; [M-H]; PG 44:12	622.7	
117 L Waters MicroMass Ugu triple quadrupole; [M-H]+; 5U/D 30:0	1 100-	
119 L Waters QTOF Premier; [M-H]-; Ac2PIM2	422.6 440.3 644.6	
100 L MALLO OTOF Deserve AUDI, DA 04.1	50-	
Names Structures Spec List	595.5	
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370		
	50 604 43421	
104		
	- 100- 563.37127	
# Library Score Dot Product Prob. (%) Rev-Dot Name 1 Fridblackers 230 F14 734 533 DC 24.0.00.00.00.00.00.00.00.00.00.00.00.00.	Waters AutoSpec magnetic secto Head to Tail MF=236 RMF=514 ▼PC 24:0; [M+H]+; GPCho(12:0/12)	
1 lipidplast-pos 236 514 72.4 533 PC 24:0; [M+H]+; GPC ho(12:0/12:0) = 2 custompo+b 196 407 14.7 496 PC 24:0; [M+H]+; GPC ho(12:0/12:0)		
3 lipidblast-pos 138 355 3.05 612 MGDG 23:0; [M+NH4]+; MGDG(11:0/12:0)	100 563.37127 Name: PC 24:0; [M+H]+; GPCho[12:0/12:0]	
4 lipidblast-pos 138 355 3.05 612 MGDG 23:0; [M+NH4]+; MGDG(12:0/11:0)	Comment: Parent=622.44477 Mz_exact=622.4447	
5 lipidblast-pos 79 229 0.55 395 MGDG 25:0; [M+NH4-C0]+; MGDG(12:0/13:0)	50- 604.43421 563 37127 999 00 1 422 26725 600 00 1 440 2	
6 lipidblast-pos /9 229 0.55 395 MGDG 25:0; [M+NH4-C0]+; MGDG (13:0/12:0) 7 lipidblast-pos 61 192 0.29 216 DS 24:0; [M+NH4-C0]+; MGDG (13:0/12:0)	5 m/z Values and Intensities:	
7 iipiuulastineg 61 163 0.26 316 F3 24.0; [MiH]; GPSet(7.0/17.0) 8 iipidblastineg 61 183 0.28 316 PS 24.0; [MiH]; GPSer(17:0/7:0)	0 422.26725 600.00 [M+H]·sn1·H20 [M+H]·sn2·H	
	400 500 500 600 600 600 40000 (100) (100)	
Names (Structures / Hit List Plot/Text of Hit / Plot of Hit /		
Lib. Search Other Search Names Compare Librarian MSMS		
	Peptide Peptide	

Name: Waters micro QTOF ; [M+Na]+; MGDG 38:4 <u>MW:</u> 829 <u>ID#:</u> 115 <u>DB:</u> Spec. List <u>Comment:</u> MGDG(20:1;18:3); NAPOLITANO et al ;J. Agric. Food Chem., Vol. 55, No. 25, 2007; Novel Galactolipids from the Leaves of Ipomoea batatas L.: Characterization by Liquid Chromatography Coupled with Electrospray IonizationQuadrupole Time-of-Flight Tandem Mass Spectrometry <u>10 largest peaks:</u>

NIST MS Search 2.0 - [Peptide, Presearch Default - 94 spectra]		
Eile Search View Tools Options Window Help		
· × 略 8 条 滞 2 m 4 ~ 9		
🔞 🎦 🚔 🔲 1. Waters micro OTOF : [M+Na]+: MGDE 🔍 🚱 🖳 🚱 🚳		
# Src. Name 109 I Thermo Finningan MAT TSD 7000 Triple Quadrupole: [MiHL: CL 72:8]	100-333.4 783.8 <u>Name</u> , waters micro Q10F; (M+Na)+; MGDG 36.4 <u>MW:</u> 829 [D#: 115 <u>DB:</u> Spec. List	
110 L Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M-H]; CL 68:2	519.5 Comment: MGDG(20:1;18:3); NAPOLITANO et al ;J. Agric. Food Chem., Vol.—	
111 L Thermo Finnigan TSQ Quantum Triple Quadrupole; [M+H]+; PC 32:0		
113 L Thermo Finnigan TSQ Quantum Triple Quadrupole; [M-H]-; PS 36:2	350 /UU 335.4 400.00 341.4 400.00 829.9 400.00 519.5 350.00 830.9 30 ▲	
114 L Waters AutoSpec magnetic sector MS; [M+H]+; PC 24:0	Plot/Text of Search Spectrum / Plot of Search Spectrum / Plot/Text of Spec List /	
115 L Waters micro UTUF; (M+Na)+; MGDG 38:4 116 L Waters Micromass Q-TOF Micro : (M-H)-; PG 44:12		
117 L Waters MicroMass QqQ triple quadrupole; [M-H]-; SQDG 30:0		
118 L Waters QqQ triple quadropole VG Quattro II; [M-H]-; GM1	243.2	
120 L Michael OTOF Denvice (MUL) DA 24.1	1 50 8299 8299	
Names Structures Spec List	- 519.5	
/ lcustompc+hpos.msp: custompc+napos.msp: hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	551.5 591.6 633.6	
total spectra		
1 ¹⁰⁰ 1		
10-	50-	
	_ 100- 519 29357	
# Library Score Dot Product Prob. (%) Rev-Dot Name	▲Waters micro QTOF; [M+Na]+; M Head to Tail MF=170 RMF=298 ▼MGDG 38:4; [M+Na]+; MGDG(18)	
1 lipidblast-pos 170 298 5.67 957 MGDG 38:4; [M+Na]+; MGDG(18:3(6Z,9Z,12Z)/	Difference A Head to Tail Side by Side A Subtraction / 170 298R 5.67P	
2 lipidblast-pos 170 298 5.67 957 MGDG 38:4; [M+Na]+; MGDG(18:3(62,92,122)/	Mame: MGDG 38:4; [M+Na]+; MGDG(18:3(6Z,9Z,	
3 lipidbiast-pos 170 298 5.67 957 Mid.Did 38:4; [M+Na]+; Mid.Did 18:3(62,32,122)/ 4 lipidblast-pos 170 298 5.67 957 MiGDG 38:4; [M+Na]+; MiGDG(18:3(62,92,122)/	100- 100- 100- <u>MW: 829 ID#: 12497 DB: lipidblast-pos</u> Comment: Parent=829 58057 Mz_exact=829 5805	
5 lipidblast-pos 170 298 5.67 957 MGDG 38:4; [M+Na]+; MGDG[18:3(9Z,12Z,15Z]	2 largest peaks:	
6 lipidblast-pos 170 298 5.67 957 MGDG 38:4; [M+Na]+; MGDG(18:3(92,122,152)	519.29357 999.00 551.35613 999.00 2 m/z Values and Intensities	
7 lipidblast-pos 170 298 5.67 957 MGDG 38:4; [M+Na]+; MGDG(18:3(92,122,152)	519.29357 999.00 [M+Na]-sn2	
8 IIpidpiast-pos 170 238 5.67 357 MGDG 38:4; [M+Na]+; MGDG [18:3(92,122,152]	260 390 520 650 780 551.35613 999.00 [M+Na]-sn1	
Image: Names / Structures / Image: Names / Structures /		
Lib. Search Other Search Names Compare Librarian MSMS		
	Pentide Pentide /	

Name: Waters Micromass Q-TOF Micro ; [M-H]-; PG 44:12 <u>MW:</u> 865 <u>ID#:</u> 116 <u>DB:</u> Spec. List <u>Comment:</u> 22:6/22:6-GPG; [M-H]- ; mz=865.336; Song et al ;Algorithms for automatic processing of data from mass spectrometric analyses of lipids; Journal of chromatography. B, Analytical technologies in the biomedical and life sciences [1570-0232] Song (2009) volume: 877 issue: 26 page: 2847-2854 10 largest peaks:

Name: Waters MicroMass QqQ triple quadrupole; [M-H]-; SQDG 30:0 <u>MW:</u> 765 <u>ID#:</u> 117 <u>DB:</u> Spec. List <u>Comment:</u> SQDG 30:0; [M-H]-; Prec. m/z: 765.77; CID spectrum; Glyco- and sphingophosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints; http://dx.doi.org/10.1016/j.chemphyslip.2006.11.001 <u>10 largest peaks:</u>

Name: Waters QqQ triple quadropole VG Quattro II; [M-H]-; GM1 <u>MW:</u> 1572 <u>ID#:</u> 118 <u>DB:</u> Spec. List <u>Comment:</u> GM1 (d20:1/C18:0)(?); [M-H]-; Prec. m/z: 1572.5; GM1-gangliosidosis in a cross-bred dog confirmed by detection of GM1-ganglioside using electrospray ionisation-tandem mass spectrometry;DOI 10.1007/s004010000187 <u>10 largest peaks:</u>

Comment from Publication:

Purified bovine brain monosialoganglioside-GM1 consisting of GM1(d18:1–C18:0) and GM1 (d20:1–C18:0) was obtained from Sigma (Poole, UK).

Also magnification (OCR) error possible

🔄 NIST MS Search 2.0 - [Peptide, Presearch Default - 31 spectra]		
Eile Search View Tools Options Window Help		
🔞 🎾 🚔 🚔 1. Waters QqQ triple quadropole VG Qu 🗹 🛞 🗄 😥 🍭 🚳		
# Src. Name	Lang 1 1572 E Name: Waters QqQ triple quadropole VG Quattro II; [M-H]; GM1	
109 L Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M-H]; CL 72:8	100-250.1 1572.5 MW: 1572 ID#: 118 DB: Spec. List 916.5 Comment: GM1 (d20:1/C18:0)(2): [M-H]: Prec. m/z: 1572.5: GM1-gangligsid	
110 L Thermo Finnigan MAT TSQ 7000 Triple Quadrupole; [M+H]+; CL 68:2 111 L Thermo Finnigan TSQ Quantum Triple Quadrupole; [M+H]+; PC 32:0		
112 L Thermo Finnigan TSQ Quantum Triple Quadrupole; [M-H]; PI 32:0		
113 L Thermo Finnigan TSQ Quantum Triple Quadrupole; [M-H]; PS 36:2 114 J Waters AutoSpec magnetic sector MS ([M+H]+; PC 24:0	(Spec. List) Waters QqQ triple	
115 L Waters micro QTOF ; [M+Na]+; MGDG 38:4	Plot/Text of Search Spectrum A Plot of Search Spectrum A Plot/Text of Spec List A	
116 L Waters Micromass Q-TOF Micro ; [M-H]-; PG 44:12 117 L Waters MicroMass QoD triple guadrupple: [M-H]-: SDDG 30:0	100 290.1 1572.5	
118 L Waters QqQ triple quadropole VG Quattro II; [M-H]-; GM1	100-	
119 L Waters QTOF Premier; (M-H); Ac2PIM2	916.5	
Names & Structures / Spec. List	50-	
custome+knos msp: custome+napos msp: kilicurine: lipidblast-neg: pe-ac-neg msp: pe-form-neg msp: lipidblast-neg: 235370	424.1 592.5 794.4 1053.5 1281.5	
total spectra		
1001	592.56651 754.61933	
10-	50- 1281.80472	
	· · · · · · · · · · · · · · · · · · ·	
	100- 1572.90011	
	360 480 600 720 840 960 1080 1200 1320 1440 1560	
# Library Score Dot Product Prob. (%) Rev-Dot Name	▲Waters QqQ triple quadropole VG Head to Tail MF=353 RMF=659 ▼[glycan]-Cer 38:1; GM1(d18:1720:	
1 lipidblast-neg 353 659 10.9 895 [glycan]-Cer 38:1; Ganglioside; [M-H]-; NeuAcalp	Difference A Head to Tail A Side by Side A Subtraction / 353 659R 10.9P	
2 ipidolast-neg 353 659 10.9 855 [gij/can]-Cer 3617 (MT(d18:17200)); [M-H]-; Gal—	1572.9001 Name: [glycan]-Cer 38:1; GM1(d18:1/20:0)); [M-H]	
4 lipidblast-neg 353 659 10.9 895 [glycan]-Cer 38:1; GM1alpha(d18:1/20:0)); [M-H]	100- Comment: Parent=1572.90013 Mz_exact=1572.90	
5 lipidblast-neg 353 659 10.9 895 [glycan]-Cer 38:1; sialyl-lactotetraosylceramide(d1	1281.80472 50 1281.80472 500 00 1 22 1572 90013 999 00 1 1281 80472 500 00 1 22	
b lipidplast-neg 353 659 10.9 895 [glycan]-Cer 38:1; sialyl[2-6]lactotetraosylceramid; 7 lipidplast-neg 353 659 10.9 895 [glycan]-Cer 38:1; Ganglioside; [M-H]: Galbeta1.	592.56651 5 m/2 Values and Intensities:	
8 lipidblast-neg 353 659 10.9 895 [glycan]-Cer 38:1; Ganglioside; [M-H]-; NeuAcalp 🖵	290.08799 400.00 fon CTTHT6N08-[290.0873: 290 580 870 1160 1450 592.56651 200.00 ion ceramide	
	(lipidblast-neg) [glycan]-Cer 38:1; GM1(d18:1/20:0)); [M	
Hit List Plot/Text of Hit / Plot of Hit		
Lib. Search Other Search Names Compare Librarian MSMS		
	Peptide Peptide	

Name: Waters QTOF Premier; [M-H]-; Ac2PIM2 <u>MW:</u> 1175 <u>ID#:</u> 119 <u>DB:</u> Spec. List <u>Comment:</u> Ac2PIM2(methyl-18:0/16:0); [M-H]-; Prec. m/z: 1175.6753; Synthesis and Structure of Phosphatidylinositol Dimannoside;J. Org. Chem., 2007, 72 (9), pp 3282-3288; 10.1021/jo0625599 10 largest peaks:

Name: Waters QTOF Premier; [M-H]-; Ganglioside; [glycan]-Cer(d18:1, C24:1) <u>MW:</u> 1627 <u>ID#:</u> 162 <u>DB:</u> Text File <u>Comment:</u> IV3Neu5Ac-nLc4Cer (d18:1, C24:1); [M-H]-; Prec. m/z: 1627.10; Mass Spectrometry ReviewsVolume 29, Issue 3, DOI:10.1002/mas.20253 <u>10 largest peaks:</u>

🗧 NIST MS Search 2.0 - [Peptide, Presearch Default - 9 spectra]		
Eile Search View Tools Options Window Help		
X 🖻 🖻 👙 🔠 🌇 🖏 🚔 🖂 🚧 🦛 🦞		
🚳 ⊳ 😅 📫 1. Waters QTOF Premier; [M-H]-; Gangli 🗾 🛞 🖺 🔛 🧶 🔍		
tt Src Name	Name: Waters 0T0F Premier: [M-H1: Ganglioside: [glycan]-Cer(d18:1, C24:1	
118 A Waters QqQ triple quadropole VG Quattro II; [M-H]-; GM1	100-250.16 MW: 1627 ID#: 162 DB: Text File	
119 A Waters QTOF Premier; [M-H]; Ac2PIM2	1627.1 10 largest peaks:	
12U A Waters U I UF Premier; [M-H]-; Ganglioside; [glycan]-Cer[d18:1, U24:1] 121 A Waters OTOE Premier; [M-H]-; Ganglioside; [glycan]-Cer[d18:1, U24:1]		
121 A Waters QTOF Fremier, [M-H]-, Cangiloside, [giydan]-cel(010.1, C10.0)	790 1580 1173.89 31.00 1155.90 18.00 646.68 12.00 470.23 1.00	
123 A Waters QTOF Premier; [M-H]-; NA	Itext File) Waters QTUF Prei	
124 A Waters QTOF Premier; [M-H]-; PE 34:0		
125 A Waters UTUF Premier; [M-H]-; PE 34:1	290.16	
127 A Waters OTOF Premier: [M-H]-: NA	1004	
128 A Waters QTOF Premier; [M-H]-; PS 34:1		
	50- 1627.1	
Names Structures Spec List	1335.95	
[ipidblast-neg; lipidblast-pos; custompc+hpos.msp; custompc+napos.msp; pc-ac-neg.msp; pc-form-neg.msp; 234420 total spectra	470,23 646,68 808,73 970,81 1173,89	
10-		
	646.61343 808.66625	
	50-	
1	100-	
t Library Score Dot Product Prob (%) Rev-Dot Name	350 480 500 720 840 950 1080 1200 1320 1440 1550	
1 lipidplast-neg 65 806 11.1 834 [glycani-Cer 42:2: Ganglioside: [M-H]-: NeuAcalo	Difference A Head to Tail Side by Side A Subtraction 65 806R 11.1P	
2 lipidblast-neg 65 806 11.1 834 [glycan]-Cer 42:2; GM1(d18:1/24:1)); [M-H]-; Gall	Name: [dwaw].Cer 42:2: GM1(d19:1/24:1)): [M,H]	
3 lipidblast-neg 65 806 11.1 834 [glycan]-Cer 42:2; cis GM1, GM1b(d18:1/24:1)); [1626.9470 Nw: 1626 ID#; 79312 DB; lipidblast-neg	
4 lipidblast-neg 65 806 11.1 834 [glycan]-Cer 42:2; GM1alpha(d18:1/24:1)); [M-H]	Comment: Parent=1626.94708 Mz_exact=1626.94	
5 lipidblast-neg 65 806 11.1 834 [glycan]-Cer 42:2; sialyl-lactotetraosylceramide(d1	1335.85167 <u>5 largest peaks:</u> 1626.94708.999.001.1335.85167.500.001.20	
6 lipidblast-neg 65 806 11.1 834 [glycan]-Cer 42:2; sialyl(2-6)lactotetraosylceramid	646.61343 5 m/z Values and Intensities:	
7 lipidplast-neg 65 806 11.1 834 [glycan]-Cer 42:2; Ganglioside; [M-H]-; Galbeta1- 0 [widthast-neg 65 000 11.1 004 [etwach] Cer 40:0; Cer 40:0; Cer 40:0; M-H)-; Calbeta1-	0 290.08759 400.00 ion C11H16N08- (290.08759	
o iipiuulaseney oo ooo iii.i oo4 (giycan)-teri4∠:2; taangiloside; (M-H)-; NeuAcab	300 600 900 1200 1500 646.61.343 200.00 ion ceramide	
Image: Names / Structures / Image: Names / Structures / <t< th=""></t<>		
Lib. Search Other Search Names Compare Librarian MSMS		
	Peptide Peptide //.	

Name: Waters QTOF Premier; [M-H]-; Ganglioside; [glycan]-Cer(d18:1, C16:0) <u>MW:</u> 1516 <u>ID#:</u> 161 <u>DB:</u> Text File <u>Comment:</u> IV3Neu5Ac-nLc4Cer(d18:1, C16:0); [M-H]-; Prec. m/z: 1516.95; Mass Spectrometry ReviewsVolume 29, Issue 3, DOI:10.1002/mas.20253 10 largest peaks:

Name: Waters QTOF Premier; [M-H]-; PA 34:1 <u>MW:</u> 673 <u>ID#:</u> 120 <u>DB:</u> Spec. List <u>Comment:</u> PA 34:1 ; PS(16:0/18:1); [M-H]-; Prec. m/z: 673.5; Profiles of photosynthetic glycerolipids in three strains of Skeletonema determined by UPLC-Q-TOF-MS; Journal of Applied Phycology; DOI: 10.1007/s10811-010-9553-3 <u>8 largest peaks:</u>

Name: Waters QTOF Premier; [M-H]-; NA <u>MW:</u> 716 <u>ID#:</u> 121 <u>DB:</u> Spec. List <u>Comment:</u> PC 32:1 (wrong prec m/z (730, 776.790) ; [M-H]-; Prec. m/z: 716.5; Profiles of photosynthetic glycerolipids in three strains of Skeletonema determined by UPLC-Q-TOF-MS; Journal of Applied Phycology; DOI: 10.1007/s10811-010-9553-3 <u>4 largest peaks:</u>

Wrong precursor, wrong ID, probably mixed spectrum

Suite and the search 2.0 - [Peptide, Presearch Default - 197 spectra]	https://scifinder.cas.org/
Eile Search View Tools Options Window Help	_ <u>8</u> ×
, la 🖻 🎒 🏭 🕎 🖷 🖬 #/z 🔶 💡	
🚳 🍃 🚔 📮 1. Waters QTOF Premier; [M-H]-; NA 💽 🛞 🖭	
# Src. Name 115 L Waters micro QTOF; [M+Na]+; MGDG 38:4 116 L Waters Micromass Q-TOF Micro; [M-H]; PG 44:12 117 L Waters MicroMass QqU triple quadrupole; [M-H]; SQDG 30:0 118 L Waters QqU triple quadrupole VG Quattro II; [M-H]; SQDG 30:0 119 L Waters QqD F Premier; [M-H]; Ac2PIM2 120 L Waters QTOF Premier; [M-H]; PA 34:1 121 L Waters QTOF Premier; [M-H]; PA 34:1 122 L Waters QTOF Premier; [M-H]; PE 34:0 123 L Waters QTOF Premier; [M-H]; PE 34:1 124 L Waters QTOF Premier; [M-H]; PE 34:1 125 L Waters QTOF Premier; [M-H]; PE 34:1 125 L Waters QTOF Premier; [M-H]; PG 34:1 125 L Waters QTOF Premier; [M-H]; PG 34:1 126 Waters QTOF Premier; [M-H]; PG 34:1 127 L Waters QTOF Premier; [M-H]; PG 34:1 125 L Waters QTOF Premier; [M-H]; PG 34:1 126 Waters QTOF Premier; [M-H]; PG 34:1 127 L Waters QTOF Premier; [M-H]; PG 34:1 126 <td>Name: Waters QTOF Premier; [M-H]: NA. 100- 506.3202 230 460 690 590 (Spec. List) 227.1755 100- 100- 9 200 9 0.127.1755 9 0.1281.2328 9 0.1281.2328 100- 100- 9 100- 9 100- 9 100- 9 100- 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 100-</td>	Name: Waters QTOF Premier; [M-H]: NA. 100- 506.3202 230 460 690 590 (Spec. List) 227.1755 100- 100- 9 200 9 0.127.1755 9 0.1281.2328 9 0.1281.2328 100- 100- 9 100- 9 100- 9 100- 9 100- 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 281.2328 100- 100-
# Library Score Dot Product Prob. (%) Rev-Dot Name	▲ Waters QTOF Premier; [M-H]; NA Head to Tail MF=29 RMF=556 ▼PE 34:1; [M-H]; GPEtn(14:0/20:1
1 lipidblast-neg 29 556 0.99 657 PE 34:1; [M	M-H]-; GPEtn(14:0/20:1(11E))
2 lipidblast-neg 29 556 0.99 657 PE 34:1; [N	M-H]; GPEth(14:0/20:1(11Z))
3 lipidblast-neg 29 556 0.99 657 PE 34:1; [N	M-H]; GPEth(14:0/20:(1(3E)) 100-
4 lipidblast-neg 29 556 0.99 657 PE 34:1; [A	M-H]; GPEth[14//2011[132]]
D ipidblast-neg 29 556 0.99 657 PE 34:1; (M	M-H; CarEm(20:1(11E)/14:0) 50- 227.20088 999.001 309.27918 999.001 424.2
o iipiubiaseneg 23 336 0.33 637 PE 34:1; (n 7 lipidblasteneg 29 559 0.99 657 DE 24:1; (n	MHD; cpcut(20.1(12)/14.0) 424.24662 488.31426 50.001
r iipidulastineg 20 556 0.35 657 PE 34:1; (f 8 linidblastineg 29 556 0.99 657 PE 34:1; (f	M-H): GPEm(20:1(132)/14:0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	(initialized provide and a second sec
Names Structures	Hit List Plot/Text of Hit / Plot of Hit /
Lib Search Other Search Names Compare Libraria	an MSMS
	Pentide Pentide //

<u>Name:</u> Waters QTOF Premier; [M-H]-; PE 34:0 <u>MW:</u> 718 <u>ID#:</u> 122 <u>DB:</u> Spec. List <u>Comment:</u> PE(17:0/17:0); [M-H]-; Prec. m/z: 718.4834; A Systems Biology Strategy Reveals Biological Pathways and Plasma Biomarker Candidates for Potentially Toxic Statin-Induced Changes in Muscle; 10.1371/journal.pone.0000097 <u>5 largest peaks:</u>

Le Search View Tools Options Mindow Help	Β×
🔞 🗫 🍃 🚔 1. Waters QTOF Premier; [M-H]-; PE 34: 🔻 🕅 🟪 🔎 🥘 🚳	
Here Name: Waters OTOE Premier: MHL: PE 24:0	
# Src. Name Maile: Waters gifter Heiner, [M+1]; 1: 04:0 115 L Waters micro QTOF ; [M+Nal+; MGDG 38:4 100- 718.4832 MW: 718 [D#; 122 DB; Spec. List	
116 L Waters Micromass Q-TOF Micro ; [M-H]; PG 44:12	
117 L Waters MicroMass QQQ triple quadrupole; [M-H]; SQDG 30:0	⊆,
119 L Waters QTOF Premier; [M-H]; Ac2PIM2 (Spec_List) Waters QTOF Pr	<u> </u>
120 L Waters QTOF Premier; [M-H]; PA 34:1 121 L Vision OTOF Duration [M-H]; PA 34:1 Plot/Text of Search Spectrum / Plot of Search Spectrum / Plot/Text of Spec List /	
121 L Waters QTOF Premier; [M-H]; NA	-1
123 L Waters QTOF Premier; [M-H]; PE 34:1	
124 L Waters QTOF Premier; [M-H]-; PG 34:1	534
Names Structures / Spec List	
Custompc+hpos msp: custompc+napos msp: hilic-urine: lipidblast-neg: pc-ac-neg msp: pc-form-neg msp: lipidblast-pos: 235370	
total spectra	
1000-1 466.29353	
# Library Score Dot Product Prob. (%) Rev-Dot Name	17:0
1 lipidblast-neg 70 864 6.16 960 PE 34:0; [M-H]-; GPEtn(17:0/17:0) — 🖓 🗋 Difference 🔪 Head to Tail 🖉 Side by Side \lambda Subtraction / 70 864R 6	6P
2 lipidblast-pos 4 268 0.97 306 MGDG 32:1; [M+NH4-CO]+; MGDG(15:1(92)/17 [Name: PE 34:0; [M-H]; GPEth(17:0/17:0)	
3 ipidolast-pos 4 268 0.97 306 Mid/u 3211 (M+NH4-CU)+/ Mid/u (17:0/15:1(3, 100- 4 linidolast-pos 3 206 0.93 500 MGDG 3211 (M+NH4-CU)+/ MGDG(15:0/17:1(9, 100-	F III
5 lipidblast-pos 3 206 0.93 500 MGDG 32:1; [M+NH4-CO]+; MGDG (17:1(92)/15 3]	
6 custompc+h 3 100 0.93 262 PC 31:1; [M+H]+; GPCho(14:1(9Z)/17:0) 466,29353 200.00 446,29353 200.00 446,29353 200.00 446	
7 custompc+h 3 100 0.93 262 PC 31:1; [M+H]+; GPCho(17:0/14:1(9Z))	
8 lipidblast-neg 2 196 0.89 224 PS 31:1; [M-H]; GPSer(14:1(92)/17:0) 300 400 500 600 700 448.28297 50.00 [M-H]-sn1-H20 [[M-H]-sn2	
Names Structures	
Lib. Search Other Search Names Compare Librarian MSMS	
Peptide Peptide	

Name: Waters QTOF Premier; [M-H]-; PE 34:1 <u>MW:</u> 716 <u>ID#:</u> 123 <u>DB:</u> Spec. List <u>Comment:</u> PE 34:1; PE(16:0/18:1); [M-H]-; Prec. m/z: 716.5; Profiles of photosynthetic glycerolipids in three strains of Skeletonema determined by UPLC-Q-TOF-MS; Journal of Applied Phycology; DOI: 10.1007/s10811-010-9553-3 <u>5 largest peaks:</u>

Suist MS Search 2.0 - [Peptide, Presearch Default - 202 spectra]	https://scifinder.cas.org/
Eile Search View Tools Options Window Help	
🚳 🗫 🗃 📫 1. Waters QTOF Premier; [M-H]-; PE 34: 🗾 🛞 🖺	
tt Src Name	Name: Waters QTOF Premier: IM-H1: PE 34:1
115 L Waters micro QTOF ; [M+Na]+; MGDG 38:4	100- 281.2205 MW: 716 ID#, 123 DB; Spec. List
116 L Waters Micromass Q-TOF Micro ; [M-H] ; PG 44:12	716 5341 5 largest peaks:
118 L Waters QqQ triple quadropole VG Quattro II; [M-H]-; GM1	281.2205 999.00 255.2099 600.00 140.0014 100.00 452.2726 5C
119 L Waters QTOF Premier; [M-H]; Ac2PIM2	(Spec. List) Waters QTOF Pr
120 L Waters QTOF Premier; [M-H]-; PA 34:1 121 L Waters QTOF Premier; [M-H]-; NA	Plot/Text of Search Spectrum Plot of Search Spectrum Plot/Text of Spec List
122 L Waters QTOF Premier; [M-H]; PE 34:0	281 2205
123 L Waters QTOF Premier; [M-H]-; PE 34:1	100-
125 L Waters QTOF Premier; [M-H]; PS 40:1	
	50-
Names Structures	Spec List
custompo+hpos.msp; custompo+napos.msp; hilic-urine; lipidblast-neg; po-ac-neg.msp; po-	-form-neg.msp; lipidblast-pos; 235370 0-1
total spectra	452 27790
	50
1-	
t Library Score Dot Product Prob 1%1 Bey-Dot Name	150 200 250 300 350 400 450 500 550 600 650 700
1 lipidblast-neg 404 895 5.50 923 PE 34:1; [M	M-H]; GPEtn(16:0/18:1(11E))
2 lipidblast-neg 404 895 5.50 923 PE 34:1; [M	4-H]; GPEtn(16:0/18:1(11Z))
3 lipidblast-neg 404 895 5.50 923 PE 34:1; [M	A-H]; GPEtn(16:0/18:1(13Z)) 255.23226 MW/: 716 ID#: 107994 DB: lipidblast-neg
4 lipidblast-neg 404 895 5.50 923 PE 34:1; [M 5 lipidblast-neg 404 995 5.50 923 PE 34:1; [M	A-H]; GPE tr[16:0/18:1[172]] G [argest peaks:
6 lipidblast-neg 404 895 5.50 923 PE 34:1; [M	MHP; dF Edi(16:0/16:1(42)) 50- MHP; GPEtr(16:0/18:1(62)) 50- 452.27200 255.23226 999.00 281.24790 999.00 452.2
7 lipidblast-neg 404 895 5.50 923 PE 34:1; [M	4-H]; GPEtn(16:0/18:1(7Z)) 450.28298 50.001 6 m/z Values and Intensities;
8 lipidblast-neg 404 895 5.50 923 PE 34:1;[M	4-H]; GPEtn(16:0/18:1(9E))
Names & Structures /	I (lipidblast-neg) PE 34:1; [M-H]; GPEtn(16:0/18:1(11E)) I I I I I I I I I I I I I I I I I
Lib Search Other Search Names Compare Librarian	
	Peptide Peptide //

Name: Waters QTOF Premier; [M-H]-; PG 34:1 <u>MW:</u> 747 <u>ID#:</u> 124 <u>DB:</u> Spec. List <u>Comment:</u> PG 34:1; PG(16:0/18:1:0); [M-H]-; Prec. m/z: 747.5; Profiles of photosynthetic glycerolipids in three strains of Skeletonema determined by UPLC-Q-TOF-MS; Journal of Applied Phycology; DOI: 10.1007/s10811-010-9553-3 <u>8 largest peaks</u>:

Name: Waters QTOF Premier; [M-H]-; PS 40:1 <u>MW:</u> 844 <u>ID#:</u> 125 <u>DB:</u> Spec. List <u>Comment:</u> Unknown wrongly assigned as PS(18:1/22:0) but no FA 22:0 m/z 339.3; [M-H]-; Prec. m/z: 844.6063; RT: 9.71 min; Lipidomics: Study of Total Phospholipids in Immortalized Liver Cells Exposed to Different Fatty Acid Substrates: Pagliasotti,Prenni,Ryan,Rainville,Baker; 720001756EN; <u>10 largest peaks:</u>

Unknown wrongly assigned FA missing

RIST MS Search 2.0 - [Peptide, Presearch Default - 328 spectra]		
Eile Search View Tools Options Window Help		
🔞 🍉 😂 📫 1. Waters QTOF Premier; [M-H]-; PS 40: 🔍 🛞 🖳 😥 🍭 🚳		
	Name: Waters OTOF Premier: (M-H): PS 40:1	
+ 510. Name	100- <u>MW:</u> 844 <u>ID#:</u> 125 <u>DB:</u> Spec. List	
116 L Waters Micromass Q-TOF Micro ; [M-H]-; PG 44:12	Comment: Unknown wrongly assigned as PS(16:1722:0) but no FA 22:0 m/2 770.5710 10 largest peaks:	
117 L Waters MicroMass UqU triple quadrupole; [M-H]-; SUDG 30:0		
119 L Waters QTOF Premier; [M-H]-; Ac2PIM2	(Spec. List) Waters QTOF Pr	
120 L Waters QTOF Premier; [M-H]-; PA 34:1	Plot/Text of Search Spectrum / Plot of Search Spectrum / Plot/Text of Spec List /	
121 L Waters QTOF Premier; [M-H]; PE 34:0		
123 L Waters QTOF Premier; [M-H] ; PE 34:1	100-	
124 L Waters UT UF Premier; [M-H]-; PG 34:1		
120 L Middle Grof Frender, (M.11), DC 24.1	504	
Names Structures Spec List	770 5710	
custompe+bnos msp: custompe+papos msp: bilie-urine: linidblast-pen; pe-ae-pen msp; pe-form-pen msp; linidblast-pos; 235370	506.3250 776.3710 844.6067	
total spectra	944 60075	
1000-		
100-	50-	
104		
	100-	
# Library Score Dot Product Prob (%) Rev-Dot Name	300 300 400 400 500 300 500 800 800 700 750 800 800 800	
1 pc-ac-neg.m 113 506 1.07 655 PC 36:2; [M-Ac-H]; GPCho(18:1(11E)/18:1(11E)	Difference A Head to Tail Side by Side A Subtraction / 113 506R 1.07P	
2 pc-ac-neg.m 113 506 1.07 655 PC 36:2; [M-Ac-H] ; GPCho(18:1(11E)/18:1(11Z)	Name: PC 36/2: [M-Ac-H]-: GPCho(18:1(11E)/18:1	
3 pc-ac-neg.m 113 506 1.07 655 PC 36:2; [M-Ac-H]-; GPCho(18:1(11E)/18:1(13Z)	100- 770.56997 <u>MW:</u> 844 ID#: 2569 <u>DB</u> : pc-ac-neg.msp	
4 pc-ac-neg.m 113 506 1.07 655 PC 36:2; [M-Ac-H]; GPCho(18:1(11E)/18:1(17Z)	Comment: Parent=844.60675 Mz_exact=844.6067	
5 pc-ac-neg.m 113 506 1.07 655 PC 36.2; [M-Ac-H]; (Ar-Life)/16.1(46.)] 6 pc-ac-neg.m. 113 506 1.07 655 PC 36.2; [M-Ac-H]; (BPCho[18:1(11F)/18:1(67)])	50- 770.56997 999.00 281.24790 100.00 844.6	
7 pc-ac-neg.m 113 506 1.07 655 PC 36:2; [M-Ac-H]-; GPCho[18:1(11E)/18:1(7Z)]	- <u>3 m/z Values and Intensities:</u> 281 24790, 100 00, EA sn1 II EA sn2	
8 pc-ac-neg.m 113 506 1.07 655 PC 36:2; [M-Ac-H]-; GPCho(18:1(11E)/18:1(9E)) 🗸	360 480 600 720 840 770.56997 999.00 [M-CH3]- (-15) ▼	
	(pc-ac-neg.msp) PC 36:2; [M-Ac-H]; GPCho(18:1(11E)	
I Names Astructures Hit List	Plot/Text of Hit Plot of Hit	
Lib. Search Other Search Names Compare Librarian MSMS		
	Peptide Peptide //	

Name: Waters QTOF Premier; [M-H]-; PS 34:1 <u>MW:</u> 760 <u>ID#:</u> 126 <u>DB:</u> Spec. List <u>Comment:</u> PS 34:1; PS(16:0/18:1); [M-H]-; Prec. m/z: 760.5; Profiles of photosynthetic glycerolipids in three strains of Skeletonema determined by UPLC-Q-TOF-MS; Journal of Applied Phycology; DOI: 10.1007/s10811-010-9553-3 <u>9 largest peaks:</u>

Name: Waters QTOF Premier; [M-H]-; PS 36:1 <u>MW:</u> 788 <u>ID#:</u> 127 <u>DB:</u> Spec. List <u>Comment:</u> PS 36:1; PS(16:0/18:1); [M-H]-; Prec. m/z: 788.5; Profiles of photosynthetic glycerolipids in three strains of Skeletonema determined by UPLC-Q-TOF-MS; Journal of Applied Phycology; DOI: 10.1007/s10811-010-9553-3 9 largest peaks:

<u>Name:</u> Waters QTOF Premier; [M+Na]+; MGDG 34:6 <u>MW:</u> 769 <u>ID#:</u> 128 <u>DB:</u> Spec. List <u>Comment:</u> MGDG(18:3/16:3); [M+Na]+; Prec. m/z: 769.4885; Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry ;http://dx.doi.org/10.1016/j.aca.2010.01.026

7 largest peaks:

<u>Name:</u> Waters QTOF Premier; [M-H]-; PG 34:1 <u>MW:</u> 747 <u>ID#:</u> 129 <u>DB:</u> Spec. List <u>Comment:</u> PG(16:0/18:1); [M-H]-; Prec. m/z: 747.5078; Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry ;http://dx.doi.org/10.1016/j.aca.2010.01.026 <u>6 largest peaks:</u>

🗲 NIST MS Search 2.0 - [Peptide, Presearch Default - 218 spectra]	
File Search View Tools Options Window Help	Tools : Nature Lipidomics Gateway http://www.lipidmaps.org/tools/structuredrawing/StrDraw.pl
jX 🖻 🖻 🚭 🛄 🕎 🐺 🖛 🖛 🖛 🛩 ← 💡	
# Src. Name	100 281.2436 Name: Waters QTOF Premier; [M-H]; PG 34:1
12U L Waters QTOF Premier; [M-H]-; PA 34:1 121 L Waters QTOF Premier; [M-H]-; NA	747.5076 Comment: PG(16:0/18:1); [M-H]; Prec. m/z: 747.5078; Global characterizati
122 L Waters QTOF Premier; [M-H]; PE 34:0	
123 L Waters QTOF Premier; [M-H]; PE 34:1	360 720 227.0278 20.00
125 L Waters QTOF Premier; [M-H]; PS 40:1	Spec. List) Waters QTOF Pr
126 L Waters QTOF Premier; [M-H]; PS 34:1	
127 L Waters QTOF Premier; [M+N]+; PS 36:1 128 L Waters QTOF Premier; [M+Na]+; MGDG 34:6	281.2436
129 L Waters QTOF Premier; [M-H]-; PG 34:1	
130 L Waters QTOF Premier; [M-H]-; SQDG 34:2	
A Structures I Structures I	747.5078
custompc+hpos.msp; custompc+hapos.msp; hilic-urine; lipidblast-heg; pc-ac-heg.msp; pc-form-heg.msp; lipidblast-pos; 235370 total spectra	
1000-1	391.22513 465.26191
100-	50-
10-	
	100- 255 2222
# Library Score Dot Product Prob. (%) Rev-Dot Name	A Waters QTOF Premier; [M-H]-; PGI Head to Tail MF=190 RMF=696 ▼PG 34:1; [M-H]-; GPGro(16:0/18:1
1 lipidblast-neg 190 696 4.63 779 PG 34:1; [M-H]-; GPGro(16:0/18:1(11E))	Difference Head to Tail Side by Side Subtraction / 190 696R 4.63P
2 lipidblast-neg 190 696 4.63 779 PG 34:1; [M-H]-; GPGro(16:0/18:1(11Z))	Name: PG 34:1; [M-H]; GPGro(16:0/18:1(11E))
3 lipidblast-neg 190 696 4.63 779 PG 34:1; [M-H]-; GPG-ra(16:0718:11[13∠]) 4 lipidblast-neg 190 696 4.62 779 PC 34:1; [M-H]-; GPG-ra(16:0719:11[72])	100- 203.23226 <u>MW:</u> 747 ID#: 113470 DB: lipidblast-neg
5 linidblast-neg 190 696 4.63 779 PG 34:1; [M-H]-; GPGro(16:0/16:1(172)]	Blargest peaks:
6 lipidblast-neg 190 696 4.63 779 PG 34:1; [M-H]-; GPGro(16:0/18:1(6Z))	50- 255.23226 999.00 281.24790 999.00 391.2 391.22513 492.27247 200.00 491.27255 200.00 509.21
7 lipidblast-neg 190 696 4.63 779 PG 34:1; [M-H]-; GPGro(16:0/18:1(7Z))	43.27247 200.001 431.27733 200.001 303.27 8 m/z Values and Intensities:
8 lipidblast-neg 190 696 4.63 779 PG 34:1; [M-H]-; GPGro(16:0/18:1(9E))	260 390 520 650 255.23226 999.00 sn1 FA
Names Structures / Hit List	I (lipidblast-neg) PG 34:1; [M-H]; GPGro(16:0/18:1(11E)
Lib Search Names Compare Librarian MSMS	
	Peptide Peptide //.

Name: Waters QTOF Premier; [M-H]-; SQDG 34:2 <u>MW:</u> 817 <u>ID#:</u> 130 <u>DB:</u> Spec. List <u>Comment:</u> SQDG(16:0/18:2); [M-H]-; Prec. m/z: 817.5167; Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry ;http://dx.doi.org/10.1016/j.aca.2010.01.026 8 largest peaks

Name: Waters Synapt HDMS; [M+Na]+; PC 32:0 <u>MW:</u> 756 <u>ID#:</u> 131 <u>DB:</u> Spec. List <u>Comment:</u> PC 32:0; [M+Na]+; Prec. m/z: 756.5524; PC(16:0/16:0) 756.5524; Direct Tissue Imaging and Characterization of Phospholipids Using MALDI SYNAPT HDMS System; Emmanuelle Claude, Marten Snel, Therese McKenna, James Langridge; APNT10011751 <u>9 largest peaks:</u>

🗲 NIST MS Search 2.0 - [Peptide, Presearch Default - 208 spectra]	
Eile Search View Tools Options Window Help	
🚳 🍉 🗃 🚎 1. Waters Synapt HDMS; [M+Na]+; PC 🖅 🛞 🖭 😥 🍭 🚳	
# Src. Name	756 FEO/ Name: Waters Synapt HDMS; [M+Na]+; PC 32:0
121 L Waters QTOF Premier; [M-H] ; NA	146.9827 MW: 756 ID#: 131 DB: Spec. List Comment: PC 32:0; [M+Na]+: Prec. m/z: 756.5524; PC(16:0/16:0) 756.5524
122 L Waters QT UF Premier; [M-H]-; PE 34:0 123 L Waters QT OF Premier; [M-H]-; PE 34:1	9 largest peaks:
124 L Waters QTOF Premier; [M-H]; PG 34:1	400 756.5524 359.00 146.5827 660.00 637.4801 510.00 573.4851 500
125 L Waters QTOF Premier; [M-H]; PS 40:1 126 L Waters QTOF Premier; [M-H]; PS 34:1	. List) Waters Synapt H
127 L Waters QTOF Premier; [M-H]; PS 36:1	Text of Search Spectrum / Plot of Search Spectrum / Plot/Text of Spec List /
128 L Waters QTOF Premier; [M+Na]+; MGDG 34:6	756.5524
125 L Waters QTOF Premier; [M-H]-; PG 34:1	
131 L Waters Synapt HDMS; [M+Na]+; PC 32:0	146.9827
50	575,4651 057,4001
Names Structures Spec List	86.0943 184.0753
custompc+hpos.msp; custompc+napos.msp; hilic-urine; lipidblast-neg; pc-ac-neg.msp; pc-form-neg.msp; lipidblast-pos; 235370	4/8.3405
	441.23832
10-	573 48586
	697.47840
	120 180 240 300 360 420 480 540 600 660 720
📕 📕 Library Score Dot Product Prob. (%) Rev-Dot Name	ters Synapt HDMS; [M+Na]+; I Head to Tail MF=333 RMF=635 ▼PC 32:0; [M+Na]+; GPCho(16:0/1
1 lipidblast-pos 393 635 12.1 974 PC 32:0; (M+Na)+; GPCho(16:0/16:0)	rence A Head to Tail A side by side A subtraction 393 635R 12.1P
2 ipidplast-pos 363 611 4.04 946 PC 32.0; [M+Na]+; GPCho[6.0726.0]	697.47840 Name: PC 32:0; [M+Na]+; GPCho(16:0/16:0)
4 lipidblast-pos 369 611 4.04 946 PC 32:0; [M+Na]+; GPCho(8:0/24:0)	Comment: Parent=756.55190 Mz_exact=756.5519
5 lipidblast-pos 369 611 4.04 946 PC 32:0; [M+Na]+; GPCho(9:0/23:0)	5/3.48586 5 largest peaks:
6 lipidblast-pos 369 611 4.04 946 PC 32:0; [M+Na]+; GPCho(10:0/22:0)	57.47640 555.00 573.46566 600.00 (441.2
7 ipidplast-pos 369 611 4.04 946 PC 32:0; [M+Na]+; GPCho[1]:0/21:0] 8 ipidplast-pos 369 611 4.04 946 PC 32:0; [M+Na]+; GPCho(12:0/20:0)	441.23832 40.00 [M+Na]-59-sn1 [M+Na]-59-st
	150 300 450 500 750 300.3102 20.00 [m+na]stit=20 it [m+na]stit.▼
Names Structures / Hit List Plot/	Text of Hit / Plot of Hit /
Lib. Search Other Search Names Compare Librarian MSMS	
	Peptide Peptide

Name: Waters Synapt HDMS w MALDI; [M-H]-; PE 34:1 <u>MW:</u> 716 <u>ID#:</u> 148 <u>DB:</u> Text File <u>Comment:</u> PE 34:1; [M-H]-; Prec. m/z: 716.65; PE(16:0/18:1) ; Structural mass spectrometry analysis of lipid changes in a Drosophila epilepsy model brain ; Michal Kliman, Niranjana Vijayakrishnan, Lily Wang, John T. Tapp, Kendal Broadie and John A. McLean; DOI:10.1039/B927494D 10 largest peaks:

LipidBlast evaluation using Agilent 6530 QTOF-MS/MS spectra

Curator: Tobias Kind Spectra: John K. Meissen and Brian DeFelice PI: Oliver Fiehn Date: Sept 2011

Spectra: LipidBlast Molecule Images: Avanti Polar Lipids or Sigma

RAW MGF or MSP MS/MS spectra can be found under http://fiehnlab.ucdavis.edu/projects/LipidBlast

NIST MSPepSearch

Software for batch interpretation of tandem mass spectra Independent from LipidBlast. Can be freely obtained from <u>http://peptide.nist.gov/</u>

Library search settings for accurate mass spectrometry: Precursor accuracy +/-0.008 Da; product ion accuracy +/-0.008 Da;

Library Search Options	MSPepSearch
Library Search Options Image: Search MS/MS Search MS/MS Libraries Automation Limits Constraints MS/MS Search m/z Tolerance Precursor ± 0.008 Product ions ± 0.008 Ignore Precursor Peptide MS/MS Options Use alt. peak matching	Input Input Input
	Min. match factor (MF) to output (0-999) Image: Include precursor m/z in the output Min. peak intensity (1-999) Image: Include Hit-Unknown precursor m/z difference Min. peak intensity (1-999) Image: Im
OK Cancel Help	Done Run Close

MSPepSearch	
Input (.MGF Mascot generic or .MSP NIST MS-type)	File O Folder Open Remove selected
Z:\Lipid MGF\Pos\A852758_PlasmenyIPE_18_18d9_0005.m	ngf
Output directory path:	Select
Z:\Lipid MGF\Pos	
MS/MS libraries to search	Select Remove selected
Z:\lipidblast\LipidBlast-pos	
Z:\lipidblast\CustomPC+Napos.msp Z:\lipidblast\CustomPC+Napos.msp	
	Reset to defaults
- Ontions	
Presearch mode O Fast O Standard	m/z limits Min. 0 Max. 2000 -1 = infinity
Search tolerance settings	
Precursor ion tolerance, m/z units .008	re peaks around precursor Fragment peak m/z tolerance .008
Min. match factor (MF) to output (0-999)	 Include precursor m/z in the output Include Hit-Unknown precursor m/z difference
Min. peak intensity (1-999)	Output the input spectrum number Calculate rev-dot
Max number of output hits	Use number of replicates
Show spectra without matches	I Q-TDF ▼ Set program priority above normal
	Load libraries in memory
Done	Run Close

1) Standard Cardiolipin - ESI(-) CL(1'-[14:0/14:0],3'-[14:0/14:0]); C65H132N2O17P2

ID in LipidBlast – single hit OK <u>Name:</u> CL 56:0; [M-H]-; CL(14:0/14:0/14:0/14:0) <u>MW:</u> 1239 <u>ID#:</u> 22921 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=1239.83921 Mz_exact=1239.83921 ; CL 56:0; [M-H]-; CL(14:0/14:0/14:0/14:0); C65H126O17P2 <u>Source:</u> A710332_CL_14_14_14_14_0003.d, MS/MS of 1239.839965820 1+ at 1.4901 Automatic LipidBlast explanation of fragments: Cardiolipin CL(1'-[14:0/14:0],3'-[14:0/14:0]); C65H132N2O17P2

227.20098	100.00	sn1 FA sn2 FA sn3 FA sn4 FA
363.19353	300.00	sn2+C3H6PO4 (+137.00) sn4+C3H6PO4 (+137.00)
381.20409	200.00	sn2+C3H6PO4+H2O sn4+C3H6PO4+H2O
591.40233	999.00	sn1+sn2+C3H6PO4 (+137.00) sn3+sn4+C3H6PO4 (+137.00)
647.42854	100.00	sn1+sn2+C6H10O5P (+193.026) sn3+sn4+C6H10O5P (+193.026)
727.39488	300.00	sn1+sn2+C6H11P2O8 (+272.9929) sn3+sn4+C6H11P2O8 (+272.9929)
1011.63041	50.00	[M-H]-sn1

2) Standard Cardiolipin ESI(-) CL(1'-[18:1/18:1(9Z)],3'-[18:1/18:1(9Z)])

ID in LipidBlast – First HIT

<u>Name:</u> CL 72:4; [M-H]-; CL(18:1/18:1/18:1/18:1) <u>MW:</u> 1456 <u>ID#:</u> 33228 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=1456.02701 Mz_exact=1456.02701 ; CL 72:4; [M-H]-; CL(18:1/18:1/18:1/18:1); C81H150O17P2 <u>7 largest peaks:</u>

<u>Name:</u> plasmenyl-PE 36:1; [M-H]-; PE(P-18:0/18:1(11E)) <u>MW:</u> 728 <u>ID#:</u> 123312 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=728.55944 Mz_exact=728.55944 ; plasmenyl-PE 36:1; [M-H]-; PE(P-18:0/18:1(11E)); C41H80NO7P 4) Standard Phosphatidic Acid: PA(16:0/18:1(9Z)) - ESI(-)

ID in LipidBlast – First HIT

<u>Name:</u> PA 34:1; [M-H]-; GPA(16:0/18:1(11E)) – equivalent with GPA(16:0/18:1(9Z)) <u>MW:</u> 673 <u>ID#:</u> 102518 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=673.48083 Mz_exact=673.48083 ; PA 34:1; [M-H]-; GPA(16:0/18:1(11E)); C37H71O8P

<u>Name:</u> PE 37:4; [M-H]-; GPEtn(17:0/20:4(5E,8E,11E,14E)) - equivalent with GPEtn(17:0/20:4(5Z,8Z,11Z,14Z)) <u>MW:</u> 752 <u>ID#:</u> 108245 <u>DB:</u> lipidblast-neg

Comment: Parent=752.52306 Mz_exact=752.52306; PE 37:4; [M-H]-; GPEtn(17:0/20:4(5E,8E,11E,14E)); C42H76NO8P

<u>Name:</u> PE 31:1; [M-H]-; GPEtn(14:1(9Z)/17:0) <u>MW:</u> 674 <u>ID#:</u> 107768 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=674.47607 Mz_exact=674.47607 ; PE 31:1; [M-H]-; GPEtn(14:1(9Z)/17:0); C36H70NO8P

<u>Name:</u> PE 36:1; [M-H]-; GPEtn(18:0/18:1(11E)) <u>MW:</u> 744 <u>ID#:</u> 108438 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=744.55431 Mz_exact=744.55431 ; PE 36:1; [M-H]-; GPEtn(18:0/18:1(11E)); C41H80NO8P

ID in LipidBlast – First HIT <u>Name:</u> lysoPE 18:1; [M-H]-; PE(18:1(11E)/0:0) <u>MW:</u> 478 <u>ID#:</u> 95782 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=478.29336 Mz_exact=478.29336 ; lysoPE 18:1; [M-H]-; PE(18:1(11E)/0:0); C23H46NO7P

9) Standard phosphatidylglycerol – ESI(-) PG(17:0/14:1(9Z))

Name: PG 31:1; [M-H]-; GPGro(14:1(9Z)/17:0) MW: 705 ID#: 113244 DB: lipidblast-neg Comment: Parent=705.47063 Mz_exact=705.47063 ; PG 31:1; [M-H]-; GPGro(14:1(9Z)/17:0); C37H71O10P 11) Standard phosphatidylinositol – ESI(-) PI(17:0/14:1(9Z))

ID in LipidBlast – First HIT <u>Name:</u> PI 31:1; [M-H]-; GPIns(14:1(9Z)/17:0) <u>MW:</u> 793 <u>ID#:</u> 118720 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=793.48669 Mz_exact=793.48669 ; PI 31:1; [M-H]-; GPIns(14:1(9Z)/17:0); C40H75O13P

<u>Name:</u> PI 37:4; [M-H]-; GPIns(17:0/20:4(5E,8E,11E,14E)) <u>MW:</u> 871 <u>ID#:</u> 119197 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=871.53368 Mz_exact=871.53368 ; PI 37:4; [M-H]-; GPIns(17:0/20:4(5E,8E,11E,14E)); C46H81O13P

<u>Name:</u> PS 28:0; [M-H]-; GPSer(14:0/14:0) <u>MW:</u> 678 <u>ID#:</u> 124337 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=678.43462 Mz_exact=678.43462 ; PS 28:0; [M-H]-; GPSer(14:0/14:0); C34H66NO10P

<u>Name:</u> PS 34:1; [M-H]-; GPSer(16:0/18:1(11E)) equivalent with GPSer(16:0/18:1(9Z))

MW: 760 ID#: 124644 DB: lipidblast-neg

Comment: Parent=760.51287 Mz_exact=760.51287 ; PS 34:1; [M-H]-; GPSer(16:0/18:1(11E)); C40H76NO10P

ID in LipidBlast – First HIT <u>Name:</u> PS 31:1; [M-H]-; GPSer(17:0/14:1(9Z)) <u>MW:</u> 718 <u>ID#:</u> 124856 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=718.46593 Mz_exact=718.46593 ; PS 31:1; [M-H]-; GPSer(17:0/14:1(9Z)); C37H70NO10P

Name: PS 37:4; [M-H]-; GPSer(17:0/20:4(5E,8E,11E,14E)) equivalent to GPSer(17:0/20:4(5Z,8Z,11Z,14Z)) <u>MW:</u> 796 <u>ID#</u>: 124895 <u>DB</u>: lipidblast-neg <u>Comment:</u> Parent=796.51287 Mz_exact=796.51287 ; PS 37:4; [M-H]-; GPSer(17:0/20:4(5E,8E,11E,14E)); C43H76NO10P

17) Standards – ESI(+)

Cardiolipin CL(1'-[14:0/14:0],3'-[14:0/14:0]); C65H132N2O17P2

double negative charge, usually measured in negative mode.

Cardiolipin ESI(-) CL(1'-[18:1/18:1(9Z)],3'-[18:1/18:1(9Z)])

double negative charge, usually measured in negative mode.

18) Standards ESI(+) plasmenylphosphatidylethanolamine; GPEtn(18:0p/18:1(9Z))

ID in LipidBlast – First HIT – issue with batch version

<u>Name:</u> plasmenyl-PE 36:1; [M+H]+; PE(P-18:0/18:1(11E)) equivalent to PE(P-18:0/18:1(11Z))

MW: 730 ID#: 59466 DB: lipidblast-pos

Comment: Parent=730.57508 Mz_exact=730.57508 ; plasmenyl-PE 36:1; [M+H]+; PE(P-18:0/18:1(11E)); C41H80NO7P

ID in LipidBlast – First HIT <u>Name:</u> lysoPC 14:0; [M+H]+; PC(14:0/0:0) <u>MW:</u> 468 <u>ID#:</u> 9185 <u>DB:</u> lipidblast-pos <u>Comment:</u> Parent=468.30900 Mz_exact=468.30900 ; lysoPC 14:0; [M+H]+; PC(14:0/0:0); C22H46NO7P <u>4 largest peaks:</u> 20) Standards ESI(+); Phosphatidylcholine; PC(17:0/14:1(9Z))

ID in LipidBlast – First HIT <u>Name:</u> PC 31:1; [M+H]+; GPCho(14:1(9Z)/17:0) <u>MW:</u> 718 <u>ID#:</u> 1382 <u>DB:</u> custompc+hpos.msp <u>Comment:</u> Parent=718.53870 Mz_exact=718.53870; PC 31:1; [M+H]+; GPCho(14:1(9Z)/17:0); C39H76NO8P

21) Standards ESI(+); phosphatidylethanolamine; PE(17:0/20:4(5Z,8Z,11Z,14Z))

ID in LipidBlast – First HIT <u>Name:</u> PE 37:4; [M+H]+; GPEtn(17:0/20:4(5E,8E,11E,14E)) <u>MW:</u> 754 <u>ID#:</u> 49431 <u>DB:</u> lipidblast-pos <u>Comment:</u> Parent=754.53870 Mz_exact=754.53870; PE 37:4; [M+H]+; GPEtn(17:0/20:4(5E,8E,11E,14E)); C42H76NO8P

Correct ID in LipidBlast - not first HIT - multiple probabilities (few fragments in pos mode)

<u>Name:</u> PE 31:1; [M+H]+; GPEtn(14:1(9Z)/17:0) <u>MW:</u> 676 <u>ID#:</u> 48954 <u>DB:</u> lipidblast-pos <u>Comment:</u> Parent=676.49171 Mz_exact=676.49171 ; PE 31:1; [M+H]+; GPEtn(14:1(9Z)/17:0); C36H70NO8P <u>8 largest peaks:</u>

<u>Name:</u> PE 36:1; [M+H]+; GPEtn(18:0/18:1(11E)) <u>MW:</u> 746 <u>ID#</u>: 49624 <u>DB</u>: lipidblast-pos <u>Comment:</u> Parent=746.56995 Mz_exact=746.56995 ; PE 36:1; [M+H]+; GPEtn(18:0/18:1(11E)); C41H80NO8P 24) Standard Lyso-phosphatidylethanolamine – ESI(+) PE(18:1(9Z)/0:0

ID in LipidBlast – First HIT

<u>Name:</u> lysoPE 18:1; [M+H]+; PE(18:1(11E)/0:0) <u>MW:</u> 480 <u>ID#:</u> 9360 <u>DB:</u> lipidblast-pos <u>Comment:</u> Parent=480.30900 Mz_exact=480.30900 ; lysoPE 18:1; [M+H]+; PE(18:1(11E)/0:0); C23H46NO7P <u>5 largest peaks:</u>

<u>Name:</u> PS 28:0; [M+H]+; GPSer(14:0/14:0) <u>MW:</u> 680 <u>ID#:</u> 60713 <u>DB:</u> lipidblast-pos <u>Comment:</u> Parent=680.45026 Mz_exact=680.45026 ; PS 28:0; [M+H]+; GPSer(14:0/14:0); C34H66NO10P <u>4 largest peaks:</u>

<u>Name:</u> PS 34:1; [M+H]+; GPSer(16:0/18:1(11E)) <u>MW:</u> 762 <u>ID#:</u> 61020 <u>DB:</u> lipidblast-pos <u>Comment:</u> Parent=762.52851 Mz_exact=762.52851 ; PS 34:1; [M+H]+; GPSer(16:0/18:1(11E)); C40H76NO10P

<u>Name:</u> PS 31:1; [M+H]+; GPSer(14:1(9Z)/17:0) <u>MW:</u> 720 <u>ID#:</u> 60794 <u>DB:</u> lipidblast-pos <u>Comment:</u> Parent=720.48157 Mz_exact=720.48157 ; PS 31:1; [M+H]+; GPSer(14:1(9Z)/17:0); C37H70NO10P

ID in LipidBlast – First HIT

<u>Name:</u> PS 37:4; [M+H]+; GPSer(17:0/20:4(5E,8E,11E,14E)) <u>MW:</u> 798 <u>ID#:</u> 61271 <u>DB:</u> lipidblast-pos <u>Comment:</u> Parent=798.52851 Mz_exact=798.52851 ; PS 37:4; [M+H]+; GPSer(17:0/20:4(5E,8E,11E,14E)); C43H76NO10P <u>6 largest peaks:</u>

<u>Name:</u> SM 36:2; [M]+; SM(d18:1(4E)/18:1(9Z)) <u>MW:</u> 729 <u>ID#:</u> 70192 <u>DB:</u> lipidblast-pos <u>Comment:</u> Parent=729.59106 Mz_exact=729.59106 ; SM 36:2; [M]+; SM(d18:1(4E)/18:1(9Z)); C41H82N2O6P <u>4 largest peaks:</u>

Supplement Literature Collection for LipidBlast MS/MS library;

http://fiehnlab.ucdavis.edu/projects/LipidBlast

For questions please contact the curator: Dr. Tobias Kind (Date: May 2010) <u>http://fiehnlab.ucdavis.edu/staff/kind/</u>

The development of the MS/MS LipidBlast libraries is based on own experimental data and more than ~300 external literature references. Not all references can be included into the publication due to publishing limits and therefore are given here. References from the paper itself may not be referenced here.

Phospholipids in general [1-45]

Phosphatidylcholine (PC) [46-49]

Phosphatidylethanolamine (PE) [50-52]

Phosphatidyldiacylglycerol (PG) [53]

<u>Phosphatidylinositol (PI)</u> [54-57]

Phosphatidic Acid (PA) [58]

Plasmalogens and lysophospholipids [59, 60]

Fatty Acids and Acyls [61-65]

Ceramides (Cer) [66-74]

Cardiolipins (CL) [75-81]

MAG-DAG-TAG Mono-Di-Triacylglycerides
[82-96]

<u>Gangliosides + Sulfatides</u> [97-103]

<u>General lipid MS/MS identification and lipid analysis</u> [104-122] <u>Plant Lipids</u> [123-127]

Algal Lipids and viral and bacterial lipids [128-144]

Yeast and fungal lipids [145-148]

Decoy DBs [149, 150]

LipidMaps [151]

LipidSearch (online service) [152]

<u>Historic</u> [153-155]

Biocrates + ABI Kit [156]

Chlorinated Lipids
[157]

Odd Number of carbons in fatty acids [158-160]

<u>FT-ICR accurate mass and time tag</u> [161, 162]

<u>Glycolipids and Galactolipids - MGDG, DGDG, SQDG</u> [163-182]

<u>Lipid A – complex lipids</u> [183-203]

Oxy-Lipids [204-217]

<u>Computer-Programs and tools and databases</u> [24, 104, 218-260]

Mass Spectrometer Types [261, 262]

MALDI, FAB and ion mobility and others like DESI, FI, FD, SIMS [58, 263-269]

References

- 1. Mitchell TW: The effect of exercise and diet on rat skeletal muscle phospholipid molecular species profile: an electrospray ionisation mass spectrometric analysis. University of Wollongong Thesis Collection 2004:585.
- 2. Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD: Quantitative analysis of biological membrane lipids at the low picomole level by nanoelectrospray ionization tandem mass spectrometry. *Proceedings of the National Academy of Sciences of the United States of America* 1997, **94**(6):2339.
- 3. Larsen A, Hvattumh E: Analysis of Phospholipids by Liquid Chromatography Coupled with On-Line Electrospray lonization Mass Spectrometry and Tandem Mass Spectrometry. Modern Methods for Lipid Analysis by Liquid Chromatography/mass Spectrometry and Related Techniques 2005:19.
- 4. Duffin K, Obukowicz M, Raz A, Shieh JJ: **Electrospray/tandem mass** spectrometry for quantitative analysis of lipid remodeling in essential fatty acid deficient mice. *Analytical Biochemistry* 2000, **279**(2):179-188.
- 5. Ekroos K: Characterization of Molecular Glycerophospholipids by Quadrupole Time-of-Flight Mass Spectrometry. 2003.
- 6. Retra K: Schistosomal lysophosphatidylserine:an immunomodulatory factor. 2007.
- 7. Erickson MC: **Phospholipids: Structures and Physicochemical Activities**. *Lipid analysis and lipidomics: new techniques and applications* 2006:399.
- 8. Byrdwell WC: **Modern methods for lipid analysis by liquid chromatography/mass spectrometry and related techniques**: AOCS press Champaign, IL (USA); 2005
- Schürenberg M, Fuchs B, Bischoff A, Süß R, Anders U, Suckau D, Morlock G, Schiller J: High Resolution Lipid Profiling and Identification by Hyphenated HPTLC-MALDI-TOF/TOF. 2010.
- 10. Pelizzi N, Catinella S, Barboso S, Zanol M: **Different electrospray tandem mass** spectrometric approaches for rapid characterization of phospholipid classes of Curosurf®, a natural pulmonary surfactant. *Rapid Communications in Mass Spectrometry* 2002, **16**(24):2215-2220.
- 11. Wang C, Xie S, Yang J, Yang Q, Xu G: **Structural identification of human blood phospholipids using liquid chromatography/quadrupole-linear ion trap mass spectrometry**. *Analytica Chimica Acta* 2004, **525**(1):1-10.
- 12. Oursel D, Loutelier-Bourhis C, Orange N, Chevalier S, Norris V, Lange CM: Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. *Rapid Communications in Mass Spectrometry* 2007, **21**(11):1721-1728.
- 13. Yang K, Zhao Z, Gross RW, Han X: Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. *PLoS ONE* 2007, **2**(12).
- 14. Crone C, Genin E, Muenster H: Analysis of whole lipid extracts using on-line high resolution LC-MS. 2009.

- Yu S, Cho K, Kim YH, Park S, Kim J, Oh HB: Identification of Phospholipid Molecular Species in Porcine Brain Extracts Using High Mass Accuracy of 4.7 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. *Notes* 2006, 27(5):793.
- 16. Ishida M, Yamaguchi S, Taniguchi J, Iida J, Miseki K, Nishimura O, Shimizu T, Taguchi R: Precise Identification of Molecular Species of Phosphatidylethanolamine and Phosphatidylserine by Neutral Loss Survey with MS3 and Accurate Mass Measurement;
- 17. Shinzawa-Itoh K, Aoyama H, Muramoto K, Terada H, Kurauchi T, Tadehara Y, Yamasaki A, Sugimura T, Kurono S, Tsujimoto K: **Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase**. *the EMBO Journal* 2007, **26**(6):1713.
- Buyukpamukcu E, Hau J, Fay LB, Dionisi F: Analysis of phospholipids using electrospray ionisation tandem mass spectrometry. *Lipid Technology* 2007, 19(6):136-138.
- 19. Moehring T, Scigelova M, Ejsing CS, Schwudke D, Shevchenko A: Essential Lipidomics Experiments Using the LTQ Orbitrap Hybrid Mass Spectrometer;
- 20. Milne SB, Forrester JS, Ivanova PT, Armstrong MD, Brown HA: Multiplexed Lipid Arrays of Anti-Immunoglobulin M–Induced Changes in the Glycerophospholipid Composition of WEHI-231 Cells. *AfCS Research Reports* 1: 1 2003.
- 21. Yin C: **ESI-MS quantitation of increased sphingomyelin in Niemann-Pick disease type B HDL**. *The Journal of Lipid Research* 2005:M500011.
- 22. Wang C, Yang J, Gao P, Lu X, Xu G: Identification of phospholipid structures in human blood by direct-injection quadrupole-linear ion-trap mass spectrometry. *Rapid Communications in Mass Spectrometry* 2005, **19**(17):2443-2453.
- Jain S, Jayasimhulu K, Clark JF: Metabolomic analysis of molecular species of phospholipids from normotensive and preeclamptic human placenta electrospray ionization mass spectrometry. *Frontiers in Bioscience* 2004, 9:3167-3175.
- 24. Ivanova PT, Milne SB, Forrester JS, Brown HA: Lipid arrays: new tools in the understanding of membrane dynamics and lipid signaling. *Molecular Interventions* 2004, **4**(2):86.
- 25. Ishida M, Yamazaki T, Houjou T, Imagawa M, Harada A, Inoue K, Taguchi R: High-resolution analysis by nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for the identification of molecular species of phospholipids and their oxidized metabolites. *Rapid Communications in Mass Spectrometry* 2004, **18**(20):2486-2494.
- 26. Jungalwala FB, Evans JE, McCluer RH: **Compositional and molecular species analysis of phospholipids by high performance liquid chromatography coupled with chemical ionization mass spectrometry**. *The Journal of Lipid Research* 1984, **25**(7):738.
- 27. Sommerer D, Süß R, Hammerschmidt S, Wirtz H, Arnold K, Schiller J: Analysis of the phospholipid composition of bronchoalveolar lavage (BAL) fluid from

man and minipig by MALDI-TOF mass spectrometry in combination with TLC. *Journal of pharmaceutical and biomedical analysis* 2004, **35**(1):199-206.

- 28. Isaac G: Development of Enhanced Analytical Methodology for Lipid Analysis from Sampling to Detection. 2005.
- 29. **LC-MS analysis of lipids and phospholipids**. In: *Liquid Chromatography-Mass Spectrometry, Third Edition.* vol. null: CRC Press; 2009.
- 30. Watkins SM, Lin TY, Davis RM, Ching JR, DePeters EJ, Halpern GM, Walzem RL, German JB: **Unique phospholipid metabolism in mouse heart in response to dietary docosahexaenoic or -linolenic acids**. *Lipids* 2001, **36**(3):247-254.
- Han X, Gross RW: Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass spectrometry reviews 2004, 24(3):367-412.
- 32. Kerwin JL, Tuininga AR, Ericsson LH: **Identification of molecular species of** glycerophospholipids and sphingomyelin using electrospray mass spectrometry. *The Journal of Lipid Research* 1994, **35**(6):1102.
- 33. Pulfer M, Murphy RC: Electrospray mass spectrometry of phospholipids. *Mass spectrometry reviews* 2003, **22**(5):332-364.
- 34. Wang-Sattler R, Yu Y, Mittelstrass K, Lattka E, Altmaier E, Gieger C, Ladwig KH, Dahmen N, Weinberger KM, Hao P: Metabolic profiling reveals distinct variations linked to nicotine consumption in humans—first results from the KORA study. *PLoS One* 2008, **3**(12).
- 35. Pietiläinen KH, Sysi-Aho M, Rissanen A, Seppänen-Laakso T, Yki-Järvinen H, Kaprio J, Oreši M: Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects–a monozygotic twin study. *PLoS One* 2007, **2**(2).
- 36. Kallury KMR, Ghaemmaghami V, Krull UJ, Thompson M, Davies MC: Immobilization of phospholipids on silicon, platinum, indium/tin oxide and gold surfaces with characterization by X-ray photoelectron spectroscopy and time-of-flight secondary-ion mass spectrometry. *Analytica Chimica Acta* 1989, 225:369-389.
- Schwudke D, Hannich JT, Surendranath V, Grimard V, Moehring T, Burton L, Kurzchalia T, Shevchenko A: Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra. *Anal Chem* 2007, 79(11):4083-4093.
- 38. Ekroos K, Chernushevich IV, Simons K, Shevchenko A: Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. *Anal Chem* 2002, **74**(5):941-949.
- 39. Fridriksson EK, Shipkova PA, Sheets ED, Holowka D, Baird B, McLafferty FW: Quantitative Analysis of Phospholipids in Functionally Important Membrane Domains from RBL-2H3 Mast Cells Using Tandem High-Resolution Mass Spectrometry[†]. *Biochemistry* 1999, **38**(25):8056-8063.
- 40. Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA: **Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry**. *Methods in enzymology* 2007:21-57.

- 41. Thomas MC, Mitchell TW, Blanksby SJ: A comparison of the gas phase acidities of phospholipid headgroups: experimental and computational studies. *Journal of the American Society for Mass Spectrometry* 2005, **16**(6):926-939.
- 42. Hsu FF, Turk J: Structural Characterization of Unsaturated Glycerophospholipids by Multiple-Stage Linear Ion-Trap Mass Spectrometry with Electrospray Ionization. Journal of the American Society for Mass Spectrometry 2008, **19**(11):1681-1691.
- 43. Dennis EA: Lipidomics joins the omics evolution. *Proceedings of the National Academy of Sciences* 2009, **106**(7):2089.
- 44. Kaddurah-Daouk R, Krishnan KRR: **Metabolomics: a global biochemical approach to the study of central nervous system diseases**. *Neuropsychopharmacology* 2008, **34**(1):173-186.
- 45. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D: Lipid extraction by methyl tert-butyl ether for high-throughput lipidomics. *The Journal of Lipid Research* 2008:D700041.
- 46. Zhang X, Reid GE: **Multistage tandem mass spectrometry of anionic phosphatidylcholine lipid adducts reveals novel dissociation pathways**. *International Journal of Mass Spectrometry* 2006, **252**(3):242-255.
- 47. Domingues P, Domingues MRM, Amado FML, Ferrer-Correia AJ: Characterization of sodiated glycerol phosphatidylcholine phospholipids by mass spectrometry. *Rapid Communications in Mass Spectrometry* 2001, 15(10):799-804.
- 48. Zirrolli JA, Clay KL, Murphy RC: **Tandem mass spectrometry of negative ions from choline phospholipid molecular species related to platelet activating factor**. *Lipids* 1991, **26**(12):1112-1116.
- 49. Houjou T, Yamatani K, Nakanishi H, Imagawa M, Shimizu T, Taguchi R: **Rapid** and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3. *Rapid Communications in Mass Spectrometry* 2004, **18**(24):3123-3130.
- 50. Raith K: **BEITRÄGE ZUR ANWENDUNG DER MASSENSPEKTROMETRIE IN DER LIPIDANALYTIK**. 1999.
- 51. Hsu FF, Turk J: Characterization of phosphatidylethanolamine as a lithiated adduct by triple quadrupole tandem mass spectrometry with electrospray ionization. *Journal of Mass Spectrometry* 2000, **35**(5):595-606.
- 52. Han X, Gross RW: Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. *Journal of the American Society for Mass Spectrometry* 1995, **6**(12):1202-1210.
- 53. Cabrera GM, Murga MLF, de Valdez GF, Seldes AM: Direct analysis by electrospray ionization tandem mass spectrometry of mixtures of phosphatidyldiacylglycerols from Lactobacillus. *Journal of Mass Spectrometry* 2001, 35(12):1452-1459.
- 54. Valero-Guillén PL, Yagüe G, Segovia M: Characterization of acylphosphatidylinositol from the opportunistic pathogen Corynebacterium amycolatum. *Chemistry and physics of lipids* 2005, **133**(1):17-26.

- 55. Coté GG, Crain RC: Why do plants have phosphoinositides? *BioEssays* 2005, **16**(1):39-46.
- 56. Wenk MR: **The emerging field of lipidomics**. *Nature Reviews Drug Discovery* 2005, **4**(7):594-610.
- 57. Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF, Nussbaum RL, Cline GW, Shulman GI, McMurray W, De Camilli P: **Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry**. *Nature biotechnology* 2003, **21**(7):813-817.
- 58. Ham BM, Jacob JT, Cole RB: **MALDI-TOF MS of phosphorylated lipids in biological fluids using immobilized metal affinity chromatography and a solid ionic crystal matrix**. *Anal Chem* 2005, **77**(14):4439-4447.
- 59. DaTorre SD, Creer MH: Differential turnover of polyunsaturated fatty acids in plasmalogen and diacyl glycerophospholipids of isolated cardiac myocytes. *The Journal of Lipid Research* 1991, **32**(7):1159.
- 60. Barroso B, Bischoff R: LC-MS analysis of phospholipids and lysophospholipids in human bronchoalveolar lavage fluid. *Journal of Chromatography B* 2005, **814**(1):21-28.
- 61. Rawlings BJ: **Biosynthesis of fatty acids and related metabolites**. *Natural product reports* 1998, **15**(3):275-308.
- 62. Esch SW, Tamura P, Sparks AA, Roth MR, Devaiah SP, Heinz E, Wang X, Williams TD, Welti R: **Rapid characterization of the fatty acyl composition of complex lipids by collision-induced dissociation time-of-flight mass spectrometry**. *The Journal of Lipid Research* 2007, **48**(1):235.
- 63. Bergé JP, Barnathan G: Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. *Marine biotechnology I* 2005:49-125.
- 64. Leblond JD, Chapman PJ: Lipid class distribution of highly unsaturated long chain fatty acids in marine dinoflagellates. *Journal of Phycology* 2000, **36**(6):1103-1108.
- 65. Poerschmann J, Carlson R: **New fractionation scheme for lipid classes based on**. *Journal of Chromatography A* 2006, **1127**(1-2):18-25.
- 66. Gu M, Kerwin JL, Watts JD, Aebersold R: **Ceramide profiling of complex lipid mixtures by electrospray ionization mass spectrometry**. *Analytical biochemistry* 1997, **244**(2):347-356.
- 67. Valsecchi M, Mauri L, Casellato R, Prioni S, Loberto N, Prinetti A, Chigorno V, Sonnino S: Ceramide and sphingomyelin species of fibroblasts and neurons in culture. *The Journal of Lipid Research* 2007, **48**(2):417.
- Raith K, Neubert RHH: Structural studies on ceramides by electrospray tandem mass spectrometry. *Rapid Communications in Mass Spectrometry* 1998, 12(14):935-938.
- 69. Colsch B, Afonso C, Popa I, Portoukalian J, Fournier F, Tabet JC, Baumann N: **Characterization of the ceramide moieties of sphingoglycolipids from mouse brain by ESI-MS/MS: identification of ceramides containing sphingadienine**. *The Journal of Lipid Research* 2004, **45**(2):281.
- 70. Shaner RL, Allegood JC, Park H, Wang E, Kelly S, Haynes CA, Cameron Sullards M: **Quantitative analysis of sphingolipids for lipidomics using triple**

quadrupole and quadrupole linear ion trap mass spectrometers. *The Journal of Lipid Research* 2008:D800051.

- 71. Hurme R: Lipidomics-A new era for personalized medicine?;
- 72. Sullards MC, Allegood JC, Kelly S, Wang E, Haynes CA, Park H, Chen Y, Merrill Jr AH: **Structure-Specific, Quantitative Methods for Analysis of Sphingolipids by Liquid Chromatography-Tandem Mass Spectrometry**. *Methods in enzymology* 2007:83-115.
- 73. Merrill AH: Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. *Methods* 2005, **36**(2):207-224.
- 74. Pettus BJ, Bielawska A, Kroesen BJ, Moeller PDR, Szulc ZM, Hannun YA, Busman M: **Observation of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry**. *Rapid Communications in Mass Spectrometry* 2003, **17**(11):1203-1211.
- 75. Tyurina YY, Tyurin VA, Epperly MW, Greenberger JS, Kagan VE: **Oxidative lipidomics of [gamma]-irradiation-induced intestinal injury**. *Free Radical Biology and Medicine* 2008, **44**(3):299-314.
- 76. Hsu FF, Turk J, Rhoades ER, Russell DG, Shi Y, Groisman EA: **Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization**. *Journal of the American Society for Mass Spectrometry* 2005, **16**(4):491-504.
- 77. Sparagna GC, Johnson CA, McCune SA, Moore RL, Murphy RC: Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry. *The Journal of Lipid Research* 2005, **46**(6):1196.
- 78. Beckedorf AI, Schäffer C, Messner P, Peter K, cacute J: Mapping and sequencing of cardiolipins from Geobacillus stearothermophilus NRS 2004/3a by positive and negative ion nanoESI-QTOF-MS and MS/MS. Journal of Mass Spectrometry 2002, 37(10):1086-1094.
- 79. Han X, Yang K, Yang J, Cheng H, Gross RW: Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples. The Journal of Lipid Research 2006, 47(4):864.
- Berger A, Gershwin ME, German JB: Effects of various dietary fats on cardiolipin acyl composition during ontogeny of mice. *Lipids* 1992, 27(8):605-612.
- 81. Hsu FF, Turk J: Characterization of Cardiolipin as the Sodiated Ions by Positive-Ion Electrospray Ionization with Multiple Stage Quadrupole Ion-Trap Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2006, **17**(8):1146-1157.
- 82. Ham BM, Jacob JT, Keese MM, Cole RB: Identification, quantification and comparison of major non-polar lipids in normal and dry eye tear lipidomes by electrospray tandem mass spectrometry. *Journal of mass spectrometry: JMS* 2004, **39**(11):1321.
- 83. Kalo PJ, Ollilainen V, Rocha JM, Malcata FX: **Identification of molecular species of simple lipids by normal phase liquid chromatography-positive**

electrospray tandem mass spectrometry, and application of developed methods in comprehensive analysis of low erucic acid rapeseed oil lipids. *International Journal of Mass Spectrometry* 2006, **254**(1-2):106-121.

- 84. Weil DA, Woodman M, Ball C: Maximizing Detection of Complex Hydrophobic Lipids: Optimization Efficiency and Nano-Chromatography;
- 85. Cvac ka J, Kofronová E: **Computer-assisted interpretation of triacylglycerols mass spectra**. *Methods in molecular biology (Clifton, NJ)* 2009, **580**:295.
- 86. Malone M, Evans JJ: Running Title: Determining the Relative Amounts of Positional Isomers in Complex Mixtures of Triglycerides Using Reverse-Phase HPLC-MS-MS.
- 87. ALLMAIER G, Stübiger G: LASERFLUGZEITMASSENSPEKTROMETRIE ZUR CHARAKTERISIERUNG VON LIPIDEN UNTER BESONDERER BERÜCKSICHTIGUNG VON PFLANZENÖLTRIACYLGLYCEROLEN. 2006.
- 88. Facciotti D, Knauf V: **Triglycerides As Products of Photosynthesis. Genetic Engineering, Fatty Acid Composition and Structure of Triglycerides**. *Lipids in Photosynthesis: Structure, Function and Genetics* 1998:225-248.
- 89. Ha KS, Thompson Jr GA: Diacylglycerol Metabolism in the Green Alga Dunaliella salina under Osmotic Stress: Possible Role of Diacylglycerols in Phospholipase C-Mediated Signal Transduction. *Plant physiology* 1991, 97(3):921.
- 90. Mottram HR, Woodbury SE, Evershed RP: Identification of triacylglycerol positional isomers present in vegetable oils by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. *Rapid Communications in Mass Spectrometry* 1997, **11**(12):1240-1252.
- 91. Hvattum E: Analysis of triacylglycerols with non-aqueous reversed-phase liquid chromatography and positive ion electrospray tandem mass spectrometry. *Rapid Communications in Mass Spectrometry* 2001, **15**(3):187-190.
- 92. Hsu FF, Turk J: Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. Journal of the American Society for Mass Spectrometry 1999, **10**(7):587-599.
- 93. Murphy RC, James PF, McAnoy AM, Krank J, Duchoslav E, Barkley RM: Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. *Analytical biochemistry* 2007, **366**(1):59-70.
- 94. Han X, Cheng H, Mancuso DJ, Gross RW: Caloric restriction results in phospholipid depletion, membrane remodeling, and triacylglycerol accumulation in murine myocardium. *Biochemistry* 2004, **43**(49):15584-15594.
- 95. Byrdwell WC, Neff WE: **Dual parallel electrospray ionization and** atmospheric pressure chemical ionization mass spectrometry(MS), MS/MS and MS/MS/MS for the analysis of triacylglycerols and triacylglycerol

oxidation products. *Rapid Communications in Mass Spectrometry* 2002, **16**(4):300-319.

- 96. Cai SS, Syage JA: **Comparison of atmospheric pressure photoionization**, **atmospheric pressure chemical ionization**, and electrospray ionization mass **spectrometry for analysis of lipids**. *Anal Chem* 2006, **78**(4):1191-1199.
- 97. He H, Emmett MR, Nilsson CL, Schaub TM, Conrad CA, Li Y, Marshal AG: **Profiling of Polar Membrane Lipids by On-Line Liquid Chromatography Electrospray Ionization FT-ICR Mass Spectrometry**. 2007.
- 98. Chen Y, Allegood J, Liu Y, Merrill AH, Sullards MC: **Imaging MALDI Mass Spectrometry of Sphingolipids Using an Oscillating Capillary Nebulizer** (OCN) Matrix Application System;
- 99. Allegood JC, Wang E, Sullards MC, Jr AHM: **Comparison of QTrap and chipbased nanospray Q-ToF for identification of sulfatides in complex mixtures**;
- 100. Chen Y, Allegood J, Liu Y, Wang E, Cachon-Gonzalez B, Cox TM, Merrill Jr AH, Sullards MC: **Imaging MALDI Mass Spectrometry Using an Oscillating Capillary Nebulizer Matrix Coating System and Its Application to Analysis of Lipids in Brain from a Mouse Model of Tay- Sachs/Sandhoff Disease**. *Anal Chem* 2008, **80**(8):2780-2788.
- 101. Serb A, Schiopu C, Flangea C, Sisu E, Zamfir AD: **Top-down glycolipidomics: fragmentation analysis of ganglioside oligosaccharide core and ceramide moiety by chip-nanoelectrospray collision-induced dissociation MS2-MS6**. *Journal of Mass Spectrometry* 2009, **44**(10):1434-1442.
- 102. Eckhardt M: The role and metabolism of sulfatide in the nervous system. *Molecular Neurobiology* 2008, **37**(2):93-103.
- Scandroglio F, Loberto N, Valsecchi M, Chigorno V, Prinetti A, Sonnino S: Thin layer chromatography of gangliosides. *Glycoconjugate Journal* 2009, 26(8):961-973.
- 104. Yetukuri L, Katajamaa M, Medina-Gomez G, Seppänen-Laakso T, Vidal-Puig A, Oreši M: **Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis**. *BMC Systems Biology* 2007, **1**(1):12.
- 105. Benning C, Ohlrogge J: Current Advances in the Biochemistry and Cell Biology of Plant Lipids. 2006.
- 106. Josephs JL, Sanders M, Shipkova P, Langish RA, Whitney J, Phillips JJ:
 Detection and Characterization of Pharmaceutical Metabolites, Degradants and Impurities by the Application of MS/MS Software Algorithms. 2003.
- 107. Böcker S: Computational Mass Spectrometry. 2009
- 108. Gurr MI, Harwood JL, Frayn KN, Gurr MI, Harwood JL, Frayn KN: Lipid biochemistry Lipids in cellular structures. 2008.
- 109. Guschina IA, Harwood JL: Lipids: Chemical Diversity. 2008.
- 110. Bamba T, Shimonishi N, Matsubara A, Hirata K, Nakazawa Y, Kobayashi A, Fukusaki E: High throughput and exhaustive analysis of diverse lipids by using supercritical fluid chromatography-mass spectrometry for metabolomics. *Journal of bioscience and bioengineering* 2008, 105(5):460-469.

- 111. Lemaire R, Wisztorski M, Desmons A, Tabet JC, Day R, Salzet M, Fournier I: MALDI-MS direct tissue analysis of proteins: Improving signal sensitivity using organic treatments. *Anal Chem* 2006, **78**(20):7145-7153.
- 112. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D: The human cerebrospinal fluid metabolome. *Journal of Chromatography B* 2008, 871(2):164-173.
- 113. Liebisch G: Hochdurchsatz-Lipid Profiling mit Tandem-Massenspektrometrie;
- 114. LIPID MAPS MASS SPECTROMETRY METHODS CHAPTERS;
- 115. Watson AD: Lipidomics: a global approach to lipid analysis in biological systems. *The Journal of Lipid Research* 2006:R600022.
- 116. Milne S, Ivanova P, Forrester J, Alex Brown H: Lipidomics: an analysis of cellular lipids by ESI-MS. *Methods* 2006, **39**(2):92-103.
- 117. Watkins SM, Reifsnyder PR, Pan H, German JB, Leiter EH: Lipid metabolomewide effects of the peroxisome proliferator-activated receptor gamma agonist rosiglitazone. *The Journal of Lipid Research* 2002:200169200.
- 118. Murphy RC: Challenges in the Analysis of Glyceryl Lipids as Molecular Species. 2005.
- 119. Van den Berg JDJ: Analytical chemical studies on traditional linseed oil paints. *University of Amsterdam* 2002.
- 120. Houjou T, Yamatani K, Imagawa M, Shimizu T, Taguchi R: A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. *Rapid Communications in Mass Spectrometry* 2005, **19**(5):654-666.
- 121. Hicks AM, DeLong CJ, Thomas MJ, Samuel M, Cui Z: Unique molecular signatures of glycerophospholipid species in different rat tissues analyzed by tandem mass spectrometry. *Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids* 2006, **1761**(9):1022-1029.
- 122. Manicke NE, Wiseman JM, Ifa DR, Cooks RG: Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. Journal of the American Society for Mass Spectrometry 2008, 19(4):531-543.
- 123. Morton J: Characterization of a lipase in Arabidopsis defense. 2007.
- 124. Welti R, Wang X: Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. *Current opinion in plant biology* 2004, **7**(3):337-344.
- 125. Wanjie SW, Welti R, Moreau RA, Chapman KD: Identification and Quantification of Lipid Metabolites in Cotton Fibers: Reconciliation with Metabolic Pathway Predictions from DNA Databases. *Lipids* 2005, 40(8):773-785.
- 126. Gounaris K, Barber J, Harwood JL: The thylakoid membranes of higher plant chloroplasts. *Biochemical Journal* 1986, **237**(2):313.

- 127. Wang X, Li W, Li M, Welti R: **Profiling lipid changes in plant response to low** temperatures. *Physiologia Plantarum* 2006, **126**(1):90-96.
- 128. Guschina IA, Harwood JL: Lipids and lipid metabolism in eukaryotic algae. *Progress in Lipid Research* 2006, **45**(2):160-186.
- 129. Khotimchenko SV: Lipids from the marine alga Gracilaria verrucosa. *Chemistry of Natural Compounds* 2005, **41**(3):285-288.
- 130. Harwood J: Membrane lipids in algae. *Lipids in Photosynthesis: Structure, Function and Genetics* 1998:53-64.
- 131. Wada H, Murata N: Membrane lipids in cyanobacteria. *Lipids in Photosynthesis: Structure, Function and Genetics* 1998:65-81.
- 132. Sheehan J, Dunahay T, Benemann J, Roessler P: A look back at the US Department of Energy's aquatic species program—biodiesel from algae. National Renewable Energy Laboratory, Golden, CO 1998, 80401:580-24190.
- 133. Thomas WH, Tornabene TG, Weissman J: Screening for lipid yielding microalgae: activities for 1983. Final subcontract report. In.: SERI/STR-231-2207, Solar Energy Research Inst., Golden, CO (USA); 1984.
- 134. Li Q, Du W, Liu D: **Perspectives of microbial oils for biodiesel production**. *Applied microbiology and biotechnology* 2008, **80**(5):749-756.
- 135. Reisser W: **The Hidden Life of Algae Underground**. *Algae and Cyanobacteria in Extreme Environments*:47-58.
- Ikawa M: Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms. UNH Center for Freshwater Biology Research 2004, 6(2):17-44.
- 137. Ravishankar GA: **Comparative study of lipid composition of two halotolerant alga, Dunaliella bardawil and Dunaliella salina**. *International Journal of Food Sciences and Nutrition* 2007, **58**(5):373-382.
- Pick U, Gounaris K, Weiss M, Barber J: Tightly bound sulpholipids in chloroplast CF0-CF1. *Biochimica et Biophysica Acta (BBA)-Bioenergetics* 1985, 808(3):415-420.
- 139. Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs KU: Intact polar membrane lipids in prokaryotes and sediments deciphered by highperformance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. *Rapid Communications in Mass Spectrometry* 2004, **18**(6):617-628.
- 140. Zepke HD, Heinz E, Radunz A, Linscheid M, Pesch R: **Combination and positional distribution of fatty acids in lipids from blue-green algae**. *Archives of Microbiology* 1978, **119**(2):157-162.
- 141. Khotimchenko SV: **Distribution of glyceroglycolipids in marine algae and** grasses. *Chemistry of Natural Compounds* 2002, **38**(3):223-229.
- 142. Crews FT, McElhaney MR, Klepner CA, Lippa AS: Lipids are major components of human immunodeficiency virus (HIV): Modification of HIV lipid composition, membrane organization, and protein conformation by AL-721®. Drug Development Research 2004, 14(1):31-44.
- 143. Brügger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Kräusslich HG: **The HIV lipidome: a raft with an unusual composition**. *Proceedings of the National Academy of Sciences* 2006, **103**(8):2641.

- 144. Los DA, Murata N: **Responses to cold shock in cyanobacteria**. *J Mol Microbiol Biotechnol* 1999, **1**(2):221-230.
- 145. Tosch W, Lanthaler K, Boote V, Stretz D, Robson GD, Geiger E, Drucker DB: Molecular species of phosphatidylethanolamine from continuous cultures of Saccharomyces pastorianus syn. carlsbergensis strains. Yeast 2006, 23(2):75-82.
- 146. Bruneteau M, Fournol F, Gandon C, Becchi M, Pivot V: **Isolation and** characterization of inositol sphingophospholipids from Phytophthora parasitica Dastur. *Lipids* 1997, **32**(4):359-362.
- 147. Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G: Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. *Journal of Cell Biology* 1999, **146**(4):741.
- 148. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A: Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. *Proceedings of the National Academy* of Sciences 2009, **106**(7):2136.
- 149. Elias JE, Gygi SP: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. *Nature methods* 2007, 4(3):207-214.
- 150. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S: **HMDB: the human metabolome database**. *Nucleic acids research* 2007, **35**(Database issue):D521.
- 151. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, Spener F, van Meer G, Wakelam MJO, Dennis EA: **Update of the LIPID MAPS comprehensive classification system for lipids**. *The Journal of Lipid Research* 2009, **50**(Supplement):S9.
- 152. Yokoi Y, Aoshima K, Yanagisawa K, Yamazaki T, Ishida M, Houjou T, Nakanishi H, Oda Y, Taguchi R: Construction of Automated Identification System for Lipidome. 2005.
- 153. Barbieri A: Non-existence of Free or Combined Lecithins in the Yolk of Eggs and in Biological Structures. *Abstracts of chemical papers* 1912.
- 154. Working EB, Andrews AC: The Structure of the Phospholipids. *Chemical Reviews* 1941, **29**(2):245-256.
- Gamgee A, Blankenhorn E: On Protagon. *The Journal of Physiology* 1879, 2(2):113.
- 156. Snijders H: Understanding Small Molecule Biomarker Patterns by Targeted and Non-Targeted Metabolomics using LC/MS/MS;
- Pitt A, Spickett C: Mass spectrometric analysis of HOCI-and free-radicalinduced damage to lipids and proteins. *Biochemical Society Transactions* 2008, 36:1077-1082.
- 158. Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, Shevchenko A: **Charting** molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. *The Journal of Lipid Research* 2003, **44**(11):2181.

- 159. Cassel DL, Ragona DG, Carriedo L, Kempe JA, Conner RL: Metabolism of oddnumbered, normal fatty acids in Tetrahymena pyriformis W. *Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism* 1981, 663(1):121-133.
- 160. Lichtfouse E, Derenne S, Mariotti A, Largeau C: **Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios**. *Organic Geochemistry* 1994, **22**(6):1023-1027.
- 161. Sorensen CM, Ding J, Zhang Q, Mueller PW, Smith RD, Metz TO: Application of the accurate mass and time tag approach in lipidomics studies of type 1 diabetes mellitus. 2008.
- 162. Ding J, Sorensen CM, Jaitly N, Jiang H, Orton DJ, Monroe ME, Moore RJ, Smith RD, Metz TO: Application of the accurate mass and time tag approach in studies of the human blood lipidome. *Journal of Chromatography B* 2008, 871(2):243-252.
- 163. Herrero M, Vicente MJ, Cifuentes A, Ibañez E: Characterization by highperformance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry of the lipid fraction of Spirulina platensis pressurized ethanol extract. 2007.
- 164. Naumann I, Darsow KH, Walter C, Lange HA, Buchholz R: Identification of sulfoglycolipids from the alga Porphyridium purpureum by matrix-assisted laser desorption/ionisation quadrupole ion trap time-of-flight mass spectrometry. *Rapid Communications in Mass Spectrometry* 2007, 21(19):3185-3192.
- 165. Vieler A, Wilhelm C, Goss R, Süß R, Schiller J: **The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC**. *Chemistry and physics of lipids* 2007, **150**(2):143-155.
- 166. Yao H, Shi Y, Gao R, Zhang G, Zhang R, Zheng C, Xu B: Isolation of lipids from photosystem I complex and its characterization with high performance liquid chromatography/electrospray ionization mass spectrometry. *Journal of Chromatography B* 2006, 837(1-2):101-107.
- 167. Gray CG, Lasiter AD, Leblond JD: Mono-and digalactosyldiacylglycerol composition of dinoflagellates. III. Four cold-adapted, peridinin-containing taxa and the presence of trigalactosyldiacylglycerol as an additional glycolipid. European Journal of Phycology 2009, 99999(1):1-7.
- 168. Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X: Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE D [alpha] 1 knockout mutant. *Phytochemistry* 2006, 67(17):1907-1924.
- 169. Moreau RA, Doehlert DC, Welti R, Isaac G, Roth M, Tamura P, Nun ez A: The identification of mono-, di-, tri-, and tetragalactosyl-diacylglycerols and their natural estolides in oat kernels. *Lipids* 2008, **43**(6):533-548.
- 170. Naumann I: Sulfoquinovosyldiacylglyceride–antiviral aktive Substanzen; 2009
- 171. Guella G, Frassanito R, Mancini I: A new solution for an old problem: the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass spectrometry. *Rapid Communications in Mass Spectrometry* 2003, **17**(17):1982-1994.

- 172. Gray CG, Lasiter AD, Li C, Leblond JD: Mono- and digalactosyldiacylglycerol composition of dinoflagellates. I. Peridinin-containing taxa. *European Journal of Phycology* 2009, **44**(2):191-197.
- 173. Healthcare I: Mono-and digalactosyldiacylglycerol composition of dinoflagellates. II. Lepidodinium chlorophorum, Karenia brevis, and Kryptoperidinium foliaceum, three dinoflagellates with aberrant plastids. *European Journal of Phycology* 2009, **44**(2):199-205.
- 174. Frassanito R, Mancini I, Guella G: Chimica e biologia a confronto: pigmenti e altri metaboliti secondari prodotti da dinoflagellati del Lago di Tovel. 2006.
- 175. Welti R, Wang X, Williams TD: Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. *Analytical biochemistry* 2003, **314**(1):149-152.
- 176. Yamauchi R: Analysis of Molecular Species of Plant Glycolipids by HPLC/APCI-MS. Modern Methods for Lipid Analysis by Liquid Chromatography/mass Spectrometry and Related Techniques 2005:431.
- 177. Siegenthaler PA: Molecular organization of acyl lipids in photosynthetic membranes of higher plants. *Lipids in Photosynthesis: Structure, Function and Genetics* 1998:119-144.
- 178. Al-Fadhli A, Wahidulla S, D'Souza L: **Glycolipids from the red alga Chondria armata (Kutz.) Okamura**. *Glycobiology* 2006, **16**(10):902.
- 179. Naumann I: Antiviral active Sulfoquinovosyldiacylglycerides from Phototrophic Microorganisms;
- 180. Lynch DV, Gundersen RE, Thompson Jr GA: Separation of galactolipid molecular species by high-performance liquid chromatography. *Plant Physiology* 1983, 72(3):903.
- 181. Dörmann P, Benning C: Galactolipids rule in seed plants. *Trends in plant science* 2002, **7**(3):112-118.
- 182. Roughan PG, Batt RD: Quantitative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. *Analytical biochemistry* 1968, **22**(1):74-88.
- 183. Lukasiewicz J, Jachymek W, Niedziela T, Kenne L, Lugowski C: Structural analysis of the lipid A isolated from Hafnia alvei 32 and PCM 1192 lipopolysaccharides. *The Journal of Lipid Research* 2009, **51**(3):564.
- 184. Zhou P, Chandan V, Liu X, Chan K, Altman E, Li J: **Microwave-assisted sample** preparation for rapid and sensitive analysis of H. pylori lipid A applicable to a single colony. *The Journal of Lipid Research* 2009, **50**(9):1936.
- 185. Ting Y, Malmstroem L, Shaffer SA, Ng WV, Goodlett DR: Characterization of Lipid A Species by Computational Analysis of Mass Spectrometry Data. 2008.
- Phillips NJ, Schilling B, McLendon MK, Apicella MA, Gibson BW: Novel modification of lipid A of Francisella tularensis. *Infection and immunity* 2004, 72(9):5340.
- 187. Price NP, Jeyaretnam B, Carlson RW, Kadrmas JL, Raetz CR, Brozek KA: Lipid A biosynthesis in Rhizobium leguminosarum: role of a 2-keto-3deoxyoctulosonate-activated 4'phosphatase. Proceedings of the National Academy of Sciences of the United States of America 1995, 92(16):7352.

- 188. Sweet CR, Preston A, Toland E, Ramirez SM, Cotter RJ, Maskell DJ, Raetz CRH: Relaxed acyl chain specificity of Bordetella UDP-N-acetylglucosamine acyltransferases. *Journal of Biological Chemistry* 2002, **277**(21):18281.
- 189. Que NLS, Lin S, Cotter RJ, Raetz CRH: **Purification and mass spectrometry of** six lipid A species from the bacterial endosymbiont Rhizobium etli. *Journal of Biological Chemistry* 2000, 275(36):28006.
- 190. Somerville Jr JE, Cassiano L, Bainbridge B, Cunningham MD, Darveau RP: A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide. *Journal of Clinical Investigation* 1996, **97**(2):359.
- 191. Jones JW, Shaffer SA, Ernst RK, Goodlett DR, Ture ek F: Determination of pyrophosphorylated forms of lipid A in Gram-negative bacteria using a multivaried mass spectrometric approach. *Proceedings of the National Academy of Sciences* 2008, **105**(35):12742.
- 192. Schilling B, McLendon MK, Phillips NJ, Apicella MA, Gibson BW: Characterization of lipid A acylation patterns in Francisella tularensis, Francisella novicida, and Francisella philomiragia using multiple-stage mass spectrometry and matrix-assisted laser desorption/ionization on an intermediate vacuum source linear ion trap. Anal Chem 2007, 79(3):1034-1042.
- 193. Mikhail I, Yildirim HH, Lindahl ECH, Schweda EKH: Structural characterization of lipid A from nontypeable and type f Haemophilus influenzae: Variability of fatty acid substitution. Analytical biochemistry 2005, 340(2):303-316.
- 194. Dzieciatkowska M, Schweda EKH, Moxon ER, Richards JC, Li J: Characterization of intact lipopolysaccharides from the Haemophilus influenzae strain RM 118 using electrophoresis-assisted open-tubular liquid chromatography-mass spectrometry. *Electrophoresis* 2008, **29**(10):2171-2181.
- 195. Feulner JA, Lu M, Shelton JM, Zhang M, Richardson JA, Munford RS: **Identification of acyloxyacyl hydrolase, a lipopolysaccharide-detoxifying enzyme, in the murine urinary tract**. *Infection and immunity* 2004, **72**(6):3171.
- 196. Klein G, Lindner B, Brabetz W, Brade H, Raina S: Escherichia coli K-12 Suppressor-free Mutants Lacking Early Glycosyltransferases and Late Acyltransferases. Journal of Biological Chemistry 2009, 284(23):15369.
- 197. Lee CS, Kim YG, Joo HS, Kim BG: **Structural analysis of lipid A from Escherichia coli O157: H7: K-using thin-layer chromatography and ion-trap mass spectrometry**. *Journal of Mass Spectrometry* 2004, **39**(5):514-525.
- 198. Wang X, Ribeiro AA, Guan Z, Raetz CRH: Identification of undecaprenyl phosphate- -D-galactosamine in Francisella novicida and its function in lipid A modification. *Biochemistry* 2009, **48**(6):1162.
- 199. Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, Fukase K, Kusumoto S, Sweet C, Miyake K: Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. *Nature immunology* 2006, 7(10):1066-1073.
- 200. John CM, Liu M, Jarvis GA: Natural Phosphoryl and Acyl Variants of Lipid A from Neisseria meningitidis Strain 89I Differentially Induce Tumor Necrosis

Factor-{alpha} in Human Monocytes. *Journal of Biological Chemistry* 2009, **284**(32):21515.

- 201. Volk AS, Krasikova IN, Anastyuk SD, Dmitrenok PS, Solov'eva TF: **Structure** of lipid A from the marine gram-negative bacterium Pseudoalteromonas nigrifaciens IAM 13010 T. *Chemistry of Natural Compounds* 2007, **43**(5):519-524.
- 202. Sforza S, Silipo A, Molinaro A, Marchelli R, Parrilli M, Lanzetta R: Determination of fatty acid positions in native lipid A by positive and negative electrospray ionization mass spectrometry. *Journal of Mass Spectrometry* 2004, **39**(4):378-383.
- 203. Long X, Deng S, Mattner J, Zang Z, Zhou D, McNary N, Goff RD, Teyton L, Bendelac A, Savage PB: **Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids**. *Nature chemical biology* 2007, **3**(9):559-564.
- 204. Domingues MRM, Reis A, Domingues P: Mass spectrometry analysis of oxidized phospholipids. *Chemistry and Physics of Lipids* 2008, **156**(1-2):1-12.
- 205. Tyurina YY, Tyurin VA, Kapralova VI, Amoscato AA, Epperly MW, Greenberger JS, Kagan VE: Mass-spectrometric characterization of phospholipids and their hydroperoxide derivatives in vivo: effects of total body irradiation. *Methods in molecular biology (Clifton, NJ)* 2009, **580**:153.
- 206. Peterson B, Stovall K, Monian P, Franklin JL, Cummings BS: Alterations in phospholipid and fatty acid lipid profiles in primary neocortical cells during oxidant-induced cell injury. *Chemico-biological interactions* 2008, **174**(3):163-176.
- 207. Zemski Berry KA, Murphy RC: Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: structure determination by mass spectrometry. Antioxidants & Redox Signaling 2005, 7(1-2):157-169.
- 208. Sjövall O, Kuksis A, Kallio H: **Analysis of molecular species of peroxide** adducts of triacylglycerols following treatment of corn oil with tert-butyl hydroperoxide. *Lipids* 2001, **36**(12):1347-1356.
- 209. Newman JW, Morisseau C, Hammock BD: **Epoxide hydrolases: their roles and** interactions with lipid metabolism. *Progress in lipid research* 2005, **44**(1):1-51.
- 210. Ahmed Z, Ravandi A, Maguire GF, Emili A, Draganov D, Du BNL, Kuksis A, Connelly PW: Apolipoprotein AI promotes the formation of phosphatidylcholine core aldehydes that are hydrolyzed by paraoxonase (PON-1) during high density lipoprotein oxidation with a peroxynitrite donor. Journal of Biological Chemistry 2001, 276(27):24473.
- 211. Mesaros AC: Epoxy phospholipids: Total synthesis, generation and in vivo detection of a new class of oxidatively truncated lipids. 2005.
- 212. Brouwers J, Gadella BM: In situ detection and localization of lipid peroxidation in individual bovine sperm cells. *Free Radical Biology and Medicine* 2003, **35**(11):1382-1391.
- 213. Kuksis A, Suomela JP, Tarvainen M, Kallio H: Lipidomic Analysis of Glycerolipid and Cholesteryl Ester Autooxidation Products. *Molecular biotechnology* 2009, **42**(2):224-268.

- 214. Subbanagounder G, Leitinger N, Schwenke DC, Wong JW, Lee H, Rizza C, Watson AD, Faull KF, Fogelman AM, Berliner JA: Determinants of bioactivity of oxidized phospholipids: specific oxidized fatty acyl groups at the sn-2 position. Arteriosclerosis, thrombosis, and vascular biology 2000, 20(10):2248.
- 215. Thomas MC, Mitchell TW, Harman DG, Deeley JM, Murphy RC, Blanksby SJ: Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry. *Anal Chem* 2007, **79**(13):5013-5022.
- 216. Watson AD, Leitinger N, Navab M, Faull KF, Hörkkö S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W: **Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo**. *Journal of Biological Chemistry* 1997, **272**(21):13597.
- 217. Nonas S, Miller I, Kawkitinarong K, Chatchavalvanich S, Gorshkova I, Bochkov VN, Leitinger N, Natarajan V, Garcia JGN, Birukov KG: Oxidized phospholipids reduce vascular leak and inflammation in rat model of acute lung injury. *American journal of respiratory and critical care medicine* 2006, 173(10):1130.
- 218. Hübner G, Crone C, Lindner B: lipID-a software tool for automated assignment of lipids in mass spectra. *Journal of Mass Spectrometry* 2009, 44(12):1676-1683.
- 219. Ejsing CS, Duchoslav E, Sampaio J, Simons K, Bonner R, Thiele C, Ekroos K, Shevchenko A: Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. *Anal Chem* 2006, **78**(17):6202-6214.
- 220. Song H, Hsu FF, Ladenson J, Turk J: Algorithm for processing raw mass spectrometric data to identify and quantitate complex lipid molecular species in mixtures by data-dependent scanning and fragment ion database searching. Journal of the American Society for Mass Spectrometry 2007, 18(10):1848-1858.
- 221. Haimi P, Uphoff A, Hermansson M, Somerharju P: Software tools for analysis of mass spectrometric lipidome data. *Analytical Chemistry-Columbus* 2006, 78(24):8324-8331.
- 222. Yetukuri L, Ekroos K, Vidal-Puig A, Oreši M: Informatics and computational strategies for the study of lipids. *Molecular BioSystems* 2008, **4**(2):121-127.
- 223. Schwudke D, Oegema J, Burton L, Entchev E, Hannich JT, Ejsing CS, Kurzchalia T, Shevchenko A: Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal Chem 2006, 78(2):585-595.
- 224. Leavell MD, Leavy JA: Fatty acid analysis tool (FAAT): an FT-ICR MS lipid analysis algorithm. *Anal Chem* 2006, **78**(15):5497-5503.
- 225. Maass K, Ranzinger R, Geyer H, von der Lieth CW, Geyer R: "Glycopeakfinder"-de novo composition analysis of glycoconjugates. *Proteomics* 2007, **7**(24):4435-4444.
- 226. Lapadula AJ, Hatcher PJ, Hanneman AJ, Ashline DJ, Zhang H, Reinhold VN: Congruent strategies for carbohydrate sequencing. 3. OSCAR: an algorithm

for assigning oligosaccharide topology from MSn data. *Anal Chem* 2005, **77**(19):6271-6279.

- 227. Yang K, Cheng H, Gross RW, Han X: Automated Lipid Identification and Quantification by Multidimensional Mass Spectrometry-Based Shotgun Lipidomics. *Analytical chemistry* 2009.
- 228. Watanabe K, Yasugi E, Oshima M: **How to Search the Glycolipid data in** "LIPID _{BANK} for Web", the Newly Developed Lipid Database in Japan. *Trends in Glycoscience and Glycotechnology* 2000, **12**(65):175-184.
- 229. Serhan CN, Hong S, Lu Y: Lipid mediator informatics-lipidomics: novel pathways in mapping resolution. *The AAPS Journal* 2006, **8**(2):284-297.
- 230. Herzog R, Schwudke D, Schroeder M, Shevchenko A: LipidX: a truly platform independent lipid analysis suite. In: 207.
- 231. LipidBank Service http://lipidbank.jp; [http://lipidbank.jp]
- 232. Huang N, Siegel MM, Kruppa GH, Laukien FH: Automation of a Fourier transform ion cyclotron resonance mass spectrometer for acquisition, analysis, and e-mailing of high-resolution exact-mass electrospray ionization mass spectral data. *Journal of the American Society for Mass Spectrometry* 1999, 10(11):1166-1173.
- 233. Frank AM, Bandeira N, Shen Z, Tanner S, Briggs SP, Smith RD, Pevzner PA: Clustering millions of tandem mass spectra. *Journal of proteome research* 2008, 7(1):113.
- 234. Jaitly N, Mayampurath A, Littlefield K, Adkins J, Anderson G, Smith R:
 Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data. *BMC bioinformatics* 2009, 10(1):87.
- 235. NIST MS Search 2.0 [http://peptide.nist.gov/]
- 236. Stein SE, Rudnick PA: NIST Peptide Mass Spectral Libraries. Human Peptide Mass Spectral Reference Data, H. sapiens, ion trap, Official Build Date: Feb. 4, 2009. National Institute of Standards and Technology, Gaithersburg, MD, 20899; [http://peptide.nist.gov.]
- 237. Song H, Ladenson J, Turk J: Algorithms for automatic processing of data from mass spectrometric analyses of lipids. *Journal of Chromatography B* 2009, 877(26):2847-2854.
- 238. Forrester JS, Milne SB, Ivanova PT, Brown HA: **Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction**. *Molecular pharmacology* 2004, **65**(4):813.
- 239. Kind T: Lipid Analysis with GC-MS, LC-MS, FT-MS Metabolomics Fiehn Lab; [http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/LipidAnalysis/]
- 240. Biemann K, Gapp G, Seibl J: **Application of mass spectrometry to structure problems. I. Amino acid sequence in peptides**. *Journal of the American Chemical Society* 1959, **81**(9):2274-2275.
- 241. Lam H, Deutsch EW, Eddes JS, Eng JK, King N, Stein SE, Aebersold R: Development and validation of a spectral library searching method for peptide identification from MS/MS. *Proteomics* 2007, 7(5):655-667.

- 242. Sadygov RG, Cociorva D, Yates JR: Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. *Nature Methods* 2004, 1(3):195-202.
- 243. Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM: Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. *Journal of experimental botany* 2005, 56(410):219.
- 244. An HJ, Tillinghast JS, Woodruff DL, Rocke DM, Lebrilla CB: A new computer program (GlycoX) to determine simultaneously the glycosylation sites and oligosaccharide heterogeneity of glycoproteins. *Journal of proteome research* 2006, **5**(10):2800-2808.
- 245. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM: **GlycoWorkbench:** a tool for the computer-assisted annotation of mass spectra of glycans. *Journal of proteome research* 2008, **7**(4):1650.
- 246. Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF: Mass Spectral Metabonomics beyond Elemental Formula: Chemical Database Querying by Matching Experimental with Computational Fragmentation Spectra. *Analytical chemistry* 2008, **80**:5574-5582.
- Zhang H, Singh S, Reinhold VN: Congruent strategies for carbohydrate sequencing. 2. FragLib: an MSn spectral library. *Anal Chem* 2005, 77(19):6263-6270.
- 248. Frank AM, Savitski MM, Nielsen ML, Zubarev RA, Pevzner PA: **De novo peptide sequencing and identification with precision mass spectrometry**. J *Proteome Res* 2007, **6**(1):114-123.
- 249. LipidInspector 0.9 for lipid profiling by multiple precursor and neutral loss scanning; [http://www.scionics.de/]
- 250. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill Jr AH, Murphy RC, Raetz CRH, Russell DW: LMSD: LIPID MAPS structure database. *Nucleic Acids Research* 2007, **35**(Database issue):D527.
- 251. Fahy E, Sud M, Cotter D, Subramaniam S: LIPID MAPS online tools for lipid research. *Nucleic Acids Research* 2007.
- 252. Song CM, Bernardo PH, Chai CLL, Tong JC: CLEVER: pipeline for designing in silico chemical libraries. *Journal of Molecular Graphics and Modelling* 2009, 27(5):578-583.
- 253. Schüller A, Hähnke V, Schneider G: SmiLib v2. 0: A Java-Based Tool for Rapid Combinatorial Library Enumeration. *QSAR & Combinatorial Science* 2006, **26**(3):407-410.
- 254. Sud M: MayaChemTools; [http://www.mayachemtools.org]
- 255. Pirok G, Máté N, Varga J, Szegezdi J, Vargyas M, Dorant S, Csizmadia F: Making'' Real'' Molecules in Virtual Space. *Journal of chemical information and modeling* 2006, **46**(2):563-568.
- 256. Salmi J, Nyman TA, Nevalainen OS, Aittokallio T: Filtering strategies for improving protein identification in high-throughput MS/MS studies. *Proteomics* 2009, **9**(4):848-860.

- 257. Baker C, Kanagasabai R, Ang W, Veeramani A, Low HS, Wenk M: Towards ontology-driven navigation of the lipid bibliosphere. *BMC bioinformatics* 2008, 9(Suppl 1):S5.
- 258. Mortensen P, Gouw JW, Olsen JV, Ong SE, Rigbolt KTG, Bunkenborg J, Cox J, Foster L, Heck AJR, Blagoev B: **MSQuant, an open source platform for mass spectrometry-based quantitative proteomics**. *Journal of Proteome Research* 2009.
- 259. Mayampurath AM, Jaitly N, Purvine SO, Monroe ME, Auberry KJ, Adkins JN, Smith RD: **DeconMSn: a software tool for accurate parent ion monoisotopic mass determination for tandem mass spectra**. *Bioinformatics* 2008, **24**(7):1021.
- 260. Frank A: MS-Clustering CSE Computational Mass Spectrometry; [http://proteomics.ucsd.edu/Software/MSClustering.html]
- 261. Gelpí E: From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part I 1965-1984. *Journal of Mass Spectrometry* 2008, 43(4):419-435.
- 262. Gelpí E: From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part II 1985-2000. Journal of Mass Spectrometry 2009, 44(8):1137-1161.
- 263. Schiller J, Süß R, Arnhold J, Fuchs B, Lessig J, Müller M, Petkovic M, Spalteholz H, Zschörnig O, Arnold K: Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. *Progress in Lipid Research* 2004, 43(5):449-488.
- 264. Jackson SN, Ugarov M, Post JD, Egan T, Langlais D, Schultz JA, Woods AS: A Study of Phospholipids by Ion Mobility TOFMS. *Journal of the American Society for Mass Spectrometry* 2008, **19**(11):1655-1662.
- 265. Marto JA, White FM, Seldomridge S, Marshall AG: **Structural characterization** of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. *Analytical chemistry* 1995, **67**(21):3979-3984.
- 266. Cole MJ, Enke CG: Fast atom bombardment tandem mass spectrometry employing ion-molecule reactions for the differentiation of phospholipid classes. Journal of the American Society for Mass Spectrometry 1991, 2(6):470-475.
- 267. Pacholski ML, Cannon DM, Ewing AG, Winograd N: Static time-of-flight secondary ion mass spectrometry imaging of freeze-fractured, frozenhydrated biological membranes. *Rapid Communications in Mass Spectrometry* 1998, **12**(18):1232-1235.
- 268. Wood GW, Morrow G, Schmidt Jr DE, Tuebner J: Field desorption mass spectrometry of phospholipids. III. Survey of structural types. *Chemistry and physics of lipids* 1977, **18**(3-4):316.
- 269. McFarland MA, Marshall AG, Hendrickson CL, Nilsson CL, Fredman P, Månsson JE: Structural characterization of the GM1 ganglioside by infrared multiphoton dissociation, electron capture dissociation, and electron detachment dissociation electrospray ionization FT-ICR MS/MS. Journal of the American Society for Mass Spectrometry 2005, 16(5):752-762.

End of supplement